UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POST-GRADO

DOCTORADO EN RECURSOS HIDRICOS

"MODELACION HIDRODINAMICA UNIDIMENSIONAL DE LOS GRANDES RIOS DE LA CUENCA AMAZONICA"

Tesis para optar el grado de: Doctoris Philosophiae

EDUARDO ABRAHAM CHÁVARRI VELARDE

Lima – Perú 2013

RESUMEN

El río Amazonas es la principal ruta entre el piedemonte de los Andes y el océano Atlántico, por lo tanto el entendimiento y la modelación de la hidrodinámica de los ríos Amazónicos es de gran interés desde el punto de vista ambiental, económico y social. Otro aspecto importante relacionado con la modelación hidrodinámica, es la necesidad creciente de entender el comportamiento de las principales variables geométricas e hidráulicas del río Amazonas en vista de la frecuencia de ocurrencia de eventos hidrológicos extremos que se han incrementado en los últimos años. En el presente estudio, se han seleccionado los ríos Napo y Amazonas en territorio Peruano, localizados en el piedemonte y llanura Amazónica respectivamente, con el objeto de estudiar la modelación hidrodinámica para diferentes rangos de valores que puedan tener los parámetros del modelo. El objetivo principal de la investigación es el desarrollo de un modelo hidrodinámico 1-D para los ríos de la cuenca Amazónica, considerando la complejidad geométrica de sus cauces y la investigación de la incertidumbre de sus predicciones numéricas asociadas con la disponibilidad de información geométrica e hidráulica in situ.

La modelación hidrodinámica de los ríos Amazónicos es aún una tarea difícil. Las dificultades en el acceso de información, reducen las posibilidades de acceder a buena información para la calibración y validación del modelo. Actualmente la tecnología de altimetría radar permite la medición altitudinal de los niveles de agua en la cuenca Amazónica. En este estudio, se explora el uso potencial de dichos datos para la modelación de los ríos Amazonas y Napo en el Perú. Las simulaciones con un modelo hidrodinámico 1-D, muestran que la altimetría radar puede ser utilizada en la calibración y validación del modelo si el ancho del río es mayor a 3200 m. Sin embargo, la prueba de sensibilidad del modelo muestran que la información acerca de la geometría del cauce del río y la velocidad del flujo son más relevantes para la modelación hidrodinámica. Estos dos tipos de datos aún no son fácilmente disponibles en el contexto Amazónico.

Palabras claves: Perú, cuenca Amazónica, modelización hidrodinámica, altimetría radar.

ABSTRACT

The Amazon River is the main route between the foothills of the Andes and the Atlantic Ocean, so the understanding and modeling of the hydrodynamics of Amazonian rivers is of great interest from the viewpoint of environmental, economic an social. Another important aspect related to the hydrodynamic modeling, is the growing need to understand the behavior of the main variables geometric and hydraulic Amazon River because the frequency of occurrence of extreme hydrological events has increased in recent years. In the present study we have selected the Napo and Amazon rivers in Peruvian territory, located in foothills and Amazonian plain respectively, in order to study the hydrodynamic modeling under different ranges of values that can be model parameters. The overall objective of the research is to develop a 1-D hydrodynamic model for the rivers of the Amazon basin, considering the complex geometry of their riverbed and investigating the numerical predictions uncertainty associated with the availability of information as geometric and hydraulic in situ.

Hydrodynamic modeling of Amazonian rivers is still a difficult task. Access difficulties reduce the possibilities to acquire sufficient good data for the model calibration and validation. Current radar altimetry technology allows measuring the altitude of water levels throughout the Amazon basin. In this study, we explore the potential usefulness of these data for hydrodynamic modeling of the Amazon and Napo Rivers in Peru. Simulations with a 1-D hydrodynamic model show that radar altimetry can constrain properly the calibration and the validation of the model if the river width is larger than 3200 m. However, sensitivity test of the model show that information about geometry of the river channel and about the water velocity are more relevant for hydrodynamic modeling. These two types of data that are still not easily available in the Amazon context.

Keywords: Perú, Amazon basin, hydrodynamic modeling, radar altimetry.

INDICE GENERAL

Contenido

I.	INTRODUCCIÓN1
	1.1. IMPORTANCIA DEL CONOCIMIENTO DE LA ELEVACIÓN DEL PERFIL DE
	FLUJO DE LOS GRANDES RÍOS DE LA CUENCA AMAZÓNICA1
	1.2. DIFICULTADES DE LA MODELACIÓN HIDRODINÁMICA EN LA CUENCA AMAZÓNICA3
	1.3. MODELACIÓN HIDRODINÁMICA DE LA CUENCA AMAZÓNICA4
	1.4. MODELACIÓN HIDRODINÁMICA DE RIOS CON GEOMETRÍA DE CAUCES COMPLEJA
	1.5. INCERTIDUMBRE DE LOS MODELOS HIDRODINÁMICOS ANTE LA FALTA DE INFORMACIÓN DE CAMPO8
	1.6. APLICABILIDAD DE LA ALTIMETRÍA RADAR10
	1.7. PROGRAMA ORE HYBAM – BASE DE DATOS11
	1.8. OBJETIVOS DE LA INVESTIGACIÓN
	1.9. ORGANIZACIÓN DE LA TESIS13
II.	REVISION DE LITERATURA16
	2.1. LA CUENCA DEL RIO AMAZONAS16
	2.1.1. ASPECTOS ECONOMICOS Y SOCIALES EN EL ÁMBITO DE LA CUENCA AMAZÓNICA EN TERRITORIO PERUANO17
	2.1.2. DESCRIPCION DE LA GEOMORFOLOGÍA DE LA CUENCA20

2.1.3. CLIMATOLOGÍA	
2.1.4. HIDROGRAFÍA25	
2.1.5. HIDROMETRIA	
2.1.6. CONDICIONES DE NAVEGABILIDAD31	
2.1.7. POBLACION	
2.2. RIO NAPO	
2.2.1. ASPECTOS ECONOMICOS Y SOCIALES35	
2.2.2. DESCRIPCION DE LA GEOMORFOLOGÍA DE LA CUENCA37	
2.2.3. CLIMATOLOGÍA	
2.2.4. HIDROGRAFÍA	
2.2.5. HIDROMETRIA	
2.2.6. CONDICIONES DE NAVEGABILIDAD47	
A. MAL PASOS	
B. TROCHAS Y VARADEROS49	
c. DEMANDA ACTUAL DE TRANSPORTE49	
2.2.7. POBLACION	
2.3. MODELACION HIDRODINÁMICA DEL FLUJO SUPERFICIAL53	
2.3.1. ECUACIÓN DE LA ONDA DIFUSIVA	
2.3.2. ECUACIÓN DE LA ONDA CINEMÁTICA57	
2.4. ESQUEMAS IMPLÍCITOS APLICADOS A ECUACIONES DIFERENCIALES . 59	

2.5	. ESQUEMA IMPLÍCITO DEL MODELO HIDRODINÁMICO6
2.6	, PROBLEMAS DE CONVERGENCIA Y ESTABILIDAD63
2.7	. ALTIMETRÍA RADAR66
III. I	MATERIALES Y METODOLOGÍA68
3.1	. MATERIALES68
3.2	. MÉTODOLOGÍA68
	.1. LA MODELACIÓN HIDRODINÁMICA DE LOS GRANDES RIOS DE LA JENCA AMAZONICA69
۸.	ECUACIONES DE CONTINUIDAD EN MASA Y MOMENTO DE SAINT-VENANT UTILIZADAS
EN	LA MODELACIÓN DE LOS CAUCES SIN ISLAS
В.	ECUACIONES HIDRODINÁMICAS PARA LAS CONDICIONES DE BORDE INTERNO
	LICADAS A SECCIONES CON ISLAS GENERANDO CONVERGENCIAS Y DIVERGENCIAS 76
	ESTABILIDAD DEL MODELO
3.2	.2. SENSIBILIDAD DEL MODELO HIDRODINÁMICO83
Α.	PARAMETRIZACIÓN DE LA GEOMETRÍA DEL CAUCE DEL RÍO
В.	SENSIBILIDAD DEL MODELO HIDRODINÁMICO
3.2	.3. CALIBRACION Y VALIDACION DEL MODELO HIDRODINAMICO 88
	.4. APLICACIÓN DEL MODELO HIDRODINÁMICO EN LOS RÍOS AMAZONAS ERU) Y NAPO91
3.2	.5. MODELACIÓN CONVENCIONAL MEDIANTE EL PROGRAMA HEC-RAS92
V. I	RESULTADOS94
11	MODELO HIDRODINÁMICO 1-D

4.2. SENSIBILIDAD DEL MODELO 1-D CON RESPECTO	A SUS PARAMETROS
PRINCIPALES.	96
4.3. CALIBRACION Y VALIDACION DEL MODELO	101
4.3.1. SIMULACIÓN HIDRODINÁMICA DEL RÍO AMAZ	ONAS101
4.3.2. SIMULACIÓN HIDRODINÁMICA DEL RÍO NAPO	106
4.4. APLICABILIDAD DE LA ALTIMETRÍA RADAR	107
4.5. APLICACIÓN DEL PROGRAMA HEC-RAS	110
V. DISCUSION	114
VI. CONCLUSIONES	118
VII. RECOMENDACIONES	120
VIII. BIBLIOGRAFIA	121

TABLAS

TABLA 1 PARÁMETROS GEOMORFOLÓGICOS DE LA CUENCA DEL RÍO AMAZONAS HASTA I	LA
ESTACIÓN TABATINGA	22
TABLA 2 ÉPOCAS DE CRECIENTE Y VACIANTE DE LOS PRINCIPALES RÍOS DE LA AMAZO	NÍA
del Perú	33
TABLA 3 PARÁMETROS GEOMORFOLÓGICOS CUENCA RÍO NAPO	37
TABLA 4 UBICACIÓN DE MAL PASOS A LO LARGO DEL RÍO NAPO	48
TABLA 5 TROCHAS EN LA CUENCA DEL NAPO	49
TABLA 6 PRINCIPALES POBLACIONES CUENCA DEL NAPO	51
TABLA 7 CASOS Y COMPOSICIÓN DE ECUACIONES RESPECTIVAS	71
TABLA 8 COMPOSICIÓN DE LAS ECUACIONES LINEALES PARA LOS NUEVE CASOS	79
TABLA 9 VALORES DE LOS PARÁMETROS DEL MODELO PARA LOS CASOS DE TRAMOS DE	
CAUCE	83
TABLA 10 VALORES DEL COEFICIENTE DE RUGOSIDAD DE MANNING (N) Y PENDIENTE	
LONGITUDINAL (S), CONSIDERADA EN EL ANÁLISIS DE SENSIBILIDAD	87
Tabla 11 Características Generales de la información de altimetría radar. ,	90
TABLA 12 RANGO DE VARIACIÓN ESPERADO DE LAS VARIABLES DE SALIDA DEL MODELO	
HIDRODINÁMICO	98
TABLA 13 CARACTERÍSTICAS GENERAL DE LOS RÍOS PERUANOS AMAZONAS Y NAPO	. 101

FIGURAS

FIGURA 1 HIDROGRAMAS REGISTRADOS EN LA ESTACIÓN TAMSHIYACU (RÍO AMAZONAS -	
SECTOR PERUANO)	. 2
FIGURA 2 HIDROGRAMAS REGISTRADOS EN LA ESTACIÓN BELLAVISTA (RÍO NAPO)	. 2
FIGURA 3 LOCALIZACIÓN DE LAS SEIS ÁREAS DE ESTUDIO DE 330 KM×330 KM EN LA CUENC	À
AMAZÓNICA. LOS COLORES INDICAN LA TOPOGRAFÍA Y FUE OBTENIDA A PARTIR DE	
información del radar Shuttle (Shuttle Radar Topography Mission).	
Alsdorf et al. (2010).	. 6
FIGURA 4 CONFLUENCIA ENTRE LOS RÍOS MARAÑON Y UCAYALI, REGIÓN LORETO, PERÚ	. 7
FIGURA 5 (A) ADCP INSTALADO EN EMBARCACIÓN; (B) PROGRAMA DE CÓMPUTO UTILIZAD	Ю
PARA CALCULAR EN TIEMPO REAL EL CAUDAL Y LA BATIMETRÍA EN SECCIONES	
TRANSVERSALES DE LOS RÍOS AMAZÓNICOS	12
FIGURA 6 ESTACIÓN HIDROMÉTRICA TAMSHIYACU (RÍO AMAZONAS)	17
FIGURA 7 ACTIVIDAD ECONÓMICA DE LA AMAZONÍA PERUANA COMPARADA CON LIMA	
Metropolitana y Perú, expresada en PBI por habitante. (Álvarez, 2011)	19
FIGURA 8 FISIOGRAFÍA DE LA CUENCA DEL RÍO AMAZONAS	
FIGURA 9 CURVA HIPSOMÉTRICA DE LA CUENCA DEL RÍO AMAZONAS HASTA LA ESTACIÓN	Į
TABATINGA	22
FIGURA 10 OROGRAFÍA DE LA CUENCA DEL RÍO AMAZONAS EN TERRITORIO PERUANO	
HASTA LA ESTACIÓN TABATINGA (FRONTERA CON BRASIL)2	23
FIGURA 11 LLUVIA TOTAL PROMEDIO ANUAL 1975–2003 (MM/AÑO). LA REGIÓN ANDINA	
SOBRE LOS 500 M ESTÁ LIMITADA POR LA LÍNEA NEGRA Y BLANCA (ESPINOZA J.C. ET	
AL., 2009)	
FIGURA 12 CUARTILES EN PORCENTAJE DE LLUVIA (%) EN (A) DICIEMBRE-ENERO-FEBRER	o
(DJF), (B) MARZO-ABRIL-MAYO (MAM), (C) JUNIO-JULIO-AGOSTO (JJA), Y (D)	
SEPTIEMBRE-OCTUBRE -NOVIEMBRE (SON). LA REGIÓN ANDINA SOBRE LOS 500 M.	
ESTÁ LIMITADAS POR LA LÍNEA NEGRA Y BLANCA	25
FIGURA 13 CURVA DE CALIBRACIÓN CAUDAL – COTA (ESTACIÓN TAMSHIYACU)	29
FIGURA 14 COMPARACIÓN DE CAUDAL MÁXIMO, MEDIO Y MÍNIMO ENTRE LAS ESTACIONES	
TAMSHIYACU Y TABATINGA (RÍO AMAZONAS)	30
FIGURA 15 COMPARACIÓN DE CAUDALES ESPECÍFICOS MÁXIMO, MEDIO Y MÍNIMO ENTRE	
LAS ESTACIONES TAMSHIYACU Y TABATINGA (RÍO AMAZONAS)	
FIGURA 16 ÁMBITO DE LA CUENCA DEL RÍO NAPO	35
FIGURA 17 CURVA HIPSOMÉTRICA DE LA CUENCA DEL RÍO NAPO DESDE SU NACIENTE	
HASTA LA LOCALIDAD DE TEMPESTAD	
FIGURA 18 OROGRAFÍA DE LA CUENCA DEL RÍO NAPO	
FIGURA 19 PERFIL LONGITUDINAL DEL CAUCE DEL RÍO NAPO	
FIGURA 20 ESTACIÓN CLIMÁTICA ORDINARIA SANTA CLOTILDE	
FIGURA 21 ISOYETAS TOTALES ANUALES ENTRE LOS RÍOS NAPO Y TIGRE (MM/AÑO)4	
FIGURA 22 FOTO DE LA INUNDACIÓN PRODUCIDA EN EL RÍO TENA, AFLUENTE DEL NAPO4	14
FIGURA 23 CURVA DE CALIBRACIÓN CAUDAL – COTA DE MIRA ESTACIÓN FRANCISCO DE	
Orellana (Río Napo)	15
FIGURA 24 CURVA DE CALIBRACIÓN CAUDAL – COTA DE MIRA ESTACIÓN NUEVO	
ROCAFUERTE (RÍO NAPO)	15
FIGURA 25 CURVA DE CALIBRACIÓN CAUDAL – COTA (ESTACIÓN BELLAVISTA - MAZÁN)4	
FIGURA 26 COMPARACIÓN DEL CAUDAL MÁXIMO, MEDIO Y MÍNIMO ENTRE LAS ESTACIONE	
Francisco de Orellana, Nuevo RocaFuerte y Bellavista Mazán (Río Napo)4	16

FIGURA 27 COMPARACIÓN DE CAUDALES ESPECÍFICOS MÁXIMO, MEDIO Y MÍNIL LAS ESTACIONES FRANCISCO DE ORELLANA, NUEVO ROCAFUERTE Y BELL	AVISTA
MAZÁN (RÍO NAPO)	47
FIGURA 28 PRINCIPALES LOCALIDADES A LO LARGO DEL RÍO NAPO EN TERRITO	ORIO
PERUANO	52
FIGURA 29 CONTINUIDAD DEL FLUJO NO PERMANENTE	53
FIGURA 30 PLANO DE SOLUCIÓN X-T	63
FIGURA 31 CASOS DE CONVERGENCIA Y DIVERGENCIA	77
FIGURA 32 RELACIÓN ENTRE EL ANCHO Y LA PROFUNDIDAD DE FLUJO PARA SEC	CCIONES
TRANSVERSALES ENTRE LAS ESTACIONES NUEVO ROCAFUERTE Y LA ESTA	CIÓN
TEMPESTAD Y CÁLCULO DE COEFICIENTES DE DETERMINACIÓN R ² RESPECT	IVOS 85
FIGURA 33 VARIABILIDAD NORMAL DE A DESDE SECCIONES TRANSVERSALES U	BICADAS
AGUAS ARRIBA HACIA AGUAS ABAJO (A) ESTACIÓN NUEVO ROCAFUERTE,	(B)
LOCALIDAD DE TEMPESTAD, (C) ESTACIÓN SANTA CLOTILDE Y (D) ESTAC	IÓN
BELLAVISTA MAZÁN.	
FIGURA 34 DIAGRAMA DE FLUJO DEL MODELO HIDRODINÁMICO 1-D	95
FIGURA 35 SENSIBILIDAD DE LAS VARIABLES DE SALIDA DEL MODELO DE ACU	ERDO CON LA
VARIABILIDAD DE LA GEOMETRÍA DEL CAUCE DEL RÍO. (4A) PARA MY 2M ((4B) PARA +/-
ΣΥ+/- 2Σ	• •
FIGURA 36 SENSIBILIDAD DE LAS VARIABLES DE SALIDA DEL MODELO DE ACUE	ERDO CON: (A)
COEFICIENTE DE RUGOSIDAD DE MANNING Y (B) PENDIENTE LONGITUDINA	AL100
FIGURA 37 (A) UBICACIÓN DE LOS TRAMOS SIMULADOS, (B) RÍO NAPO: TRAM	io Estación
NUEVO ROCAFUERTE – ISLA TEMPESTAD, (C) RÍO AMAZONAS: TRAMO ES	TACIÓN
FRANCISCO DE ORELLANA – ESTACIÓN TABATINGA.	102
FIGURA 38 HISTOGRAMA DE LOS CAUDALES DE INGRESO AL MODELO DE SIMU	LACIÓN DEL
RÍO AMAZONAS	103
FIGURA 39 PARA LA FASE DE CALIBRACIÓN. (A) COMPARACIÓN DE LOS CAUDA	ALES
SIMULADOS (EN LÍNEA GRIS) Y REGISTRADOS EN LA ESTACIÓN TABATINGA	
NEGRA), (B) COMPARACIÓN DE LAS ELEVACIONES DE AGUA SIMULADAS (I	EN LÍNEA
GRIS) Y REGISTRADAS EN LA ESTACIÓN TABATINGA (EN LÍNEA NEGRA)	104
FIGURA 40 PARA LA FASE DE VALIDACIÓN. (A) COMPARACIÓN DE LOS CAUDAI	
SIMULADOS (EN LÍNEA GRIS) Y REGISTRADOS EN LA ESTACIÓN TABATINGA	
NEGRA), (B) COMPARACIÓN DE LAS ELEVACIONES DE AGUA SIMULADAS (I	
GRIS) Y REGISTRADAS EN LA ESTACIÓN TABATINGA (EN LÍNEA NEGRA)	
FIGURA 41 HISTOGRAMA DE LOS CAUDALES DE INGRESO AL TRAMO SIMULADO	
Napo	107
FIGURA 42 HISTOGRAMA DEL NIVEL DEL AGUA SIMULADO Y VALORES DE ALT	IMETRÍA
SATELITAL. (A) TRAYECTORIA 966 – RÍO NAPO, (B) TRAYECTORIA 794 – R	ĺΟ
Amazonas, (c) Trayectoria 164 – Río Amazonas, (d) Trayectoria 8	
AMAZONAS	
FIGURA 43 COEFICIENTE DE REGRESIÓN LINEAL ENTRE LA ELEVACIÓN SIMULA	DA POR EL
MODELO Y LA ELEVACIÓN REGISTRADA MEDIANTE ALTIMETRÍA RADAR PAI	RA
DIFERENTES NIVELES DE ANCHO TRANSVERSAL DEL ESPEJO DE AGUA	
FIGURA 44 CAUDALES A LO LARGO DEL CAUCE PRINCIPAL DEL RÍO NAPO PAR.	
FECHAS DE SIMULACIÓN Y PARA EL CASO DEL FLUJO MÁXIMO, MEDIANTE E	
HEC-RAS. La progresiva 0 se ubica en el extremo aguas abajo del	
SIMULADO.	
FIGURA 45 PERFIL DE FLUJO DEL TRAMO SIMULADO PARA SIETE FECHAS DE SIM	
PERFIL MÁXIMO DE FLUJO, MEDIANTE EL PROGRAMA HEC-RAS. LA PROGR	
UBICA EN EL EXTREMO AGUAS ABAJO DEL TRAMO SIMULADO.	

FIGURA 46 SIMULACIÓN DE LA ELEVACIÓN DEL AGUA EN LA ESTACIÓN TEMPESTAD
MEDIANTE EL MODELO HIDRODINÁMICO Y EL PROGRAMA HEC-RAS. COMPARACIÓN
CON LA INFORMACIÓN DE ALTIMETRÍA RADAR112
FIGURA 47 CORRELACIÓN ENTRE LAS ELEVACIONES DE AGUA SIMULADA EN LA ESTACIÓN
TEMPESTAD (RÍO NAPO) MEDIANTE EL MODELO HIDRODINÁMICO Y EL MODELO HEC-
RAS113

ANEXOS

- Anexo 1. Caudales medios diarios ríos Amazonas y Napo. Fuente: Base de datos del Proyecto ORE-HYBAM.
 - Tabla 1 Información de la profundidad de agua y caudales medios diarios en las estaciones Tamshiyacu y Tabatinga – río Amazonas.
 - Tabla 2 Información de caudales medios diarios en las estaciones Francisco de Orellana, Nuevo RocaFuerte y Bellavista – río Napo.
- Anexo 2. Información de la geometría del río Amazonas y río Napo e Información de altimetría satelital.
 - Tabla 1 Geometría del río Amazonas para ser usado en el modelo hidrodinámico.
 - Tabla 2 Información de altimetría radar ENVISAT en el ámbito del río Amazonas (geoide EGM2008)
 - o Tabla 3 Geometría del río Napo usada en el modelo hidrodinámico.
 - Tabla 4 Información de altimetría radar ENVISAT en el ámbito del río Napo (geoide EGM2008)
 - Figura 1 Dominio computacional de la simulación hidrodinámica del río
 Amazonas entre las estaciones Francisco de Orellana y Tabatinga.
 - Figura 2 Dominio computacional de la simulación hidrodinámica del río Napo entre las estaciones Nuevo RocaFuerte y Tempestad.
- Anexo 3. Base de datos del modelo hidrodinámico 1-D
- Anexo 4. Archivos de resultados del modelo hidrodinámico 1-D

TABLA DE NOMENCLATURAS

Variable	Significado	Unidades
1-D	Unidimensional	
A	Área de la sección transversal del río	L ²
α	Parámetro geométrico	Adimensional
α ₀	Coeficiente de la ecuación de Manning igual a: s ^{1/2} /n	
β	Coeficiente de Boussinesq	
eta_0	Coeficiente de la ecuación de Manning igual a: 5/3	
С	Celeridad de la onda de flujo	LT ⁻¹
C	Número de Courant	
CFL	Número de Courant, Friedrichs y Levy	
D	Coeficiente de atenuación de la onda	L^2T^{-1}
DP	Solución exacta de una ecuación diferencial parcial	
Dy	Número de días simulados	
ΔΡ	Solución exacta de una ecuación de diferencias parcial	
Δt	Intervalo o paso de tiempo	T
Δx	Intervalo o paso de espacio	L
E	Coeficiente de eficiencia de Nash y Sutcliffe	
f	Función discreta	
F	Número de Froude	Adimensional
Ft	Parámetro del factor de inercia parcial local	
φ	Factor de ponderación espacial en los esquemas numéricos	Adimensional
φ	Factor de inercia parcial local	
g	Gravedad	LT ⁻²
h	Nivel del agua simulada	L
h_t	Nivel del fondo del cauce	L
i	Índice que denota nodos en el espacio discreto	Adimensional
j	Índice que denota tiempo discreto	Adimensional
· k	Número de iteración	
<i>k</i> '	Cociente que relaciona la celeridad y la velocidad del flujo	Adimensional

K	Número de flujo cinemático	Adimensional
	Parámetro del factor de	
m	inercia parcial local	
	Punto de solución numérica	
M	en el punto x-t	Adimensional
-	Coeficiente de rugosidad de	1/2
n	Manning	TL ^{-1/3}
37	Número de nodos	
N	computacionales	
Nu	Número de Observaciones	
Ob_i	Valor observado i	
	Posición del coeficiente de	
P_{i}	la ecuación en la matriz a	
•	resolver	
Q	Caudal	L^3T^{-1}
$\frac{z}{q}$	Caudal lateral	L^3T^{-1}
R	Número de repeticiones	
	Raíz del error medio	
<i>RMSE</i>	cuadrático	
3	Coeficiente de	
r^2	determinación	Adimensional
	Pendiente longitudinal del	
S	fondo del río	Adimensional
Sc	Pendiente de fricción	Adimensional
$\frac{s_f}{S_i}$	Valor simulado i	T I I I I I I I I I I I I I I I I I I I
	Solución numérica de la	-
SN	ecuación de diferencias	
	parciales	
σ	Desviación estándar	
t	Tiempo	T
	Periodo de onda	T
	Factor de ponderación	
θ	temporal en los esquemas	
•	numéricos	
	Variable discreta que	
u	representa el caudal o	L^3T^{-1} ó L
	profundidad de agua	
μ	Valor medio	
v	Velocidad de flujo	LT ⁻¹
VAB	Valor agregado bruto	<u> </u>
	Variable de salida del	
V_{salida}	modelo	
	Variable de salida	
$V_{referencia}$	referencial del modelo	
	Ancho transversal del espejo	_
Ŵ	de agua	L L
· x	Distancia, Espacio	L
<u> </u>	Profundidad de agua	L
	1 101minuted to ugus	<u> </u>

N.	Elevación del agua según	L
y_r	altimetría radar	L
	Coeficientes de la	
$A'_b B_b C_b D_b \varepsilon_i$	linealización de la ecuación	
	de continuidad	
	Coeficientes de la	
$E_b F_b G_b H_b \lambda_i$	linealización de la ecuación	
$L_b \Gamma_b G_b H_b \lambda_l$	de cantidad de movimiento	
	ó momentum.	
	Coeficientes de la	
	linealización de la ecuación	
I_i , J_i , K_i , L_i , M_i , N_i	de continuidad para la	
	condiciones de borde	
	interno.	
	Coeficientes de la	
	linealización de la ecuación	
$O_b P'_b R_b S_b T_b U_i$	de energía para la	
	condiciones de borde	
·	interno.	
ADCP	Acoustic Doppler Current Pro	filer
BEL	Estación hidrométrica Bellavi	
FOR	Estación hidrométrica Francisco de Orellana	
GET	Géociences Environnement Toulouse	
INEI	Instituto Nacional de Estadística e Informática del Perú	
INOCAR	Instituto Oceanográfico de la Armada del Ecuador	
MTC	Ministerio de Transportes y Comunicaciones del Perú	
		Observatory (Geodynamical,
ORE HYBAM		eochemical control of
	erosion/alteration and mater	ial transport in the Amazon
	basin)	and the same of th
PDPE		stenible del Área Fronteriza
	Peruano – Ecuatoriano.	
ROC Estación hidrométrica Nuevo RocaFuerte		
SENAMHI	Servicio de Hidrografía Naval de la Marina de Guerra del	
SHN		
	Perú	
TAB	Estación hidrométrica Tabatinga	
TAM	Estación hidrométrica Tamshiyacu	
TEMP	Estación Tempestad	
UNICEF	Fondo de Naciones Unidas para la Infancia	
URSS	Unión de Repúblicas Socialistas Soviéticas	
WWF	Worldwildlife	
ZCAS	Zona de convergencia del Atlántico Sur	
ZCIT	Zona de convergencia intertropical	

I. INTRODUCCIÓN

La cuenca Amazónica dispone entre el 15% al 20% del agua dulce no contaminada del planeta, siendo la mayor fuente de vapor de agua a nivel mundial (Espinoza J.C. et al., 2009) y constituye la mayor reserva biológica del mundo. El Amazonas es el río más caudaloso a nivel mundial con un caudal promedio en la desembocadura de 206 000 m³/s (Callède et al., 2010).

Según Guyot et al. (1999), la cuenca Amazónica posee un área de drenaje de 6'112 000 km² y se extiende por siete países de América del Sur: Brasil (63%), Perú (17%), Bolivia (11%), Colombia (5,8%), Ecuador (2,2%), Venezuela (0,7%) y Guyana (0,3%).

En la presente investigación doctoral se han seleccionado los ríos Napo y Amazonas en territorio Peruano, ubicados en piedemonte y llanura amazónica respectivamente, razón por la cual permite realizar el estudio bajo diferentes características hidrodinámicas.

1.1. IMPORTANCIA DEL CONOCIMIENTO DE LA ELEVACIÓN DEL PERFIL DE FLUJO DE LOS GRANDES RÍOS DE LA CUENCA AMAZÓNICA.

El río Amazonas constituye la principal vía de comunicación entre el piedemonte de los Andes y el Océano Atlántico; por lo tanto el entendimiento y modelación de la hidrodinámica de los ríos Amazónicos es de gran interés desde los aspectos ambiental, económico y social. Asimismo, existe la necesidad creciente de conocer el comportamiento de las principales variables hidrodinámicas del río Amazonas debido a que la frecuencia de ocurrencia de eventos hidrológicos extremos se ha incrementado desde fines de los años 80 (Espinoza J.C. et al.,2009). Dichos eventos han causado inundaciones durante los años 1999, 2006, 2009 y 2012, y contrariamente, niveles de agua muy bajos en los años 1998, 2005 y 2010, lo que produce perjuicios a la gente que vive cerca del cauce del río por daños a la agricultura y el ecosistema [p.e. Saleska et al., 2007; Phillips et al., 2009; Asner and Alencar, 2010, Lewis et al., 2011; Xu et al., 2011].

Para ilustrar lo anterior, se puede mencionar lo acontecido en marzo del año 2012. El Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), registró en la estación hidrológica Tamshiyacu (TAM) (ubicada a 41 km aguas abajo de la ciudad de Iquitos - Perú), el incremento del caudal del río Amazonas que superaron sus valores normales y generaron problemas de inundaciones, especialmente en Iquitos y algunos distritos como Punchana, San Juan y Belén.

La siguiente Figura 1, muestra el incremento de +23% sobre el valor normal producido el pasado 31/Marzo/2012.



Figura 1 Hidrogramas registrados en la Estación Tamshiyacu (Río Amazonas – Sector Peruano)

(Fuente: SENAMHI)

El mismo comportamiento fue registrado en el río Napo cuyo caudal registrado el 18/Marzo/2012 es equivalente a +71% del caudal normal (Figura 2).

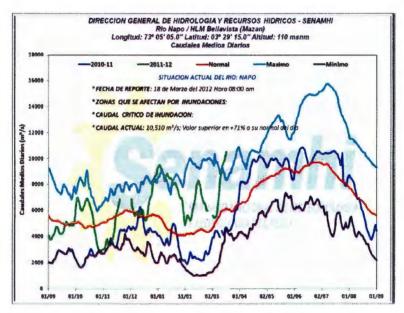


Figura 2 Hidrogramas registrados en la Estación Bellavista (Río Napo)
(Fuente: SENAMHI)

Los altos niveles alcanzados por el río Amazonas, el año 2012 al igual que el registrado en el 2009, han sido los mayores de los últimos 40 años. Estos fenómenos han atraído la atención de la comunidad científica mundial y aunque estos eventos están relacionados con la variabilidad climática regional y en particular los cambios de un año a otro de la temperatura de la superficie de los océanos Pacífico y Atlántico, los expertos no descartan que estos extremos en el contexto del cambio climático, también estén vinculados a la deforestación.

El impacto que pueda causar el incremento de la frecuencia de eventos hidrológicos extremos en el Amazonas, pone en riesgo a una población cercana a 30 millones de personas y a una vasta cantidad de recursos naturales. Esta es quizás una de las últimas áreas geográficas más significativas para el desarrollo de la vida en la tierra, no solamente por su tamaño sino también por el impacto en la biosfera y en la atmósfera del planeta. Por lo tanto, la predicción del impacto del clima en el nivel de las aguas y variabilidad del caudal de los principales ríos amazónicos es una tarea crucial.

1.2. DIFICULTADES DE LA MODELACIÓN HIDRODINÁMICA EN LA CUENCA AMAZÓNICA

Según Fasolato et al. (2009), los ríos poseen una gran variabilidad espacio - temporal. Esta variabilidad está relacionada con aspectos hidrológicos (caudal y niveles de agua), sedimentos (velocidad de transporte y distribución del tamaño del grano) y geometría del cauce (configuración planimétrica y altimétrica). Dichos aspectos de variabilidad han sido estudiados utilizando observaciones de campo, experimentos en laboratorio y modelos numéricos [p.e. Marin and Di Silvio, 1996; Cui et al., 1996; Cao et al., 2002; Papanico- laou et al., 2004; Wu et al., 2004; Cui and Parker, 2005; Curran and Wilcock, 2005; Wright and Parker, 2005a, 2005b].

En particular, una de las principales características de los ríos Amazónicos, está relacionada con sus tipos de cauces que son inestables y erráticos debido al frecuente cambio de posición del cauce principal y que se encuentra asociado principalmente a la dinámica del transporte de sedimentos. Ello determina geometrías de cauce complejas que pueden modificar la hidráulica de las ondas de flujo y el nivel del agua. Esto es importante porque puede inducir a inundaciones con graves consecuencias, cambios en las rutas de navegabilidad y paralización de actividades comerciales que puedan ser desarrolladas cerca a las riberas de los ríos. El cambio frecuente del cauce dificulta tener una base de datos lo suficientemente fiable. En la mayoría de veces, el disponer de información necesaria para los modelos complejos involucra

grandes cantidades de gastos monetarios y esfuerzo humano que a menudo resulta imposible para la amplia e inaccesible cuenca Amazónica.

1.3. MODELACIÓN HIDRODINÁMICA DE LA CUENCA AMAZÓNICA

En la actualidad, existe una significativa cantidad de literatura relacionada con la aplicación de modelos hidrodinámicos aplicado a flujo de canales. Durante la última década, la representación de la dinámica del flujo de agua ha sido llevada a cabo usando modelos 1-D (p.e. Horritt y Bates, 2002; Helmi, 2002); híbridos 1-D y 2-D (p.e. Werner et al., 2005), cuasi-2-D (p.e. Horritt y Bates, 2002; Bates et al., 2006), Modelos 2-D (p.e. Nicholas et al., 2006; Horritty Bates, 2002; Stewart et al., 1999; Nicholas et al., 1996), y Modelos 3-D (p.e. Wilson et al., 2006; Nicholas et al., 2006). Los modelos 1-D y 2-D han sido usados para producir mapas de avenidas e hidrogramas de ríos con longitudes de 5 a 60 km., y con anchos de espejo de agua de hasta 3,0 km con ausencia de tributarios secundarios en valles aluviales. Por otra parte, los modelos 3-D, necesitan una gran cantidad de requerimientos computacionales e información necesaria para su implementación, han sido aplicados en pequeños dominios, por ejemplo para longitudes de tramos menores a 1,0 km.

La mayoría de los modelos matemáticos en el contexto de la cuenca Amazónica se han focalizado en la predicción del nivel del agua y caudal. A continuación, se presentan los trabajos más recientes y sus resultados más importantes.

El modelo de simulación distribuido denominado MGB-IPH para grandes cuencas, desarrollado por Collischonn et al (2001). Este modelo fue aplicado para varios ríos Amazónicos, el Madeira (Ribeiro et al., 2005), el Tapajos, y el río Negro (Collischonn et al., 2008). Paiva et al. (2011), presenta un modelo hidrológico de gran escala, dinámico y unidimensional para calcular la propagación de flujo en redes de cauces compleja, usando datos limitados para la geometría de los ríos y caracterización de las áreas de inundación. Beighley et al. (2009), presenta una simulación hidrológica e hidráulica de la cuenca Amazónica utilizando modelos de escurrimiento superficial y subsuperficial, basados en la aplicación de los métodos cinemáticos y difusivos. Coe et al. (2007), propuso mejorar el modelo THMB (Terrestrial Hydrology model with Biogeochemistry) en relación con la ecuación de la velocidad, incluyendo la sinuosidad del río en el cálculo de las fuerzas de resistencia y ecuaciones de rugosidad empíricas a partir de datos de 30000 mediciones de morfología del río para determinar el volumen de avenidas en diversos lugares de la cuenca y últimamente

represento la morfología del área de inundación con una resolución de 1 km desde SRTM (Shuttle Radar TopographyMission).

Según Hall et al. (2010), las aplicaciones de modelación hidrodinámica del río Amazonas se han llevado a cabo considerando la simulación de la profundidad y pendiente del nivel del agua (León et al., 2006), cambios de almacenamiento de agua en la cuenca (Beighley et al., 2009) y transporte de sedimentos (Vorosmarty et al., 1989).

No obstante el área de mayor interés ha sido la modelación de crecidas, incluyendo las descargas, niveles de aguas dinámicos y procesos de flujo en las llanuras de inundación. Ejemplos de ellos son los estudiados por Alsdorf et al. (2005), quien uso un modelo difusivo 1-D el cual fue capaz de mostrar el flujo de recesión de agua sobre una llanura de inundación. Asimismo Bates et al. (2000), usaron el modelo LISFLOOD-FP que fue comparado con el HEC-RAS.

Trigg et al. (2009), después de realizar diversas pruebas con modelos, demostró que para representar el flujo del río Amazonas, era necesario que el modelo matemático tenga en cuenta por lo menos términos difusivos entre sus componentes y concluyó que el uso de la modelización hidráulica ha sido esencial en la mejora de la comprensión del comportamiento hidrodinámico del río, en particular cuando no se cuenta con datos observados. No obstante, los modelos están aún lejos de ser perfectos y constantemente requieren mejoras con nuevos datos y nuevas técnicas.

Alsdorf et al. (2010), caracterizó las llanuras de inundación de la cuenca Amazónica, utilizando el análisis de seis regiones de inundación con diferentes tipos de geomorfologías. El tamaño de cada una de dichas áreas fue de 330 km×330 km. Las regiones 1 y 2 localizadas desde la desembocadura hasta aproximadamente 1100 km aguas arriba, contiene grandes llanuras de inundación. Las regiones 3 y 4, localizadas en la parte central de la cuenca, tienen la geomorfología más compleja con una mezcla de canales y lagos dendríticos y finalmente las regiones 5 y 6 tienen pequeñas áreas y están compuestas de múltiples canales y lagos. La ubicación de las regiones se muestra en la Figura 3. Las mayores elevaciones están alrededor de 100 m y las menores alrededor de 10 m. Las estaciones de aforo se encuentran marcadas con una "X".

La cantidad de agua que anualmente llena y drena las llanuras de inundación es muy grande. Las regiones 1 y 2 anualmente llenan y drenan cerca de 40 km³ a 50 km³ de agua cada año; las regiones 3 y 4 cerca de 60 km³ a 80 km³; y las regiones 5 y 6 cerca de 25 km³ a 40 km³. Los rangos asociados de las descargas de intercambio entre las llanuras de inundación y el cauce principal son también bastante grandes, como en las regiones 1 a la 5 que reciben entre

 $4000 \text{ m}^3\text{/s}$ a $5500 \text{ m}^3\text{/s}$ durante las avenidas y descargan de $-4000 \text{ m}^3\text{/s}$ a $-7500 \text{ m}^3\text{/s}$ durante el drenaje.

En general, el estudio encontró que la cantidad de agua almacenada y subsecuentemente drenada cada año desde las llanuras de inundación representa sólo alrededor del 5% del volumen total de agua que fluye anualmente por el cauce principal del río Amazonas.

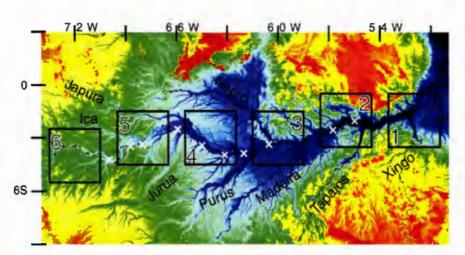


Figura 3 Localización de las seis áreas de estudio de 330 km×330 km en la cuenca Amazónica. Los colores indican la topografía y fue obtenida a partir de información del radar Shuttle (Shuttle Radar Topography Mission). Alsdorf et al. (2010).

1.4. MODELACIÓN HIDRODINÁMICA DE RIOS CON GEOMETRÍA DE CAUCES COMPLEJA

Existen pocos estudios que muestran el efecto de las islas en los resultados de la modelación matemática de la hidráulica y en el tema específico de la modelación hidráulica de las confluencias y bifurcaciones del cauce principal. Uno de ellos es el desarrollado por Ghostine (2009), quien realizó la simulación numérica del perfil de flujo de confluencias y calculó el error entre los modelos 1-D y 2-D. Encontró que para los modelos 1-D el ángulo de convergencia debe ser menor o igual a 30 grados para producir errores inferiores al 2% y para un ángulo de 90 grados, el error aumenta hasta el 7,55%; no obstante, se debe tener en cuenta que su estudio se focalizó en el contexto urbano, lo que no necesariamente se adapta a las características de la red de flujo que presenta el río Amazonas. La desventaja de estos modelos es que son de naturaleza empírica y el campo de su validación es aún reducido. Otro modelo es de Jacovkis (1990), quien desarrolló el análisis hidrodinámico unidimensional para ríos trenzados, demostrando eficiencia en relación al tiempo de cálculo y capacidad de

memoria de cómputo. Utilizó esquemas de diferencias finitas como métodos de solución de las ecuaciones de Saint- Venant, aunque debe señalarse que asumió igual profundidades de flujo en ambos lados de la isla y aguas abajo de la misma.

La Figura 4, muestra un claro ejemplo de la configuración del cauce en la confluencia entre los ríos Marañon y Ucayali en la región Loreto del Perú y constituye un caso típico de cauces de los ríos Amazónicos. También es el caso del río Napo, río tributario por la margen izquierda del río Amazonas, cerca de la ciudad de Iquitos. Se ha contabilizado que en este río, aproximadamente el 50% de la longitud total entre las estaciones hidrométricas de Nuevo RocaFuerte (ROC) (Ecuador) y Bellavista - Mazán (BEL) (Perú), están conformado por tramos de cauce complejos o con islas.

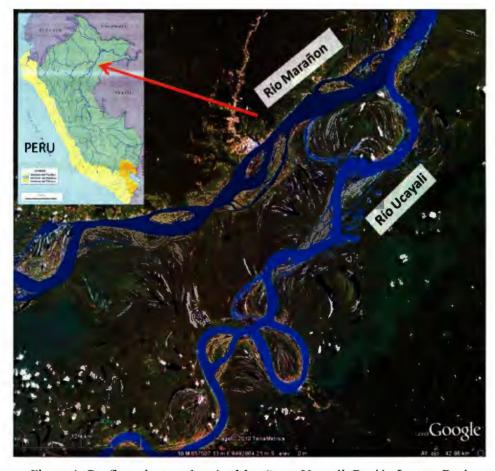


Figura 4 Confluencia entre los ríos Marañon y Ucayali, Región Loreto, Perú

Bajo este enfoque, el modelo hidrodinámico propuesto en la presente investigación doctoral ha sido desarrollado para simular ríos con cauces de forma anastomosada como son los ríos Amazónicos. Si bien es cierto el modelo propuesto es simplificado, es capaz de modelar la

hidrodinámica de los ríos amazónicos, posibilitando por una parte la simulación de las condiciones de navegabilidad de los ríos y por otra la simulación de ondas de avenida que pudieran producir inundaciones de las riberas de los mismos. Sin embargo, debe tenerse en cuenta que el modelo desarrollado considera sólo parámetros relacionados con la hidráulica del movimiento del agua en el río, resistencia hidráulica y ciertas características geométricas del cauce como el ancho transversal del espejo de agua y pendiente longitudinal. No tiene en cuenta otros componentes como el transporte de los sedimentos, la influencia de la vegetación y la deformación del cauce, en vista de la limitada información disponible en campo.

1.5. INCERTIDUMBRE DE LOS MODELOS HIDRODINÁMICOS ANTE LA FALTA DE INFORMACIÓN DE CAMPO

Los estudios de modelación matemática de la hidráulica de los ríos tienen la necesidad de datos válidos del tipo hidrológicos, de sedimentos y de la geometría del río. De manera estricta, debería disponerse de datos con alta resolución espacial para mejorar la predicción del nivel del agua y de la extensión del área de inundación. Sin embargo, la falta de información de campo, principalmente de la geometría e hidrodinámica del río, produce incertidumbre en los resultados de los modelos matemáticos. Dicha incertidumbre se da particularmente en la modelación del nivel del agua y caudal. Una de las alternativas actuales para disminuir la incertidumbre en el resultado del nivel del agua simulado es la utilización de la altimetría radar. Sin embargo, para probar si los datos de altimetría radar son relevantes en el contexto amazónico, se realiza su comparación con los datos del nivel del agua y caudal medidos en campo así como con los resultados de simulación del nivel del agua en los ríos Amazonas y Napo.

Según Paiva et al. (2011), la modelación de la propagación del caudal del río están relacionadas con la incertidumbre de los datos de entrada, por ejemplo en la precisión de los Modelos Digitales de Elevaciones (DEM), la vegetación y la geometría de la sección transversal. No obstante, hay poca información sobre la geometría del río Amazonas, el caudal y la profundidad del agua lo que crea incertidumbre en los resultados del modelado del perfil del flujo.

Existen estudios orientados a la disminución de la incertidumbre como por ejemplo Cunge et al. (1980), quien usó los resultados de experimentos numéricos conducidos por investigadores del State Hydrologic Institute of Leningrad (URSS) para ilustrar los diferentes tipos de respuesta a diferentes experimentos consistentes a un gran número de corridas

computacionales con modelos de canales artificiales para secciones transversales compactas y compuestas. En los experimentos rusos, existen tres factores que influyen en la forma de las curvas Q(y), la intensidad de la variación de la descarga $\Delta Q/\Delta t$, la pendiente longitudinal del cauce y el coeficiente de rugosidad. Asimismo, existen otros estudios que tienen como propósito buscar la mejor ponderación entre la simplicidad del modelo y niveles de incertidumbre bajos. Por ejemplo, Harman et al. (2008), examinó la incertidumbre y estimó la geometría hidráulica del cauce del río para los modelos mediante el análisis de 114 secciones transversales de ríos al sureste de Australia. La investigación concluyó que la estimación del ancho del espejo de agua del cauce y la profundidad de agua sufrían errores mínimos, debido a la incertidumbre de la información de entrada a los modelos. No obstante, las estimaciones de la velocidad de flujo y pendiente de energía tienden a tener menos error, lo que sugiere que es mucho más importante obtener mediciones de campo más precisas de la geometría del cauce.

Con el objeto de disminuir la incertidumbre de los resultados del modelo hidrodinámico desarrollado en la presente investigación, se realiza el análisis de la sensibilidad de los principales parámetros de entrada del modelo que determinan el cálculo del caudal (Q), profundidad de agua (y), velocidad del flujo (v) y ancho del espejo de agua del cauce (w). Los principales parámetros del modelo que fueron considerados son: la geometría del cauce, el coeficiente de rugosidad de Manning (n) y la pendiente longitudinal del río (s). Basados en los porcentajes de variabilidad obtenidos en el análisis de sensibilidad, se obtuvieron rangos esperados de las variables de salida del modelo según los valores de los parámetros del modelo. Dichos intervalos pueden ser utilizados para evaluar la eficiencia en el cálculo del caudal y perfiles de profundidad de agua simulados mediante modelos hidrodinámicos. La evaluación se realiza comparando los resultados simulados con información de caudales y profundidades de agua registrados en campo. Asimismo se realiza la comparación con los niveles de agua registrados por altimetría radar en los ríos Napo y Amazonas.

1.6. APLICABILIDAD DE LA ALTIMETRÍA RADAR

La altimetría radar constituye una nueva fuente de información de los niveles de agua de los ríos y por lo tanto, es posible evaluar su aplicabilidad en la calibración y validación de los resultados de los modelos hidrodinámicos. De esta manera, la utilización de la altimetría radar, es una buena alternativa para disminiur la incertidumbre y mejorar la modelación del perfil de flujo de los ríos Amazónicos. En la actualidad los datos de altimetría radar vienen siendo usados para complementar la validación de la simulación de modelos hidrodinámicos (Getirana et al., 2010), pero cabe mencionar que se presentan aún divergencias entre los hidrogramas al refinar la escala de tiempo. Asimismo la metodología requiere conocer las relaciones entre la profundidad de agua y el caudal en las estaciones virtuales, lo cual limita su aplicación.

No obstante, se debe tomar en cuenta algunas consideraciones explicadas por Santos da Silva et al. (2010), quienes mencionan que los niveles de agua medidos por altimetría radar y los medidos en campo son fundamentalmente diferentes. La altimetría radar mide una media ponderada de todos los cuerpos refractantes sobre una superficie con varios kilómetros cuadrados en tamaño, mientras que las estaciones de aforo toman el nivel del agua en puntos específicos. Dada la alta variabilidad natural de la superficie de agua producida por la dinámica de los caudales, las mediciones mediante el radar pueden no ser igual a los niveles locales de agua registrados en la estación de aforos. Asimismo, Santos da Silva et al. (2010), explicaron a partir de numerosas comparaciones de secciones transversales con estaciones de aforo, que la calidad de las series de tiempo pueden ser altamente variables, desde 12 cm en el mejor de los casos, y de 40 cm en la mayoría de casos, a varios metros en el peor de los casos en la cuenca Amazónica.

Por otra parte, Negrel et al. (2011), sugieren la posibilidad de calcular el caudal en base exclusivamente a las variables de superficie de los ríos, accesibles a través de técnicas remotas de observación de la tierra, es decir, el ancho transversal del espejo de agua, el nivel del agua, la pendiente y la velocidad superficial. La hipótesis principal en este estudio fue suponer flujo estacionario y sección transversal del río de forma rectangular.

1.7. PROGRAMA ORE HYBAM – BASE DE DATOS

La información de niveles de agua, caudales y secciones transversales utilizada en la presente investigación doctoral, proviene de la base de datos del Programa de Investigación 'Observatorio de Investigación Ambiental y Geodinámica, Hidrología y Biogeoquímica del control de erosión/alteración y material de transporte en la cuenca Amazónica' (The Environmental Research Observatory Geodynamical, hydrological and biogeochemical control of erosion/alteration and material transport in the Amazon basin), cuyas siglas son: ORE HYBAM, el cual es financiado por el Instituto de Investigación y Desarrollo de Francia – IRD, bajo el auspicio del Ministerio Francés de Educación Superior e Investigación.

El aforo de los ríos Amazónicos lo realiza el ORE HYBAM desde 1994 mediante el uso de ADCP (Acoustic Doppler Current Profiler), según se muestra en la Figura 5. Los equipos ADCP son instrumentos que permiten medir la velocidad del agua a través de un principio físico conocido como Doppler. El efecto doppler consiste en utilizar la variación de frecuencia entre la señal emitida y la señal reenviada por las partículas en suspensión, para calcular la velocidad del agua y su dirección. El cálculo es efectuado automáticamente en tiempo real por el programa TRANSECT, instalado en un ordenador portátil. Cuando el ADCP se instala correctamente en una embarcación tradicional, el programa calcula la rapidez y el caudal unitario, durante el desplazamiento de la embarcación de una orilla a la otra. Durante la medida, la rapidez del barco no puede exceder 5 nudos, es decir aproximadamente 10 Km/h. A la llegada, el valor acumulado de los caudales unitarios corresponde al caudal de la sección aforada. El tamaño de cada celda depende de la configuración utilizada (altura de la celda), de la programación de la emisión de la señal ADCP (número de señales por minutos), así como de la rapidez del desplazamiento del barco (ancho de la celda). En una sección de más de 2 km. de ancho como en Obidos (Brasil), el intervalo entre 2 señales es generalmente de 1 a 3 segundos, lo que genera de 600 a 1800 verticales a esta sección. Por último, cada una de estas verticales se cortan en celdas de 1,0 m a 2,0 m de alto. La colocación de cada vertical se realiza en relación al eco del fondo, que es considerado como estable. Más información se puede encontrar en la siguiente dirección: http://www.ore-hybam.org/index.php/esl/Tecnicas/Los-aforos-de-grandes-rios-por-ADCP.

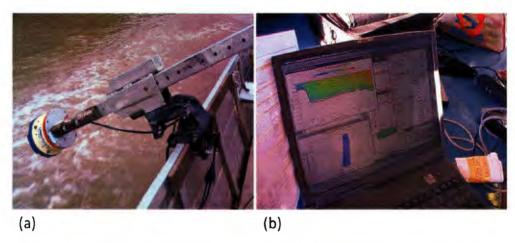


Figura 5 (a) ADCP instalado en embarcación; (b) Programa de cómputo utilizado para calcular en tiempo real el caudal y la batimetría en secciones transversales de los ríos

Amazónicos.

Fuente: Programa ORE HYBAM.

Como ya fue mencionado, el programa ORE HYBAM realiza periódicamente campañas de monitoreo de terreno en el ámbito de la cuenca Amazónica desde 1994. Los reportes de las campañas realizadas en Brasil, Perú, Ecuador, Bolivia y Venezuela, se pueden descargar desde la dirección: http://www.ore-hybam.org/index.php/eng/Documents/Field-campaign-reports. De manera particular, la presente investigación doctoral ha utilizado información registrada durante la campaña EQ 52 (PE 16) desarrollada en el río Napo entre el 15 de octubre al 01 de noviembre de 2004. La expedición realizada partió desde el pie de montaña ecuatoriana y terminó en la confluencia del río Napo con el río Amazonas en el Perú. En esta campaña participaron un equipo pluridisciplinario de científicos de cuatro países (Francia, Brasil, Ecuador y Perú). Los principales aspectos estudiados fueron:

- Aspecto geofísico: Se calculó la pendiente del río Napo desde Mishaualli (Ecuador) hasta Iquitos (Perú). Para ello se implementó seis bases fijas con equipos DGPS (Differential Global Positioning System) y un equipo DGPS movil en un barco. En Ecuador las estaciones fueron: Misahualli, Francisco de Orellana y Nuevo Rocafuerte y en Perú: Angoteros, Santa Clotilde e Iquitos. Asimismo se utilizó un GPS (Global Positioning System) Astech y un GPS Trimble calibrados sobre una frecuencia de quince segundos. Ello sirvió para calibrar la altitud del nivel del agua y las principales estaciones hidrométricas del río Napo.
- Aspecto hidrológico: Se realizaron perfiles transversales cada 10 km, así como los aforos líquidos y sólidos en las diferentes estaciones hidrológicas y afluentes del río Napo. En

paralelo, se efectuó la toma de muestras de agua para la determinación de materiales en suspensión (MES), y el análisis fisico-químico de los elementos mayores y trazas. La granulomería de los materiales transportados fue muestreada desde el pie de montaña hasta la planicie aluvial. De manera de completar el perfil de la pendiente obtenida por DGPS, registramos igualmente una batimetría longitudinal del canal principal del río Napo. En total se realizaron más de 140 perfiles transversales.

1.8. OBJETIVOS DE LA INVESTIGACIÓN

El objetivo general de la investigación doctoral es desarrollar un modelo hidrodinámico unidimensional para los grandes ríos de la cuenca Amazónica, capaz de simular el perfil de flujo y los caudales de forma satisfactoria, considerando la geometría compleja de sus cauces e investigando la incertidumbre de las predicciones numéricas asociadas con la disponibilidad de la información geométrica e hidráulica medida en campo.

Los objetivos específicos de la investigación doctoral son:

- Identificar las causas y niveles de incertidumbre que puedan tener los resultados del modelo hidrodinámico 1-D.
- Evaluar la aplicabilidad de la altimetría satelital en la calibración y validación de los modelos hidrodinámicos en los ríos Amazónicos.

1.9. ORGANIZACIÓN DE LA TESIS

Con el objeto de ampliar los tópicos expuestos en la introducción, la presente investigación doctoral se organiza de la siguiente manera:

Capitulo II Revisión de Literatura

La revisión de literatura consiste en primer lugar de una descripción de las cuencas de los ríos Amazonas y Napo, y con mayor énfasis en dos sectores de río en cada una de dichas cuencas dentro de territorio Peruano. La descripción realizada no solamente tiene en cuenta los aspectos relacionados con la geomorfología, climatología, hidrografía e hidrometría, condiciones de navegabilidad, etc, sino también con los aspectos económicos y sociales de la población, en vista de la importancia del conocimiento del comportamiento del perfil de flujo de dichos ríos al cruzar sus territorios.

El segundo punto tratado consiste en la revisión de las ecuaciones hidrodinámicas completas que rigen el comportamiento del perfil de flujo de los ríos, además de las

ecuaciones simplificadas como son los modelos de onda difusiva y onda cinemática. Asimismo se presentan los criterios utilizados para seleccionar el tipo de modelo más adecuado a las condiciones de flujo que se quiere simular. Para el caso de los ríos Amazónicos que presentan características de flujo tan variada es necesaria la resolución de las ecuaciones hidrodinámicas completas o modelo dinámico.

En tercer lugar, se describen los esquemas implícitos utilizados con mayor frecuencia para dar solución a las ecuaciones diferenciales de flujo superficial y con mayor detalle el esquema de Preissmann utilizado en la presente investigación doctoral.

El cuarto punto está relacionado con los problemas de convergencia y estabilidad que se presentan en los modelos matemáticos. Se describe el criterio del número de Courant para evitar dichos problemas y la técnica utilizada en la presente investigación para dar solución a las 2N-2 ecuaciones en cada paso de tiempo. Finalmente se explica la técnica de la altimetría radar para la estimación de los niveles de agua en los grandes ríos.

• Capitulo III Materiales y Metodología

Se exponen los materiales utilizados en la presente investigación como la información registrada de caudales y profundidades de agua, lenguajes y programas de computación utilizados, equipos de cómputo, etc.

Por otra parte, se explica la metodología desarrollada consistente en los siguientes puntos: En primer lugar se explica la metodología de resolución de las ecuaciones de Continuidad y Cantidad de Movimiento de Saint Venant utilizadas para los casos de la modelación de los cauces sin islas y para la modelación de condiciones de borde interno aplicadas a tramos de cauce con islas. En segundo lugar, se describe la capacidad del modelo para simular nueve casos distintos de configuración del cauce y los criterios utilizados para asegurar la estabilidad del modelo. En tercer lugar, se desarrolla el tema de la sensibilidad del modelo hidrodinámico, describiendo de manera exhaustiva la parametrización de la geometría del cauce del río y determinando el rango de variación esperado de las variables de salida del modelo hidrodinámico. En cuarto lugar se realiza la calibración y validación del modelo hidrodinámico para el caso de la modelación del perfil de flujo del río Amazonas. Además se compara la elevación del agua simulada por el modelo con la información de altimetría radar y modelación convencional mediante el programa HEC-RAS.

Capitulo IV Resultados

En primer lugar, se presenta la descripción de la estructura computacional del modelo hidrodinámico 1D desarrollado. En segundo lugar, se presenta los resultados del análisis de sensibilidad del modelo hidrodinámico 1D, con respecto a la variabilidad de sus principales parámetros de entrada. En tercer lugar, la calibración y validación del modelo hidrodinámico 1D en el río Amazonas y la simulación del perfil de flujo en un tramo del río Napo entre las estación Nuevo Rocafuerte e isla Tempestad. Con los resultados anteriores, se analiza la aplicabilidad de la altimetría satelital en secciones transversales del río Amazonas y Napo. Finalmente, se realiza la comparación de la simulación del río Napo, con la simulación del perfil de flujo mediante el modelo Hec-RAS.

Capitulo V Discusión

Se realiza la discusión de los resultados obtenidos relacionados con la aplicabilidad del modelo hidrodinámico 1D desarrollado y con la incertidumbre de las variables de salida del modelo producida por la falta de información geométrica e hidráulica de los ríos Amazónicos. Asimismo se discute la posibilidad de que la altimetría radar sea utilizada en el proceso de calibración y validación de modelos hidrodinámicos. Finalmente se plantean una serie de perspectivas a futuro sobre la modelación hidrodinámica realizada.

 En el Capitulo VI se presenta las Conclusiones y en el Capítulo VII las Recomendaciones.

II. REVISION DE LITERATURA

2.1. LA CUENCA DEL RIO AMAZONAS

Según Barthem et al. (2004), la cuenca del Amazonas es la más grande cuenca del planeta y una de la menos entendida. Su área de drenaje cubre más de un tercio del continente Sudamericano y su caudal descargado representa la quinta parte del total del caudal descargado de todos los ríos del mundo.

La cabecera de cuenca se encuentra localizada a 100 km del Océano Pacífico y tiene un recorrido de más de 6 000 km antes de drenar al Océano Atlántico. En suma, el Amazonas tiene 15 tributarios principales, incluyendo el río Tocantins que tiene una longitud de 1 000 km. Los ríos Madeira y Negro son los más importantes tributarios, contribuyendo con más de un tercio del total de agua descargada. La cuenca del Amazonas contiene un complejo sistema de vegetación, incluyendo los más extensos y preservados bosques en el mundo.

La Cuenca Amazónica es compartida por Brasil, Perú, Ecuador, Bolivia, Colombia, Venezuela y Guyana. Más de la mitad de la cuenca se localiza en territorio Brasileño, pero las cabeceras de la cuenca se encuentra localizada en la porción andina compartida por Bolivia, Perú, Ecuador y Colombia. La densidad de la población en la Cuenca Amazónica es muy baja y la gente se encuentra concentrada en los centros urbanos. La economía de la región es primariamente dependiente de la extracción de minerales exportables, petróleo y productos forestales. La única excepción es el parque industrial establecido como zona franca en la ciudad de Manaus.

La Amazonia peruana comprende 17 regiones del país: 05 regiones íntegramente Amazónicas: Amazonas, Loreto, Madre de Dios, Ucayali y San Martin y 12 regiones de la sierra peruana que contienen dentro de sus territorios porcentajes que corresponden a la Amazonía.

En la margen izquierda del río Amazonas, se encuentra la ciudad de Iquitos, a 105 msnm. En este lugar el río Amazonas, en época de vaciante o estiaje alcanza una altura de 10 a 12 m. y su amplitud varía entre 5 a 15 km.

La longitud del río Amazonas en el Perú, incluyendo Ucayali y Apurímac, es de 3419 km.

La Figura 6, muestra la estación hidrométrica Tamshiyacu (-4.0 LS, -73.2 LO), la cual permite cuantificar el recurso hídrico de gran parte de la Amazonía Peruana.

Figura 6 Estación hidrométrica Tamshiyacu (Río Amazonas) Fuente: SENAMHI, Octubre-2011, Evaluación hidrológica de las cuencas Amazónicas Peruanas.

2.1.1. ASPECTOS ECONOMICOS Y SOCIALES EN EL ÁMBITO DE LA CUENCA AMAZÓNICA EN TERRITORIO PERUANO

Según Bernal et al. (2010), a nivel de toda la cuenca Amazónica, la situación económica y social de la Amazonía en el Siglo XXI es reflejo de las transformaciones medioambientales, económicas, tecnológicas, sociales y culturales globales de los últimos tiempos. Fenómenos dinámicos como la extracción de bienes naturales, la implementación de proyectos de agricultura empresarial exportadora, los cultivos ilícitos, las grandes infraestructuras físicas o la urbanización, están transformando el medio natural y tienen un impacto sobre las sociedades y culturas locales. No obstante, frente a estos procesos de insostenibilidad, se ha venido construyendo una nueva agenda que posibilita otros escenarios. La conciencia sobre la necesidad de un desarrollo sostenible, más aún en un espacio como la Amazonía, se ha visto traducido en los tratados internacionales que apuntalan un nuevo marco legal (Convención Marco de las Naciones Unidas sobre el Cambio Climático, Convenio de las Naciones Unidas sobre la Diversidad Biológica, Convención de las Naciones Unidas de Lucha contra la Desertificación, Convención de RAMSAR, Convenio CITES, Convenio de Comercio de Maderas Tropicales, y Protocolo de Bioseguridad de Cartagena de Indias).

Por otra parte, el nuevo paradigma técnico-científico de la sociedad sostenible del conocimiento permite que se revalorice los servicios ambientales y el conocimiento tradicional, lo que potencia el rol de los actores sociales locales y la noción de corresponsabilidad. Bajo estos postulados, las instituciones y organizaciones sociales locales son sujetos activos y dinámicos de su propio desarrollo, en una relación de cooperación y conflicto con otros actores económicos que actúan sobre la Amazonia. El agua, un elemento clave para la vida y la reproducción de la Amazonía, también está sujeto a estas transformaciones. La gestión de este recurso escaso, símbolo de vida y también de muerte por todos los conflictos que acarrea, se da en un escenario dialéctico, en el que los conflictos por la apropiación del agua están acompañados de las potencialidades que ofrecen el desarrollo científico y la gestión local de este recurso.

En el Perú, la situación económica y social de la Amazonía se puede entender según algunas estadísticas recopiladas en los últimos años. El nivel de pobreza de la población ubicada en territorio Amazónico era de 46% en el 2009 (Instituto Nacional de Estadística e Informática - INEI). La desnutrición crónica considerando niños menores a 5 años en el 2009 fue de 22% (Fondo de Naciones Unidas para la Infancia - UNICEF/Instituto Nacional de Estadística e Informática del Perú - INEI).

Según Benavides (2010), los pueblos indígenas de la Amazonía se ubican en el 27,1% (21,2 millones de ha) del territorio Amazónico, de los cuales 13,4 millones de ha están legalizadas a favor de ellos, se estima que están pendiente de legalizar 7,8 millones de ha.

En síntesis el Perú cuenta con el 17,2% (13,4 millones de ha) del territorio de la Amazonía legalizado, cifra que resulta inferior comparado con Brasil (21,7%) y Colombia (56%).

Sin embargo, en los últimos años se le ha dado especial importancia a la Amazonía. En lo que respecta al transporte vial en la Amazonía, según el Ministerio de Transportes y Comunicaciones del Perú - MTC en el 2009 existían 7 916 km de carreteras en la Amazonía Peruana sin considerar los caminos vecinales los cuales son de gran importancia para la mayoría de la población.

Se cuenta con las carreteras interoceánicas con una extensión de 4 449 km.

- La Interoceánica del Norte con 955 km.
- La Interoceánica del Sur con 2 594 km.
- La Interoceánica del Centro con 900 km.

Por otro lado, de los 35 ejes viales priorizados por el MTC, 12 pasan por la Amazonía los que implican en algunos casos construcción de carreteras antes inexistentes, y en otros, obras de mejoramiento.

Asimismo existen proyectos de construcción de hidrovias. El MTC ha priorizado seis hidrovías: Putumayo, Napo, Huallaga - Marañón, Solimões – Amazonas, Morona – Marañón y Madre de Dios - Madeira. Este sistema de navegación fluvial, sin incluir el de Madre de Dios - Madeira, puede representar unos 4 200 km en territorio peruano.

La economía de la Amazonía Peruana puede explicarse mediante la comparación del PBI por habitante amazónico, con respecto a Lima Metropolitana y a nivel nacional. En resumen el PBI en la Amazonía es equivalente al 37 % del de Lima Metropolitana y 54 % del PBI nacional, según se muestra en la siguiente Figura 7.

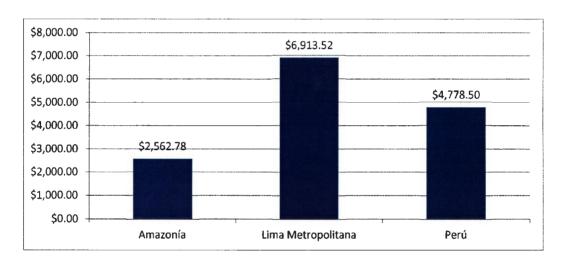


Figura 7 Actividad Económica de la Amazonía Peruana comparada con Lima Metropolitana y Perú, expresada en PBI por habitante. (Álvarez, 2011)

Con respecto al comercio fronterizo y considerando el área de influencia del denominado 'Eje del Amazonas', definido a través de la delimitación de una región que vincula determinados puertos del Pacífico como Buenaventura en Colombia, Esmeralda en Ecuador y Paita en Perú, con puertos brasileños de Manaos, Belem y Macapá, se puede mencionar que el nivel de las exportaciones del Eje del Amazonas alcanzaron los 65 949,6 US millones de dólares en el año 2008, que comparado con los 15 532,4 US millones de dólares alcanzados en el año 2000, representan una variación positiva de 324,59% en ocho años. Otro aspecto importante a considerar es el hecho de que el 95,41% de dichas exportaciones fueron extra zona mientras que el 4,95% correspondieron a exportaciones entre los países del eje. Entre los cinco

principales productos exportados se tiene el petróleo crudo (11,76%), hierro no aglomerado y concentrado (3,88%), seguidos de soja, cobre y concentrados y derivados de petróleo.

2.1.2. DESCRIPCION DE LA GEOMORFOLOGÍA DE LA CUENCA

Debido a que la simulación hidrodinámica del río Amazonas se realiza en un tramo de río cuyo extremo aguas abajo corresponde a la frontera entre el Perú, Colombia y Brasil, la descripción de la geomorfología se realiza hasta dicho lugar denominado estación Tabatinga (TAB). La cuenca del río Amazonas hasta dicho punto tiene un área de 871 582,23 km², un perímetro de 9 605,4 km y una longitud de cauce principal de 4 050 km desde su naciente hasta dicha estación TAB.

Según Dumont (1992), la cuenca amazónica está limitada por el Oeste con la Cordillera de los Andes la cual surge en el Terciario, debido a la penetración de la Placa Pacífica bajo la base continental de América. Asimismo por el Norte y al Sur por dos enormes Macizos o Escudos de formación basáltica los cuales junto con los altos Llanos de Bolivia emergieron en el Precámbrico, y los Llanos Colombiano Venezolanos en el Pleistoceno (Figura 8).

La parte baja de la cuenca fue mar que durante milenios ha ido cegándose poco a poco por los aluviones de los ríos.

La región amazónica del Perú, incluye el piedemonte superior, a lo largo del borde oriental andino, entre los 300 a 2000 m. de altitud y la baja Amazonía hacia el Brasil, por debajo de los 300 m. La baja Amazonía o llanura Amazónica, comprende en realidad varias provincias morfológicas. Al norte y sur del Perú existen extensas depresiones, caracterizadas por morfologías fluviales inundadas en época de creciente: las depresiones de la cuenca del Marañon al noreste, la más importante y del Madre de Dios al sureste. Al contrario, la baja Amazonía del Perú central tiene una morfología relativamente rugosa, fallas fluviales encajonadas en morfología de colinas escalonadas e interfluvios hasta los 300 m. encima de sus llanuras de inundación (Sierras de Contaya, Moa, Fitzcarrald). Los ríos que discurren desde los Andes, cruzan el piedemonte hacia la Baja Amazonía a través de estrechos cañones llamados "pongos". Todos los ríos (Pastaza, Marañon, Huallaga, Tigre y Ucayali) convergen y se unen en la cuenca del Marañon, dando lugar al río Amazonas en el borde oriental de la cuenca, justo antes de cruzar las alturas de la región de Iquitos. Las alturas de Iquitos están a sólo algunas decenas de metros encima de la llanura de inundación de la cuenca del Marañon, superpuestas a una importante unidad estructural, el geoanticlinal (o arco) de Iquitos.

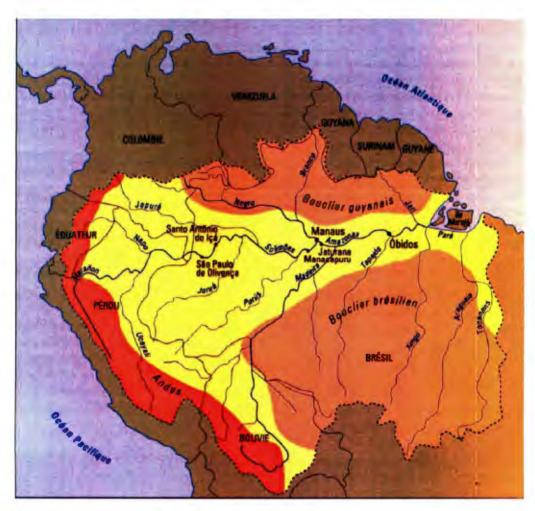


Figura 8 Fisiografía de la cuenca del río Amazonas
Fuente: Proyecto ORE HYBAM

Los principales parámetros geomorfológicos de la cuenca del río Amazonas desde su naciente hasta la estación Tabatinga (-4,27 LS y -69,94 LO) se muestran en la Tabla 1. Dichos parámetros fueron obtenidos a partir del procesamiento mediante ArcGIS de imágenes SRTM (Shuttle Radar Topography Mission). Dichas imágenes son del tipo raster en formato GRID que pueden ser procesadas para crear relieves, modelos de elevación digital, modelos tridimensionales, etc.

Tabla 1 Parámetros geomorfológicos de la cuenca del río Amazonas hasta la estación Tabatinga.

Parámetro	Valor	Criterio	Resultado
Coeficiente de Compacidad o Índice de Gravelius (CC)	2,9	CC = 1 (Cuenca perfectamente redondeada) CC > 1 (Cuenca alargada)	Cuenca Alargada
Relación de Elongación (RE)	0,4	$RE \approx 1$ (Relieves fuertes y pendientes pronunciadas)	Relieve suave
Factor de Forma (FF)	0,05	El FF es la relación entre el ancho medio de la cuenca y la longitud del cauce principal	Cuenca Alargada
Altitud media de la cuenca (msnm)	1326,0	Ponderada según áreas entre curvas de nivel	

La curva hipsométrica de la cuenca del Amazonas desde su naciente hasta la estación Tabatinga se muestra en la siguiente Figura 9. En dicha curva se puede observar que el 53,3% del área se encuentra por debajo de los 250 m.s.n.m., el 44 % entre 250 m.s.n.m y 4250 m.s.n.m y el 2,7% para cotas mayores a 4250 m.s.n.m.

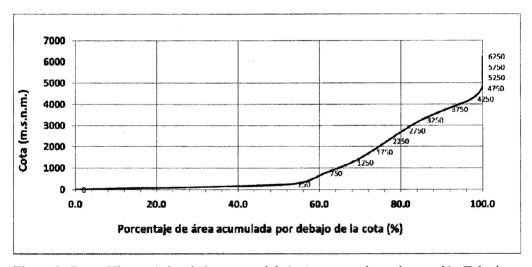


Figura 9 Curva Hipsométrica de la cuenca del río Amazonas hasta la estación Tabatinga

Asimismo, la orografía de la cuenca Amazónica hasta la localidad de Tabatinga, se muestra en la siguiente Figura 10.

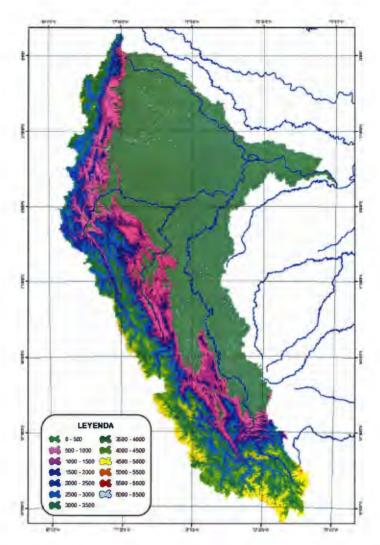


Figura 10 Orografía de la cuenca del río Amazonas en territorio Peruano hasta la estación Tabatinga (Frontera Perú, Colombia y Brasil).

2.1.3. CLIMATOLOGÍA

Según Espinoza J.C. et al. (2009), la variación espacial de la precipitación total anual en la cuenca Amazónica, se caracteriza por regiones particularmente lluviosas (3000 mm/año a más) localizadas al nor-este, cercana al Océano Atlántico, expuesta a la Zona de Convergencia Intertropical (ZCIT) y al nor-oeste de la cuenca (Colombia, norte de la Amazonía ecuatoriana, nor-este de Perú y nor-oeste de Brasil).

La lluvia es también abundante hacia el sur-este, cercana a la posición media de la Zona de Convergencia del Atlántico Sur (ZCAS), establecida durante el verano austral desde el noroeste del Amazonas hacia el Atlántico Subtropical.

Las lluvias decrecen hacia los trópicos alcanzando más de 2000 mm/año en el sur-este de Brasil y menos de 1500 mm/año en el altiplano Peruano – Boliviano y en el estado brasileño de Roraima. La figura 11, presentada por Espinoza J.C. et al (2009), muestra claramente la zona de lluvias bajas en la región de los Andes, principalmente al centro y sur de los mismos.

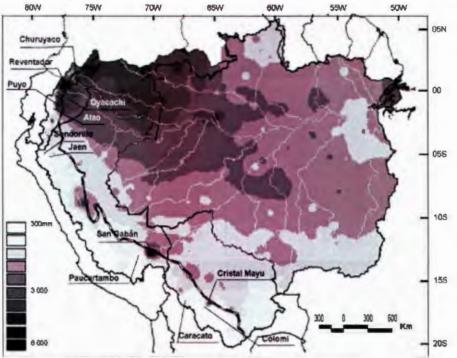


Figura 11 Lluvia total promedio anual 1975–2003 (mm/año). La región andina sobre los 500 m está limitada por la línea negra y blanca (Espinoza J.C. et al., 2009).

Asimismo se presenta la estacionalidad de la lluvia mediante la Figura 12. Dicha estacionalidad es descrita usando cuartiles expresados en mapas para los registros de lluvias totales anuales entre 1979–1998, considerando una altura geopotencial de 850 hPa.

Con respecto a la evapotranspiración, se puede estimar en alrededor de 1139 mm/año, que representa el 53% de las precipitaciones totales anuales.

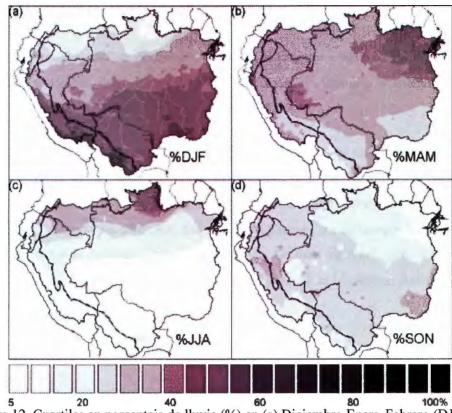


Figura 12 Cuartiles en porcentaje de lluvia (%) en (a) Diciembre-Enero-Febrero (DJF), (b) Marzo-Abril-Mayo (MAM), (c) Junio-Julio-Agosto (JJA), y (d) Septiembre-Octubre - Noviembre (SON). La región andina sobre los 500 m. está limitada por la línea negra y blanca.

2.1.4. HIDROGRAFÍA

El río Amazonas se forma en la confluencia de los ríos Marañón y Ucayali, al Este de la localidad de Nauta, Loreto.

El río Ucayali es su afluente más largo, cuyo origen se encuentra en la Cordillera de Chila, en Arequipa, en los Andes Centrales del Perú, sobre el flanco Norte del Nevado de Mismi o Choquecorao, a 5 597 m.s.n.m. Nace con el nombre de río Hornillo, aguas abajo toma los nombres Monigote, Apurímac, Ene, Tambo y Ucayali. Más adelante deja territorio peruano y vierte sus aguas en el Océano Atlántico, luego de recorrer unos 6 762 km.

La ciudad de Iquitos se encuentra en la margen izquierda del río Amazonas. En este punto el río Amazonas, en época de vaciante o estiaje alcanza una altura de 10 a 12 m. y su ancho transversal del espejo de agua varía entre 5 a 15 km.

Los principales afluentes del río Amazonas en términos de caudal ubicados aguas abajo de la confluencia de los ríos Marañon y Ucayali son:

a. Por la margen izquierda

El Río Putumayo.- Este río tiene su origen en el Ecuador y sirve de límite natural entre Perú y Colombia, descargando en el río Amazonas en territorio brasileño. Su caudal medio anual es 1170 m³/s.

El Río Napo.- Este río tiene su origen al Sudeste de Quito, en el Ecuador. Es el río más caudaloso de los afluentes peruanos, su creciente se inicia en febrero y concluye en agosto. Se caracteriza por ser navegable a lo largo de todo su curso en territorio peruano. Tiene dos importantes afluentes, que son el río Curaray por la margen derecha y el río Aguarico, por la margen izquierda. Francisco de Orellana siguió el curso del Napo para descubrir el Amazonas en 1542. Su caudal medio anual en la estación Bellavista Mazán es 6 464 m³/s.

El Río Nanay.- Este río descarga sus aguas al norte de Iquitos.

b. Por la margen derecha

El Río Yaraví.- Este río tiene su origen en la divisoria de aguas que existe al Sur del Paralelo 7° de Latitud Sur, en la Provincia de Maynas. Tiene una longitud de 1 200 km. y sirve de límite entre el Perú y Brasil, a lo largo de todo su curso. Su caudal medio anual es 3 400 m³/s.

El Río Yurúa.- Este río tiene su origen en territorio peruano, con el nombre de río Torolluc. Uno de sus afluentes es el río Breu, el cual sirve de límite natural entre Perú y Brasil. Su caudal medio anual es 636,3 m³/s.

El Río Purús.- Este río se encuentra situado en el extremo meridional de Ucayali, y sirve de límite natural en un pequeño sector entre Perú y Brasil. Su caudal medio anual es 1002,1 m³/s.

El Río Madre de Dios.- Este río se encarga de drenar todo el flanco oriental de la Cadena Oriental de los Andes del Sur y del Centro. Su caudal medio anual es 65 779 m³/s.

Aguas arriba del río Amazonas se tiene:

Río Marañon

El río Marañon tiene su origen al Noroeste del Nudo de Pasco, en el flanco septentrional del Nevado de Raura, en la Cordillera de Huayhuash, a más de 5 800 m. de altitud. Recibe en sus orígenes las descargas de las lagunas Niñococha, Santa Ana y Lauricocha, en Huánuco, además de los deshielos del Nevado Matador. En el río Marañón se distinguen dos partes:

a. El Alto Marañón, es la parte del río que está comprendida entre su naciente, en el Nevado de Raura, y el Pongo de Manseriche. Este río se caracteriza por presentar un cauce estrecho y profundo, con un declive muy acentuado, y un caudal turbulento, especialmente en época de creciente.

El Alto Marañón tiene un curso orientado de Sudeste a Noroeste, entre las Cadenas Occidental y Central de los Andes del Norte, hasta el pongo de Rentema. Al cruzar este pongo, su curso discurre entre las Cadenas Central y Oriental de los Andes del Norte, en dirección Noreste, hasta el Pongo de Manseriche. A lo largo de este curso podemos encontrar numerosos pongos y cañones que dificultan la navegación.

El Pongo de Manseriche es el más importante de todos cuanto existen en el curso del Alto Marañón. Este pongo tiene una longitud aproximada de 12 km., de los cuales 4500 m. corresponden a la parte más estrecha, allí es donde el cauce se reduce entre 60 m. a 80 m. y está limitado por paredes casi verticales. Las aguas del río se tornan turbulentas, al chocar contra las paredes laterales de su cauce, formando remolinos peligrosos y correntadas que dificultan la navegación. En esta zona se encuentran los malos pasos de Huaccanqui, Sajino y Anahuaccanqui. Su caudal medio anual es 7385,4 m³/s.

b. El Bajo Marañón, es la parte del río comprendida entre el Pongo de Manseriche y el punto de su confluencia con el río Ucayali, para formar el Amazonas. El Bajo Marañón tiene un curso orientado de Oeste a Este, a través de la Llanura Amazónica, presentando un cauce meándrico, carente de rocas y cubierto de arena.

Durante la época de creciente, la cual se inicia en Noviembre, inunda extensas áreas de la Selva Baja, abandona con frecuencia su antiguo cauce, abriendo otro nuevo. Los cauces abandonados forman las cochas o tipishcas, que por la forma que presentan, reciben el nombre de lagos en la herradura. Tiene abundante caudal, lo que garantiza la navegación en el transcurso del año.

El Bajo Marañón cuenta con una abundante fauna fluvial. En la margen izquierda de este río se encuentran las ciudades de Nauta, capital de la Provincia de Loreto, y Borjas, los más importantes de esta margen. Su caudal medio anual en la estación San Regis es 14 753,7 m³/s.

Río Ucayali

El río Ucayali es uno de los grandes formadores del río Amazonas. Tiene su origen en la confluencia de los ríos Urubamba y Tambo, en Atalaya, ubicada en el extremo sur de Loreto. A lo largo del curso del Ucayali se pueden distinguir dos partes:

a. El Alto Ucayali, se extiende desde su origen en Atalaya y la desembocadura del río Pachitea. Este río hace su recorrido sobre la Llanura Amazónica o Selva Baja, a través de un cauce meándrico, el cual se encuentra expuesto a cambios repentinos y constantes, por lo que el cauce anterior queda abandonado, formando las cochas o tipishcas, conectadas con el cauce actual a través de canales estrechos llamados sacaritas o caños.

Grandes extensiones de fértiles tierras, se pueden apreciar en sus orillas durante las épocas de vaciante o estiaje, las cuales son utilizadas para sembrar arroz o maní. Con la creciente se inundan, cubriéndose de una capa delgada de limo fértil. Todo el curso inferior está cubierto de arena, sobre la que depositan sus huevos la "charapa" o tortuga fluvial.

b. El Bajo Ucayali, se extiende entre la boca del Pachitea y su confluencia con el Marañón para formar el río Amazonas. En este río se encuentran ubicados los puertos de Pucallpa, considerado como el segundo puerto fluvial del Perú y terminal de la Carretera Central, Cotamana y Requena, emplazados todos ellos en áreas elevadas en relación con el resto de la Llanura Amazónica, denominados altos.

Al norte del paralelo 6° de latitud Sur, el río se bifurca. El Canal de la izquierda se llama Puinahua, por donde pasan las embarcaciones volviendo a juntarse al Sur del paralelo 5° de latitud Sur. Su caudal medio anual en la estación Requena es de 12216,7 m³/s.

2.1.5. HIDROMETRIA

La información hidrométrica diaria utilizada para caracterizar los caudales registrados del río Amazonas en las estaciones Tamshiyacu y Tabatinga corresponde a la base de datos del Proyecto ORE HYBAM para el periodo 06/ENERO/2001 al 11/ABRIL/2004 (Anexo 1 – Tabla 1).

La Figura 13, muestra la curva de calibración Caudal – Cota de la regla instalada en la Estación Tamshiyacu (Fraizy P. 2006).

En la Figura 14, se muestra la relación entre los caudales máximo, medio y mínimo en cada estación hidrométrica y en la Figura 15 se muestran los caudales específicos por área de contribución en m³/s/km².

Estación: 10075000 = Tamshiyacu (Amazonas) Calibración del 01/10/1983 hasta nuestros días

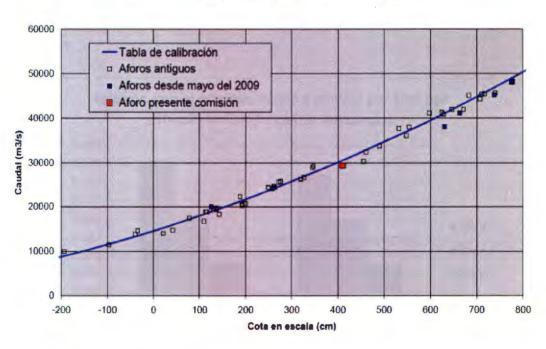


Figura 13 Curva de Calibración Caudal – Cota (Estación Tamshiyacu)

Fuente: Programa ORE HYBAM. Informe de Comisión PE-72, IQUITOS (ríos Amazonas, Marañon, Ucayali y Napo), del 03-06-2010 al 11-06-2010

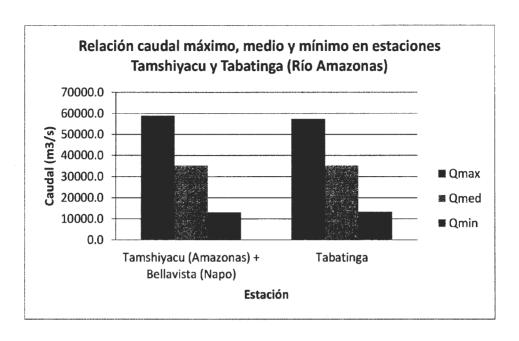


Figura 14 Comparación de caudal máximo, medio y mínimo entre las estaciones Tamshiyacu y Tabatinga (Río Amazonas)

Cabe resaltar que en la estación Tabatinga el caudal específico es menor que en la estación Tamshiyacu.

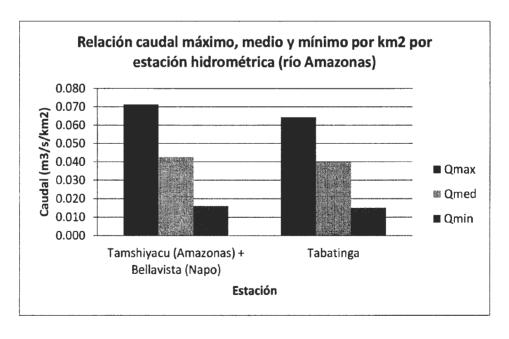


Figura 15 Comparación de caudales específicos máximo, medio y mínimo entre las estaciones

Tamshiyacu y Tabatinga (Río Amazonas)

2.1.6. CONDICIONES DE NAVEGABILIDAD

En el Perú, el sistema fluvial amazónico, comprende algo más de 14 000 km. de longitud de ríos, considerándose 10 000 km navegables. No obstante, los cambios morfológicos del río originan dificultades para la navegación principalmente para naves de 10 pies de calado.

Las condiciones de navegación en los ríos son variables y estacionales presentando las mayores restricciones en los períodos de vaciante que corresponden a los meses de Julio a Septiembre, que a su vez significa mayores costos, sea por pérdida de tiempo en navegación, posibles daños a las naves, pérdida de profundidad en los canales de acceso a los puertos, etc. Por lo tanto, la navegación fluvial en el Perú no ha logrado alcanzar un adecuado nivel de desarrollo, que permita realizar un tráfico de gran escala, económico y seguro.

Según el Ministerio de Transporte y Comunicaciones del Perú (2007), Los principales factores que influyen en las restricciones a la navegación en la Amazonía Peruana son:

- La palizada, que es un fenómeno muy común en los ríos Amazónicos y que generalmente se observa en temporada de crecidas y que son producto de la navegación a la deriva de troncos, árboles y arbustos por los cauces de los ríos.
- Erosión de riberas, que comprende el desgaste, acarreo o transporte de los materiales que conforman las orillas de cauces de agua en movimiento.
- Sedimentación con formación de bancos de arena (islas) en el cauce del río, que se produce por la disminución de la velocidad del río en zonas de baja pendiente. La pérdida de velocidad hace que los materiales se depositen y sedimenten. Una parte de los materiales son depositados en el cauce superior y sobre todo ante la presencia de obstáculos naturales o artificiales. Los bancos o dunas de arena formados no presentan obstáculo a la navegación en temporada de creciente, pero en temporada de vaciante constituyen un serio obstáculo en los canales de navegación, ya que al bajar el nivel de las aguas, estas dunas actúan como represas haciendo que los cauces se ensanchen con la debida disminución del tirante, restringiendo los calados de las naves que pueden pasar por ellos.
- Corrientes fluviales meandriformes con erosión y sedimentación conjunta, producida por un meandro o curva completa sobre el canal, compuesta por dos arcos sucesivos, que producen flujo helicoidal debido a la superposición del desplazamiento transversal y longitudinal en la corriente, dando lugar a efectos erosivo – sedimentarios: erosiona y carga sobre el lado externo de un arco, depositando el material sobre el lado interno del siguiente.

- Meandro con gran curvatura y pequeños radios de giro, que produce que el cauce del río sea muy cerrada y que por acción de las fuerzas centrifugas, los cauces más profundos se desarrollen por la parte externa de la curva con unas características de erosión hacia la parte externa y sedimentación en la parte interna. Generalmente en estos meandros de pequeño radio de curvatura, los anchos del espejo de agua de los canales de navegación con mayor profundidad se estrechan, lo cual en épocas de temporadas bajas, definen canales de navegación estrechos y con gran curvatura.
- Escaso sistema de señalización y ayudas a la navegación, que en los casi 10 000 km de ríos navegables que existen en la Amazonía peruana es muy escasa. Sólo para el caso del tramo del río Amazonas entre Iquitos y Santa Rosa (frontera Perú, Brasil, Colombia), se tienen algunas señales luminosas así como paneles informativos.
- Inexistencia de datos estadísticos y mediciones hidrométricas. Actualmente el Ministerio
 de Transportes y Comunicaciones MTC, no cuenta con datos estadísticos que permitan
 registrar el comportamiento del río en las diferentes épocas del año, tales como cambios
 en los niveles y caudales de los ríos y el transporte de sedimentos de fondo y suspensión
 en los mismos.

Con respecto a la demanda actual de transporte fluvial, se puede mencionar que existe un mercado cautivo en la región, originado por la ubicación geográfica de las grandes ciudades, así como de las pequeñas zonas intermedias, que para subsistir requieren del abastecimiento de diversos productos. Las cargas movilizadas por la vía fluvial entre las grandes ciudades y zonas intermedias son: madera, fibra de yute, cemento, cerveza, maquinarias, productos alimenticios, aceites, grasas y lubricantes, explosivos, acero y fierro en planchas, baritina, abonos minerales, combustibles, artículos de ferretería, algodón y textiles, motores y repuestos, vehículos motorizados, etc.

La siguiente Tabla 2, muestra las épocas de creciente y vaciante de los principales ríos de la Amazonía Peruana.

Ríos	Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Amazonas												
Marañon												
Tamshiyacu												
Itaya												
Nanay												18/13/13/18/ 14/2 - 19/13(
Maniti				N. Jac	ilain an an							
Huallaga		in a resident from the control of th										
Ampiyacu	ing Tubo days											
Yavari				1014 1014								
YavariMirim												
Yaquerana												
Pachitea												
Aguaytia		alayering.										
Ucayali												
Tambo		in pelakus ar Marangan										Y
Urubamba												
Tapiche												
Putumayo												
Napo										31.00 31.00 31.00		
Mazán								(4, 6), t				
Curaray				223.0								
Algodón												
Yahuas												3. A
Aguarico										printing.		
Morona			B 13 (2.1)									
Santiago												
Cenepa		. COT POSSIBLE AND		R (A)								
Pastaza				P. ACAT.								
Huazaga			Mark.									
Tigre												
Corrientes				119								

2.1.7. POBLACION

Transición

La población total de la cuenca Amazónica se estima en 30 millones de personas (Worldwildlife-WWF, 2011), las cuales se encuentran muy concentradas en zonas urbanas a lo largo del río y tributarios principales. Un alto porcentaje de la población total se encuentra en comunidades indígenas asentadas principalmente a lo largo de los cauces de los ríos. En recientes décadas, se ha dado un acelerado proceso de inmigración. El rango de la tasa de crecimiento poblacional actual oscila entre 5,2% a 7,2%., muy por encima de los promedios

nacionales de los países Amazónicos. Estos factores, se combinan con el alto nivel de pobreza, presión constante en la explotación de sus recursos naturales, principalmente referido a la floresta.

La población en la Amazonía Peruana es de 3' 675 292 habitantes lo que representa el 13,4% de la población nacional (2007). Los departamentos de Madre de Dios, Ucayali, San Martín y Loreto se encuentran entre los que más han crecido en los últimos años.

Según el Sistema de Información sobre Comunidades Nativas de la Amazonía, los pueblos indígenas en el Perú son aproximadamente 05 millones de habitantes, siendo los pueblos amazónicos originarios alrededor de 340 000 habitantes que representan casi el 10% de la población total Amazónica.

2.2. RIO NAPO

El río Napo nace en el volcán Cotopaxi (Ecuador) a una altitud de 5900 m.s.n.m., atraviesa las provincias de Napo y Sucumbíos en Ecuador y Loreto en el Perú, para finalmente desembocar al río Amazonas a una altitud de aproximada de 89 m.s.n.m. Tiene un área aproximada de 101704,4 km² y un perímetro de 3 511,8 km.

Específicamente, la cuenca del río Napo se inicia en las estribaciones de la cordillera oriental de los Andes ecuatorianos, de pendientes muy elevadas, hacia las llanuras de Archidona - Jondachi (en la Provincia de Napo), bajando por el río Napo, a la llanura Amazónica de la Provincia de Orellana, hasta entrar a territorio peruano y continuar por las "tierras altas" de la llanura interfluvial de la Provincia de Maynas, a las "tierras bajas", que corresponden a la llanura de inundación de dicho río, que comprende parte de las provincias de Maynas y de Loreto en la cuenca del río Amazonas; hasta la desembocadura del río Napo en el Amazonas. Las altitudes fluctúan entre los 3500 y 200 m.s.n.m., en la parte ecuatoriana, y, en la parte peruana fluctúa, entre los 400 y 89 m.s.n.m., distinguiéndose por ello diferentes pisos ecológicos, diferenciados por su morfología, altitud, clima y temperatura, que albergan variados ecosistemas de rica biodiversidad (Figura 16).

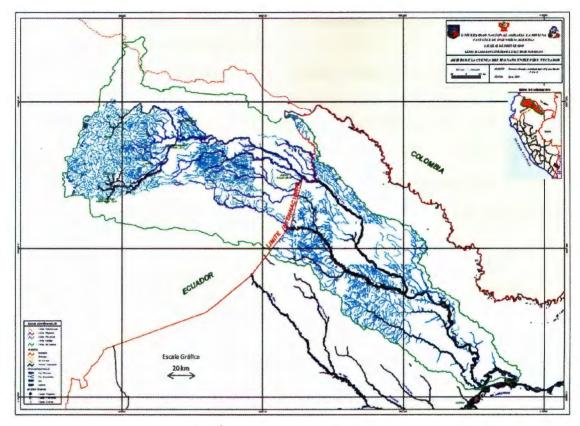


Figura 16 Ámbito de la cuenca del río Napo

2.2.1. ASPECTOS ECONOMICOS Y SOCIALES

La cuenca del río Napo se caracteriza tanto en Ecuador como en Perú, por una situación social con altos niveles de pobreza y carencias de servicios básicos (agua, saneamiento y electricidad). Los niveles educativos son bajos y la densidad de población es muy reducida.

En el Ecuador

- La cuenca aporta un 19,2% del Valor Agregado Bruto (VAB) nacional (Sucumbíos y Orellana) y la principal actividades la extracción petrolera que representa el 92 % del VAB nacional.
- Se reconocen dos segmentos:
 - El vinculado a la extracción de petróleo que cuenta con algún desarrollo agrícola en cultivos permanentes y mayor población.
 - El vinculado a las actividades agrícolas de subsistencia con bajo tamaño de las explotaciones, falta de infraestructura de comercialización y transporte y bajo desarrollo comercial.

- Los montes y bosques ocupan el 63,8 % del territorio, los pastos cultivados un 16,9 % y los cultivos permanentes un 7,8 %.
- La participación a nivel nacional es limitada (excepto para café, plátano, palma africana y cacao).
- El desarrollo turístico, la pesca y la minería son potencialidades.

En el Perú:

- Se debe tener en cuenta que la región Loreto tiene el 28,7 % de la extensión total del Perú, sin embargo su población sólo representa el 3,3 % del total nacional y el VAB el 1,7 %.
- En general, tiene menores antecedentes de actividades productivas competitivas:
 - La agricultura no es comercial y la pesca y el desarrollo turístico son de muy escaso nivel.
 - El polo de atracción es Iquitos, con una importante actividad industrial: madera, bebidas y alimentos, agroindustria: arroz y caña de azúcar, materiales para construcción, astilleros fluviales, refinería de petróleo, etc.
- La mayor parte del área corresponde a montes y bosques (85 %).
- La economía de los centros poblados se encuentra asociada al río y las principales actividades corresponden a la producción agropecuaria (con escasa ganadería), la explotación forestal y la pesca.
- Escaso desarrollo de la actividad turística.

La economía ecuatoriana, en la cuenca del río Napo, es una economía emergente con una base productiva de gran potencial, sobre todo en productos locales, con un mercado que demanda bienes de fuera de la zona, que reposa sobre un sistema de comercialización dependiente del mercado nacional.

La economía peruana es una economía que ya alcanzó su dinámica con una base productiva de bienes y servicios locales, sobre todo en alimentos y productos para la exportación como los derivados de la actividad forestal. El mercado insatisfecho reposa en un sistema de comercialización que utiliza sistema de transportes multimodales, en vista que no tiene una articulación terrestre para abastecerse del mercado nacional y a través del río Amazonas vía Brasil llega a proveerse también del mercado internacional.

La actividad agropecuaria y en especial la agrícola, salvo para aquellos productos y especies de la zona, no se insertan en un marco auspicioso debido a la pobreza de los

suelos. En cambio no se ha llegado a explotar en toda su dimensión el cultivo y la extracción de peces para consumo humano y ornamental, así como la actividad turística de aventura y ecológica.

En lo que respecta al comercio fronterizo, desde hace cincuenta años, por conflictos ya superados, no existe este tipo de intercambio. No obstante la disimilitud de las economías por integrar, en una primera etapa, pueden facilitar un acoplamiento y/ o interrelación auspiciosa, si se consigue una complementación de sus aparatos productivos y un sistema de comercialización adecuado. Para luego en estadios o etapas posteriores, lograr identificar productos y servicios comparativos que bien tratados, puedan llegar a ser competitivos y tener un posicionamiento en el mercado nacional e internacional.

2.2.2. DESCRIPCION DE LA GEOMORFOLOGÍA DE LA CUENCA

La cuenca del río Napo tiene un área total de 101 704,4 km² y un perímetro de 3 511,8 km. Sus altitudes varían de una máxima de 5869,0 m.s.n.m a una mínima de 89,0 m.s.n.m.

Al igual que en el caso de la simulación hidrodinámica del río Amazonas, la simulación hidrodinámica del río Napo se realiza en un tramo de río cuyo extremo aguas abajo corresponde a la localidad de Tempestad; por lo tanto, la descripción de la geomorfología de la cuenca se realiza hasta dicho lugar.

Los principales parámetros geomorfológicos de la cuenca del río Napo hasta Tempestad se presentan en la Tabla 3.

Parámetro Valor Criterio Resultado Coeficiente de Compacidad o Índice CC = 1 (Cuenca perfectamente redondeada) Cuenca 3.1 de Gravelius (CC) CC > 1 (Cuenca alargada) Alargada El FF es la relación entre el ancho medio de la Cuenca Factor de Forma (FF) 0,4 cuenca y la longitud del cauce principal Alargada Pendiente baja Pendiente de la Cuenca (%) 10,6 Según el criterio de J.W.Alvord a moderada Altitud media de la cuenca (msnm) 608,9 Ponderada según áreas entre curvas de nivel Tiempos de Valores altos de DD indican tiempos de Densidad de Drenaje – DD (k/km²) 0,2 concentración concentración cortos altos

Tabla 3 Parámetros geomorfológicos cuenca río Napo

La curva hipsométrica de la cuenca del río Napo desde su naciente hasta la localidad de Tempestad se muestra en la siguiente Figura 17. En dicha curva se puede observar que el 82,4% del área se encuentra por debajo de 294,5 m.s.n.m., el 16,9 % entre 294,5 m.s.n.m y 4250 m.s.n.m y el 0,7% para cotas mayores a 4250 m.s.n.m.

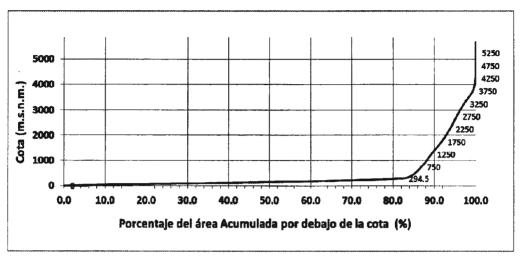


Figura 17 Curva Hipsométrica de la cuenca del río Napo desde su naciente hasta la localidad de Tempestad.

Las siguientes Figuras 18 y 19, muestran las progresivas y perfil longitudinal total del río Napo, respectivamente. Entre los 0+000 a 200+000 se tiene una pendiente de 1,14 m/km, entre 200+000 a 600+000 una pendiente de 0,174 m/km y entre 600+000 a 945+300 una pendiente de 0,02 m/km.

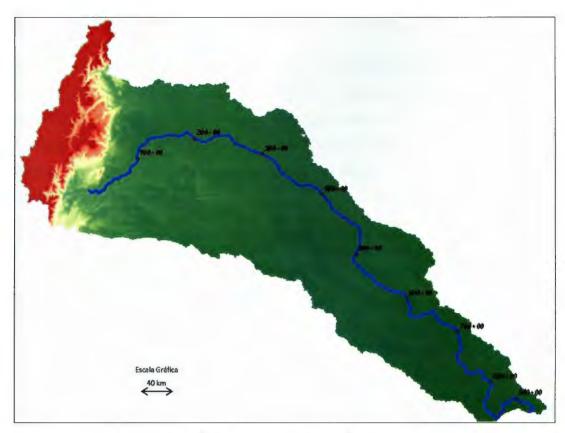


Figura 18 Orografía de la cuenca del río Napo

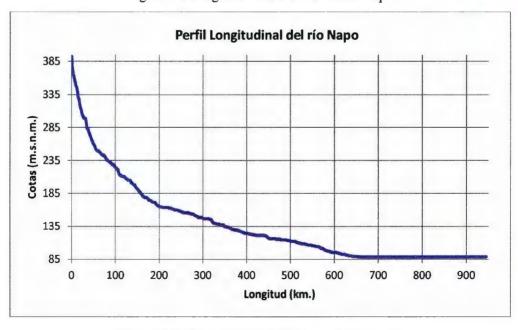


Figura 19 Perfil longitudinal del cauce del río Napo

2.2.3. CLIMATOLOGÍA

Según Marengo (1992), climatológicamente esta región se caracteriza por un tipo tropical húmedo todo el año sin meses secos. El régimen de precipitaciones muestra que no hay un período seco extenso y casi ningún mes con precipitación menor de 50 mm/mes.

La cuenca del río Napo se encuentra fuertemente influenciada por la circulación atmosférica tropical, determinada a su vez por los centros de alta presión sobre el Océano Pacífico y Atlántico, la presencia de los vientos alisios y la convergencia de ellos en la llamada Zona de Convergencia InterTropical (ZCIT), así como por perturbaciones frontales y líneas de inestabilidad de corta duración que puede llegar a esta parte en verano o invierno.

Durante la estación lluviosa de verano, la ZCIT y la banda nubosa asociada a ella cubre la Amazonía determinando altas precipitaciones atribuidas a la alta inestabilidad atmosférica. Es en esta época que predominan los vientos de componente norte, que a su vez transportan humedad del Atlántico tropical hacia la Amazonía y el Noreste Brasileño. Durante el invierno, los anticiclones del Atlántico y Pacífico están mucho más desarrollados que en el verano y se encuentran desplazados más al norte, en ésta época del año, la ZCIT alcanza también su posición más al norte extendiéndose desde América Central hasta las Guyanas y determinando la estación lluviosa en estas regiones.

Según los estudios desarrollados por el Proyecto de Desarrollo Sostenible del Área Fronteriza Peruano – Ecuatoriano (PDPE), muestran que el 60% del área de la cuenca recibe una lámina de precipitación total anual entre 2600 a 3200 mm/año; asimismo el 92,7% del área registra una temperatura del aire media anual entre 26°C a 27°C y el 74.4% del área tiene un porcentaje de humedad relativa media anual entre 86% a 89%.

Las láminas máximas de precipitación total mensual en territorio ecuatoriano se registran entre los meses de mayo a julio y en territorio peruano en el mes de abril, por el contrario las láminas mínimas de precipitación total mensual en territorio ecuatoriano se registran en el mes de enero y en territorio peruano entre los meses de setiembre y octubre.

La temperatura máxima del aire en territorio ecuatoriano se registran entre los meses de diciembre a enero y en territorio peruano en el mes de octubre; por el contrario las temperaturas mínimas del aíre en toda el área de estudio se registran en el mes de julio.

La humedad relativa máxima del aire en toda el área se registra entre los meses de mayo a junio y la humedad relativa mínimas del aíre en territorio ecuatoriano se registra entre los meses de enero a febrero y en territorio peruano se registra en el mes de octubre. La Figura 20 muestra una vista de la estación climatológica ordinaria Santa Clotilde.

Figura 20 Estación Climática Ordinaria Santa Clotilde

La Figura 21, muestra las líneas isoyetas de precipitación total anual obtenidas entre los ríos Napo y Tigre. En dicha figura puede apreciarse la irregularidad espacial de la precipitación total anual producto de los factores climatológicos anteriormente mencionados.

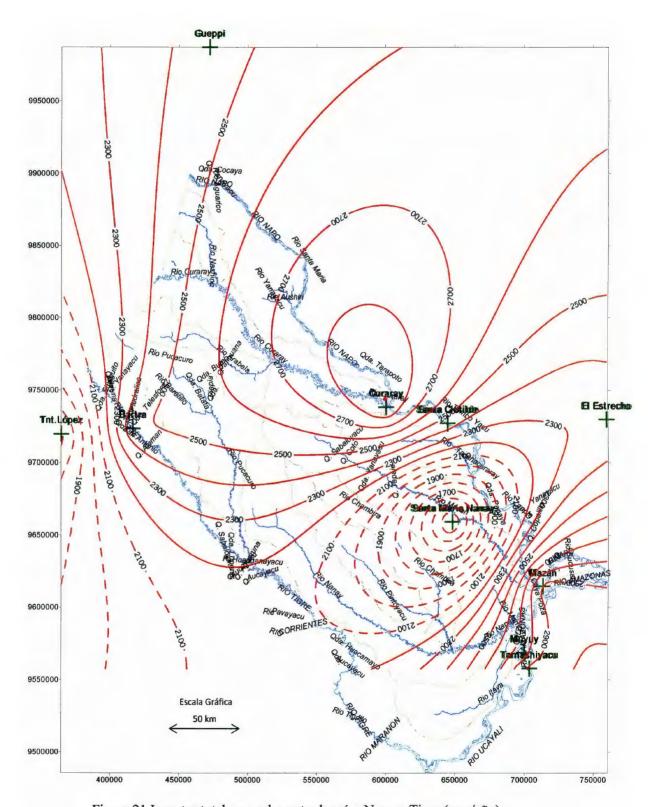


Figura 21 Isoyetas totales anuales entre los ríos Napo y Tigre (mm/año)

Fuente: Instituto Nacional de Desarrollo - INADE. Macrozonificación Ecológica Económica de las cuencas Tigre y Napo. Lima – 2001

2.2.4. HIDROGRAFÍA

Según Valdez (2002), el río Napo es un afluente por la margen izquierda del río Amazonas, cuyas nacientes se encuentran en las faldas del volcán Cotopaxi. A partir de la confluencia de los ríos Jatunyaco y Anzu en el Ecuador, sus aguas fluyen del Oeste hacia al Este en territorio ecuatoriano y hacia el Sudeste en territorio peruano, a lo largo de aproximadamente 1300 km., hasta desembocar en el río Amazonas, aproximadamente a 80 km., aguas abajo de la ciudad de Iquitos en el Perú.

Este río está dividido en dos sectores: El Alto Napo, que comprende desde sus nacientes hasta la confluencia del río Coca en el Ecuador; y el Bajo Napo, que comprende desde la confluencia con el río Coca hasta su desembocadura en la margen izquierda del Amazonas en el Perú.

El cauce del río Napo, en su gran mayoría, presenta características de río tipo trenzado y no meándrico, tal como se puede apreciar en las cartas levantadas tanto por el INOCAR del Ecuador como por el SHN del Perú.

El régimen de las aguas del río Napo presenta una creciente que se inicia en el mes de febrero, alcanza una máxima entre junio y julio y continua hasta agosto. La Figura 22, muestra los estragos de la crecida registrada el día 06 de Abril del 2010. En dicha oportunidad, los ríos Pano, Misahuallí y Tena; afluentes del río Napo, aumentaron su caudal significativamente por las intensas lluvias, por lo que produjeron daños en viviendas, plantaciones, puentes, negocios, un zoológico y otros en la ciudad de Tena. La vaciante se inicia en el mes de setiembre, alcanza el mínimo nivel del río en diciembre y se prolonga así hasta enero.

La amplitud del nivel del río entre creciente y vaciante es variable, los registros de niveles tomados por el Ministerio de Energía y Minas del Perú en el poblado de Mazán, muestran valores de amplitud máximos de seis metros y mínimos de tres metros entre creciente y vaciante, para un período de 10 años. Sin embargo, en la parte cercana a la frontera con el Ecuador el régimen de aguas o niveles del río Napo está afectado en forma permanente por las lluvias locales del Alto Napo, que producen cambios de nivel de corta duración y de amplitudes que pueden llegar hasta un metro.

Figura 22 Foto de la inundación producida en el río Tena, afluente del Napo. Fuente: Gobierno Provincial del Napo, Ecuador.

El Bajo Napo sector peruano, se caracteriza por tener un cauce trenzado, de gran amplitud, lecho de arena y sus márgenes están formadas por terrenos bajos. El canal principal del río es muy variable y contiene una gran cantidad de islas y playas, especialmente aguas arriba de la boca del río Curaray. El ancho del espejo de agua del río varía entre los 500 y 1500 metros, y la velocidad de la corriente varía entre 0,75 m/s y 1,80 m/s.

El río Napo ingresa al territorio peruano desde la confluencia con el río Yasumi y constituye la frontera con el Ecuador en una extensión de 25 kilómetros hasta la confluencia con el río Aguarico. Desde este punto su cauce es peruano hasta su desembocadura en el río Amazonas, luego de recorrer una extensión total de 631 km.

2.2.5. HIDROMETRIA

La información hidrométrica diaria utilizada para caracterizar los caudales registrados en el río Napo en las estaciones Francisco de Orellana y Nuevo RocaFuerte en el Ecuador y Bellavista Mazán en el Perú, corresponde a la base de datos del Proyecto ORE HYBAM para el periodo 06/Enero/2001 al 11/Abril/2004 (Anexo 1 - Tabla 2).

Las Figuras 23, 24 y 25, muestran las curvas de calibración Caudal – Cota en la mira de las estaciones hidrométricas Francisco de Orellana, Nuevo RocaFuerte y Bellavista – Mazán, respectivamente.

En la Figura 26 se muestra la relación entre el caudal máximo, medio y mínimo en cada estación hidrométrica (Fraizy P. 2006).

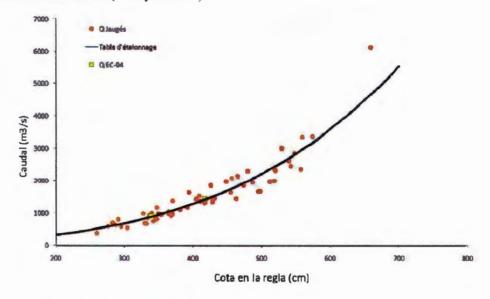


Figura 23 Curva de Calibración Caudal – cota de mira Estación Francisco de Orellana (Río Napo)

Fuente: Programa ORE HYBAM. Reporte de Comisión EC-94 Francisco de Orellana, Nuevo Rocafuerte (Napo), San Sebastian (Coca), Rio Yasuni, Rio Payamino. 07/06/2011 . 16/06/2011

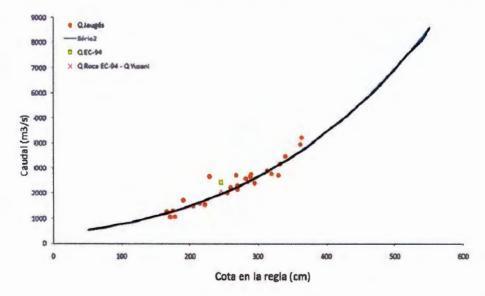


Figura 24 Curva de Calibración Caudal – Cota de mira Estación Nuevo RocaFuerte (Río Napo)

Fuente: Programa ORE HYBAM. Reporte de Comisión EC-94 Francisco de Orellana, Nuevo Rocafuerte (Napo), San Sebastián (Coca), Rio Yasuni, Rio Payamino. 07/06/2011 . 16/06/2011.

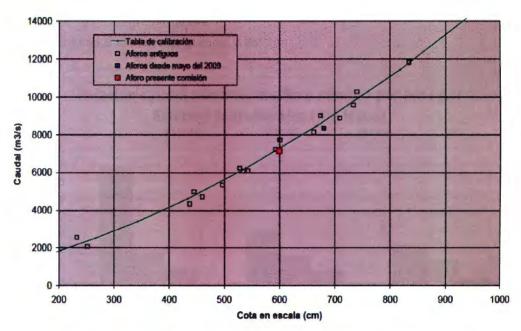


Figura 25 Curva de Calibración Caudal – Cota (Estación Bellavista - Mazán)

Fuente: Programa ORE HYBAM. Informe de Comisión PE-72, IQUITOS (ríos Amazonas,
Marañon, Ucayali y Napo), del 03-06-2010 al 11-06-2010

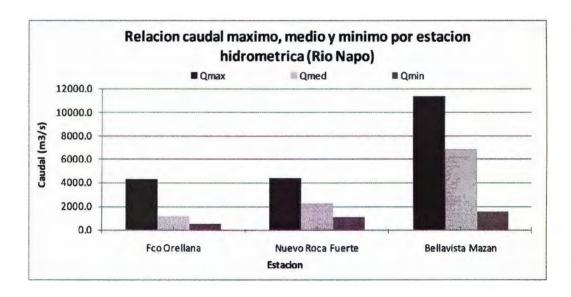


Figura 26 Comparación del caudal máximo, medio y mínimo entre las estaciones Francisco de Orellana, Nuevo RocaFuerte y Bellavista Mazán (Río Napo)

Considerando que las áreas de contribución a cada estación hidrométrica son las siguientes (Serman & Asociados y CSI Ingenieros, 2010) : Francisco de Orellana (17722,1 km²),

Nuevo RocaFuerte (26879,7 km²) y Bellavista – Mazán (83695,2 km²), en la Figura 27 se muestran los caudales específicos en m³/s/km².

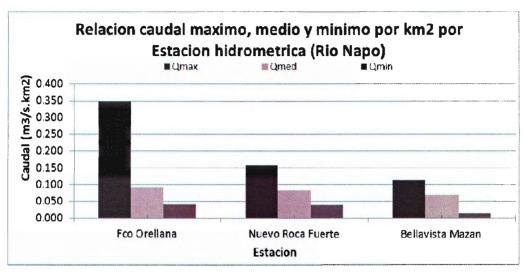


Figura 27 Comparación de caudales específicos máximo, medio y mínimo entre las estaciones Francisco de Orellana, Nuevo RocaFuerte y Bellavista Mazán (Río Napo)

En base a la figura anterior, se puede observar la drástica disminución del caudal máximo específico entre las Estaciones Francisco de Orellana y Nuevo RocaFuerte, lo que supone un efecto regulador importante debido a las áreas de inundación. Dicho efecto es mucho menor entre las estaciones Nuevo RocaFuerte y Bellavista Mazán.

2.2.6. CONDICIONES DE NAVEGABILIDAD

Según Valdez (2002), en el Ecuador, el tramo comprendido entre las desembocaduras del río Mahuallí y el río Coca es navegable por embarcaciones tipo canoas, pero con gran dificultad por la existencia de muchos rápidos, lecho pedregoso y caudales torrentosos. Aguas abajo de la confluencia del río Coca, el tipo de embarcación que se observa consiste en "chatas" con remolcador comúnmente denominadas "gamarras", que tienen una capacidad de transporte para calados de hasta 1,80m, pero que en épocas de vaciante, solamente pueden surcar el río hasta la localidad de Pompeya (Ecuador) y con calados de solo un metro.

Los lugareños consideran como la mejor época para la navegación a la interface entre vaciantes y crecientes, debido a que en época de vaciante hay mucho riesgo de

encallamiento por tirantes de agua bajos; mientras que en época de crecientes se presentan problemas de navegación por la presencia de gran cantidad de troncos y palizadas.

En época de creciente el río Napo es navegable por embarcaciones de hasta 1,80m de calado en todo el territorio peruano. No obstante, su lecho de arena forma gran cantidad de malos pasos y su cauce sufre cambios importantes que modifican también el canal de navegación.

En época de vaciante, la zona del cauce del río Napo comprendida entre la desembocadura del río Curaray y el poblado de Pantoja, debe navegarse con mucho cuidado, debido a la variabilidad del canal que en algunos lugares puede tener profundidades de solo un metro. Además, la presencia de"quirumas" árboles o grupos de árboles atrapados en el fondo del lecho, hacen impracticable la navegación nocturna en esta época.

Las embarcaciones típicas de la zona para transporte de pasajeros y carga a pequeña escala, son botes con motor fuera de borda, que poseen una capacidad de carga de 5 toneladas, potencia de motor de 75 HP y con capacidad de 20 pasajeros. Su calado es de 0,5m.

a. MAL PASOS

En base a los levantamientos anteriores realizados por el Servicio de Hidrografía y Navegación, en el sector peruano del río Napo existen 27 malos pasos debidamente identificados; estos accidentes se forman en ciertas secciones del río donde la acumulación de sedimentos dificulta el paso de embarcaciones de cierto calado, especialmente durante la vaciante.

Su localización se realiza a través de las distancias, a partir de su desembocadura en el río Amazonas, como se indica en la siguiente Tabla 4:

Tabla 4 Ubicación de Mal Pasos a lo largo del río Napo

Nombre del Mal Paso	Distancia en Km. desde el Amazonas	Nombre del Mal Paso	Distancia en Km. desde el Amazonas
Boca del río Napo	0	Loro Caparina	390
Paiche Playa	25	Elvira	403
Llachapa	64	Campo Serio	423
Flautero	90	Aushiri	430
Negro Urco	190	Borgenio	440
Huayhuasi	190	Angosteros o Monte Rico	453
Cruz de Plata	215	Santa María	469
Llanchama	275	Chingana	478
Jerusalén	295	Tempestad	503

Caserío Argentino	312	Isla Urpi	513
Boca río Curaray	319	Torres Causano	524
Tarapoto	346	Miraflores	539
Cantana	369	Pantoja	572
Calzón Urco	373		

b. TROCHAS Y VARADEROS

Los varaderos, como su nombre lo indica, son lugares donde las embarcaciones se apegan para desembarcar carga o pasajeros y existen a todo lo largo de ambas márgenes del río. Las trochas en cambio son senderos que conectan el río Napo con otros ríos, por donde se desplazan personas y mercancías. Algunas de las trochas que salen de este río van hacia el Putumayo y otras hacia el Curaray o el Guepí.

Las principales trochas en territorio peruano son mostradas en la siguiente Tabla 5.

De Distancia (km) Sapote Estrecho 36 Arica Flor de Agosto 80 Santa María Río Campuva 35 Tempestad Arica 54 Arcadia Río Nasiño 32 **Pantoja** Guepi 125 Yasumi Bellavista 43

Tabla 5 Trochas en la cuenca del Napo

c. DEMANDA ACTUAL DE TRANSPORTE

La demanda actual de transporte es difícil de estimar debido a la alta informalidad existente. Aunque existen algunas cifras antecedentes como: 250000 ton/año (Ecuador) y 50000 ton/año (Perú)

Las principales actividades que demandan transporte en Ecuador y Perú son las siguientes:

• Ecuador:

- o Actividades petroleras
- Producción agrícola tradicional (limitada por baja calidad de suelos): Café, Cacao
 Orgánico, Arroz.
- o Aceite de Palma.
- o Calcáreos y/o cemento.

o Turismo (Albergue (Lodges), emprendimientos comunitarios)

Perú:

- Actividad petrolera esporádica, producción agrícola de subsistencia, sin actividad turística relevante.
- o Proyectos incipientes de bio-comercio (CamuCamu, Sacha Inchi)
- Insumos y exportaciones a plantas industriales de Iquitos

2.2.7. POBLACION

La población de la cuenca del río Napo se encuentra distribuida de la siguiente manera: En el Perú habitan el 70 % de la población, mientras que el 30% habita en el Ecuador. La densidad poblacional es de 4 habitantes/ km² para el Perú y 5 habitantes/ km² para el Ecuador; no obstante en la parte ecuatoriana, la población está mejor distribuida. Mientras en la parte ecuatoriana, sus dos centros poblados principales (Tena y Pto. Orellana) no llegan a 50 000 habitantes, en la parte peruana se distingue una mega ciudad (Iquitos) de más de 250000 habitantes, que concentra cerca del 75% de la población total de la parte peruana.

En territorio peruano, existen cerca de cincuenta poblaciones ubicadas a lo largo del río Napo. Estas poblaciones viven y se desenvuelven en un ambiente típico del campesino de la región amazónica con cierta influencia de Iquitos. La mayoría de las poblaciones cuenta con escuelas de nivel primario y algunas como Francisco de Orellana, Mazán y Santa Clotilde, con escuelas de educación secundaria. Es necesario tener en cuenta que las poblaciones ribereñas del río Napo, al igual que en la mayoría de la Amazonía, cambian de localización debido a erosión de las márgenes del río, agotamiento de zonas de cultivo, enfermedades u otras razones.

A continuación, la Tabla 6 muestra un listado de las principales poblaciones sobre el río Napo.

Tabla 6 Principales poblaciones Cuenca del Napo

	Localidad	Distancia (Km)
	Francisco de Orellana	10
	Nuevo Progreso	20
	Juancho Playa	45
	Puinahua	55
	Llachapa	64
Tramo Curaray	Mazán (1850 habitantes)	98
hasta la desembocadura en el Amazonas	Miraflores	120
	Puerto Huamán	125
	Tamanco	140
	Negro Urco	190
	Bellavista	209
	Santa Teresa	220
	Lagarto Cocha	243
	Fortaleza	263
	Santa Clotilde (1600 habitantes)	272
	Copal Urco	290
	Diamante Azul	320

	Localidad	Distancia (Km)
Entre Cabo Pantoja y Curaray	Curaray	319
	San Carlos	348
	Puerto Aurora	363
	RumiTumi	383
	Angosteros o Monterrico	453
	Santa María	469
	Tempestad	50 3
	Pantoja	572

La siguiente Figura 28 muestra la ubicación de las principales localidades a lo largo del cauce principal del río Napo en territorio Peruano.

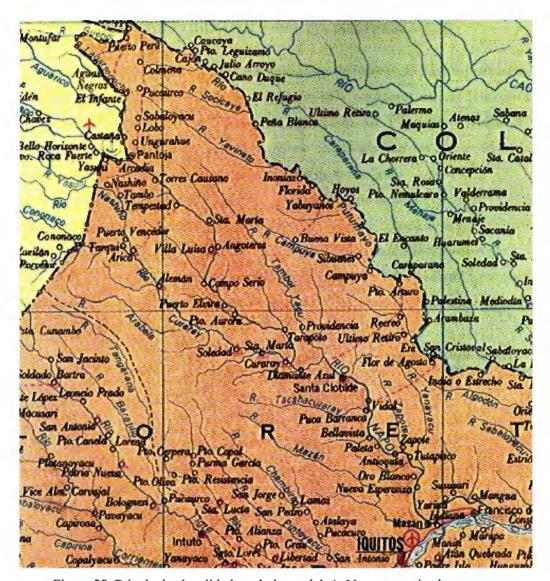


Figura 28 Principales localidades a lo largo del río Napo en territorio peruano

2.3. MODELACION HIDRODINÁMICA DEL FLUJO SUPERFICIAL

Las principales ecuaciones hidrodinámicas utilizadas para modelar el flujo superficial son atribuidas a Barre de Saint-Venant que en el año 1871 publica el articulo 'Theorie du Mouvement Non-permanent des Eaux avec Application aux Crues des Rivieres et l' Introduction des Varées dans leur Lit'. Dichas ecuaciones son conocidas como las ecuaciones de continuidad y la ecuación de cantidad de movimiento.

La ecuación de continuidad se obtiene aplicando el principio de conservación de la masa, sobre un volumen de control. El principio indica que la entrada neta de masa por unidad de tiempo debe ser igual al cambio de almacenamiento dentro de dicho volumen de control. Según Ven Te Chow (1994), la ecuación de continuidad para flujo no permanente puede establecerse considerando la conservación de masa en un espacio infinitesimal entre dos secciones de canal (Figura 29).

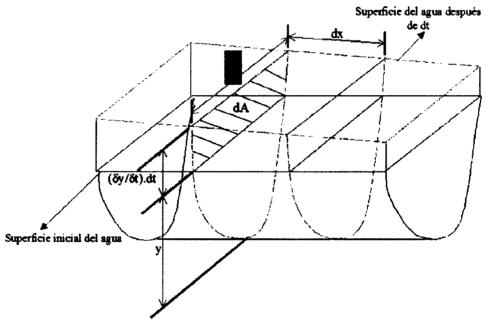


Figura 29 Continuidad del flujo no permanente

En flujo no permanente el caudal cambia con la distancia a una tasa $\frac{\partial Q}{\partial x}$ y la profundidad

de agua cambia con el tiempo a una tasa de $\frac{\partial y}{\partial t}$. El cambio del caudal a través del espacio

en el tiempo dt es $\frac{\partial Q}{\partial x} dx dt$ y el cambio en el almacenamiento dentro del canal en el

espacio es
$$w dx \left(\frac{\partial y}{\partial t}\right) dt = dx \left(\frac{\partial A}{\partial t}\right) dt$$
.

Debido a que el agua es incompresible, el cambio neto en el caudal más el cambio en el almacenamiento debería ser cero, es decir:

$$\left(\frac{\partial Q}{\partial x}\right) dxdt + wdx\left(\frac{\partial y}{\partial t}\right) dt = \left(\frac{\partial Q}{\partial x}\right) dxdt + dx\left(\frac{\partial A}{\partial t}\right) dt = 0$$

Al simplificar:

$$\left(\frac{\partial Q}{\partial x}\right) + w\left(\frac{\partial y}{\partial t}\right) = 0 \quad \text{o} \quad \frac{\partial y}{\partial t} + \frac{1}{w}\frac{\partial Q}{\partial x} = 0$$
(Ecuación 1)

Considerando un gasto lateral de aportación o extracción 'q', la forma de la ecuación de continuidad unidimensional y conservativa es:

$$\frac{\partial y}{\partial t} + \frac{1}{w} \frac{\partial Q}{\partial x} = \frac{q}{w \partial x}$$
 (Ecuación 2)

Donde y es la profundidad de agua [L], Q es la cantidad de flujo [L³T⁻¹], q es el flujo lateral [L³T⁻¹], w es el ancho del espejo de agua del cauce [L], x es longitud [L], y t es el tiempo [T].

La ecuación de cantidad de movimiento, se obtiene aplicando la Segunda Ley del movimiento de Newton y expresa el principio de conservación de la cantidad de movimiento a un volumen de control, el cual establece que la entrada neta de cantidad de movimiento al volumen por unidad de tiempo, más la suma de fuerzas externas actuando sobre él, debe ser igual a la acumulación de cantidad de movimiento dentro de dicho volumen.

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left[w \frac{Q^2}{A} \right] + g A \frac{\partial y}{\partial x} = g A (s - s_f) - q v$$
(Ecuación 3)

aceleración aceleración fuerza de diferencia entre aceleración local convectiva presión fuerza gravitacional del flujo y de fricción lateral

Donde S_f es línea de la pendiente de energía (pendiente de fricción), s es la pendiente del fondo del río, g es la aceleración debida a la gravedad $[LT^2]$ y A es la sección transversal del área del flujo $[L^2]$.

Las ecuaciones de Saint-Venant, constituyen el enfoque más completo para representar el flujo superficial, sin embargo por su naturaleza matemática, resulta frecuentemente no manejable, excepto para condiciones particulares. Asimismo la resolución simultánea de las ecuaciones hidrodinámicas de continuidad (Ecuación 1) y cantidad de movimiento (Ecuación 3), considerando todos los términos de aceleración y de presión, se realiza mediante la aplicación de un modelo de onda dinámica. Según Weinmann (1979), su resolución no garantiza exactitud en la modelación debido a que las ecuaciones de Saint-Venant están sujetas a los siguientes supuestos.

- El flujo es unidimensional, la profundidad y la velocidad varían solamente en la dirección longitudinal del canal. Esto implica que la velocidad del agua es constante y que la superficie del agua es horizontal en cualquier sección transversal perpendicular al eje longitudinal del canal.
- Se supone que el flujo varía gradualmente a lo largo del canal, de tal manera que la presión hidrostática prevalece y las aceleraciones verticales pueden despreciarse.
- El eje longitudinal del canal es aproximadamente una línea recta.
- La pendiente del fondo del canal es pequeña y el lecho es fijo, es decir, los efectos de socavación y deposición son despreciables.
- Los coeficientes de resistencia para flujo uniforme permanente turbulento son aplicables de tal forma que relaciones tales como la ecuación de Manning pueden utilizarse para describir los efectos de resistencia.
- El fluido es incompresible y de densidad constante a lo largo del flujo.

A inicios de 1958, Isaacson presentó por primera vez la solución numérica de las ecuaciones de Saint-Venant, sin embargo fue en la década de los 1980 a 1990 que los programas de simulación fueron ampliamente conocidos como resultado del desarrollo de la tecnología en computadoras y programas.

En los Estados Unidos, surgieron dos modelos dinámicos ampliamente conocidos, el FLDWAV y el UNET. El modelo FLDWAV (en las primeras versiones denominado DAMBRK y DWOPER) fueron desarrollados por Danny L Fread. El modelo UNET fue desarrollado por Bob Barkau (HEC, 1995) y fue incorporado en el HEC-RAS en mayo del 2001.

Como fue expuesto anteriormente, debido a las dificultades que se presenta en la resolución simultánea de las ecuaciones hidrodinámicas completas, surgen modelos alternativos que utilizan las ecuaciones hidrodinámicas de manera simplificadas y consisten en resolver la ecuación de continuidad y una forma simple o abreviada de la ecuación dinámica de cantidad de movimiento, la cual se simplifica considerando algunas hipótesis justificadas por ciertas condiciones de flujo. Las ecuaciones hidrodinámicas simplificadas son la ecuación de la onda difusiva y la ecuación de la onda cinemática.

2.3.1. ECUACIÓN DE LA ONDA DIFUSIVA

Se justifica la simplificación de las ecuaciones completas al considerar la existencia de equilibrio entre las fuerzas que actúan sobre un volumen de control. Se asume el equilibrio debido a que las velocidades del agua son bajas, por tanto se desprecian los términos de aceleración local y aceleración convectiva ó inerciales de la ecuación de cantidad de movimiento.

$$g A \frac{\partial y}{\partial x} = g A (s - s_f)$$

$$\frac{\partial y}{\partial x} = s - s_f \qquad \text{(Ecuación 4)}$$

Para la solución numérica simultánea de la anterior ecuación 4 y de la ecuación de continuidad han sido ampliamente utilizadas técnicas de diferencias finitas.

Por otra parte, Ponce V.M. et al. (1986), presenta la siguiente ecuación de onda difusiva:

$$\frac{\partial Q}{\partial t} + c \frac{\partial Q}{\partial x} = D \frac{\partial^2 Q}{\partial x^2}$$
 (Ecuación 5)

Donde:

 $c = \text{celeridad de la onda (LT}^{-1})$

D = Coeficiente para la atenuación de la onda (L^2T^{-1})

Los coeficientes c y D pueden ser estimados mediante observación de los hidrogramas y pueden ser calculados para un canal de dimensiones regulares considerando:

$$c = \frac{1}{w} \frac{dQ}{dx}$$
 (Ecuación 6).
$$D = \frac{Q}{2ws}$$
 (Ecuación 7)

Este tipo de ecuación considera muy importante las fuerzas inerciales y de presión como el que se da en el movimiento de una gran onda de creciente. Sin embargo su exactitud es deficiente para hidrogramas que crecen de manera muy rápida, tales como es el caso del producido por la rotura de una presa. Asimismo, este tipo de modelo de onda difusiva, se

propaga solamente hacia aguas abajo y tiene la capacidad de atenuar la onda de flujo aguas abajo hasta en un 30%.

2.3.2. ECUACIÓN DE LA ONDA CINEMÁTICA

Es el tipo de modelo más simple y fue introducido por Lighthill y Whitham (1955), en el articulo 'On kinematic waves. I:Flood movement in long rivers', Proc.Royal Society, Londres, Inglaterra.

Se aplica en aquellos flujos en los cuales la componente de peso debido a la fuerza de gravedad y la fuerza de fricción se encuentran balanceadas de manera que el flujo no se acelera apreciablemente. Estas fuerzas son mucho mayores que las fuerzas inerciales y de presión, por lo tanto:

$$\frac{\partial y}{\partial x} = 0 \rightarrow s = s_f$$
(Ecuación 8)

Esta ecuación establece la igualdad entre el componente de peso y la resistencia hidráulica. Si además se considera la ecuación de Manning para obtener una relación simple entre el caudal y la profundidad:

$$Q = \frac{1}{\eta} R^{2/3} s^{1/2} A ; \qquad R \cong y ; \quad por \, unidad \, de \, ancho$$

$$q = \frac{s^{1/2}}{\eta} y^{2/3} y = y^{5/3} \frac{s^{1/2}}{\eta}$$

$$si \alpha_0 = \frac{s^{1/2}}{\eta} \quad y \quad \beta_0 = 5/3 \implies$$

$$q = \alpha_0 \quad y^{5/3}$$
 (Ecuación 9)

A partir de la ecuación de continuidad $\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q$

y además considerando la Ley de Seddon (Chow, 1994), se tiene:

$$\frac{\partial A}{\partial Q} = \frac{dA}{dQ} = \frac{1}{c} \quad \frac{\partial A}{\partial t} = \frac{\partial A}{\partial Q} \frac{\partial Q}{\partial t}$$

Se obtiene la ecuación de onda cinemática: $\frac{\partial Q}{\partial t} + c \frac{\partial Q}{\partial x} - cq = 0$ (Ecuación 10)

Donde la velocidad de la onda cinemática o celeridad 'c' se puede calcular como: c = k'vSegún Ponce V.M. et al. (1997), se puede demostrar que k' toma el valor de 5/3 si se utiliza la ecuación de Manning y 3/2 si se utiliza la ecuación de Chezy.

Los modelos de onda cinemática se propagan solamente en la dirección aguas abajo. Son apropiados para ser usados como componente de modelos hidrológicos de cuencas, especialmente para transitar el escurrimiento superficial en planos (overland flow). No se recomienda para realizar el tránsito del flujo en canales o ríos a menos que el hidrograma tenga una muy suave rama ascendente, la pendiente del canal sea de moderada a fuerte y la atenuación del hidrograma sea muy pequeña.

Woolhiser y Liggett (1967); propusieron una ecuación para determinar si la teoría de la onda cinemática es válida para un caso particular:

$$K = \frac{sL}{F^2 y}$$
 (Ecuación 11) $F = \frac{v}{\sqrt{(gy)}}$ (Ecuación 12)

Nº Flujo Cinemático Nº Froude en flujo normal

Donde:

L: Longitud del plano donde fluirá el escurrimiento superficial (Overland flow).

h: Profundidad del agua normal.

Se ha determinado que valores de $K \ge 20$, indican que el flujo es fuertemente cinemático y por lo tanto es apropiada la solución utilizando la ecuación de la onda cinemática. Si el valor de K se encuentra alrededor de 10, se espera cometer un error del 10%, decreciendo exponencialmente con valores más grandes que K.

Ponce V.M. et al. (1978), desarrollo un criterio para analizar la aplicabilidad de los modelos de onda cinemática, difusiva y dinámica en flujo de canales abiertos. Para ello, se utilizó la perturbación sinusoidal del flujo medio, con T como el periodo de la onda. Se encontró para cada caso y para una precisión del 95% las siguientes relaciones:

En términos prácticos T puede tomarse como el doble del tiempo que tiene la rama ascendente de una onda de avenida.

$$TS_0 \left(\frac{g}{y}\right)^{\frac{1}{2}} \ge 171$$
 $30 \le TS_0 \left(\frac{g}{y}\right)^{\frac{1}{2}} < 171$ $TS_0 \left(\frac{g}{y}\right)^{\frac{1}{2}} < 30$

Onda Cinemática

Onda Difusiva

Onda Dinámica

2.4. ESQUEMAS IMPLÍCITOS APLICADOS A ECUACIONES DIFERENCIALES

Según Amein et al. (1970), se demostró que la modelación implícita de la onda dinámica es un método rápido y preciso, especialmente para ríos con cauces irregulares. Los métodos implícitos de la onda dinámica mediante diferencias finitas encuentran la solución de las ecuaciones de Saint-Venant (1871), desde una línea de tiempo a la siguiente, simultáneamente para todos los puntos a lo largo de la línea del tiempo. Esto es, para cada paso de tiempo se genera un sistema de ecuaciones algebraicas aplicando simultáneamente las ecuaciones de Saint-Venant a todos los valores desconocidos en una línea de tiempo. Según Cunge et al. (1980). Los esquemas implícitos utilizados frecuentemente para resolver de manera numérica las ecuaciones diferenciales son: Esquema del laboratorio de Hidráulica de Delft, Esquema de Abbott – Ionescu, Esquema de Vasiliev, Esquema de seis puntos de Gunaratnam – Perkins y Esquema de Preissmann.

Esquema del laboratorio de hidráulica de Delft

El esquema Delft fue inicialmente descrito por Vreugdenhil (1973). Se basa en el concepto de nodo o celda computacional ubicada en el centro de la malla. Los estados del agua calculados en dicho nodo se encuentran ligados con los otros nodos: izquierdo y derecho. La ecuación de continuidad se aplica para cada nodo con descargas que entran o salen y que son calculadas de acuerdo a las ecuaciones de flujo. En una malla computacional existen y puntos y Q puntos y la derivada espacial es ponderada entre los niveles de tiempo $t^i y t^{i+1}$, usando el coeficiente de ponderación θ .

$$\frac{\partial f}{\partial x} = \theta \frac{f_{i+1}^{j+1} - f_{i-1}^{j+1}}{2\Delta x} + (1 - \theta) \frac{f_{i+1}^{j} - f_{i-1}^{j}}{2\Delta x} \quad , \text{ con } 0,5 \le \theta \le 1,0$$
(Ecuación 13)

El esquema de Delft es idéntico al esquema denominado Abbott – Ionescu, debido a que se utilizan las mismas ecuaciones básicas de flujo. Las diferencias aparecen en el nivel de la definición de los coeficientes de la ecuación, coeficiente θ , término de momentos convectivo y solución del algoritmo.

• Esquema de Abbott – Ionescu

El esquema Abbott – Ionescu tiene dos variables independientes (Q e y) y son calculadas en diferentes puntos de la malla. El esquema fue propuesto por Abbott y Ionescu (1967) en

el International Institute for Hydraulic and Environmental Engineering en Delft, Holanda. Debido a que las variables son calculadas en diferentes puntos, la aproximación de las diferencias de las derivadas no es aplicada en la misma sección transversal. La discretización de los términos de las ecuaciones de continuidad y cantidad de movimiento son:

$$\frac{\partial y}{\partial t} = \frac{y_i^j - y_{i-1}^j}{\Delta t} \qquad \frac{\partial Q}{\partial x} = \frac{1}{2} \left[\frac{Q_i^{j+1} - Q_i^{j-1}}{2\Delta x} + \frac{Q_{i-1}^{j+1} - Q_{i-1}^{j-1}}{2\Delta x} \right]$$
(Ecuación 14) (Ecuación 15)
$$\frac{\partial Q}{\partial t} = \frac{Q_i^{j+1} - Q_{i-1}^{j+1}}{\Delta t} \qquad \frac{\partial y}{\partial x} = \frac{1}{2} \left(\frac{y_i^{j+2} - y_i^j}{2\Delta x} + \frac{y_{i-1}^{j+2} - y_{i-1}^j}{2\Delta x} \right)$$
(Ecuación 16) (Ecuación 17)
$$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) = \frac{1}{2\Delta x} \left[\left(\frac{Q^2}{A} \right)_{i-1-\frac{1}{2}}^{j+2} - \left(\frac{Q^2}{A} \right)_{i-1-\frac{1}{2}}^{j} \right]$$
(Ecuación 18)

El esquema Abbott – Ionescu es implícito. Para N nodos computacionales, existen N valores no conocidos (Q_i e y_i) y N-2 ecuaciones. Consta de dos condiciones de frontera, sin embargo, dichas condiciones se deben aplicar con precaución.

Esquema Vasiliev

El esquema Vasiliev fue desarrollado por un equipo de investigadores del Instituto de Hidrodinámica Novosibirsk (Ex-USSR), encabezada por O.F. Vasiliev. El esquema es implícito y ambas variables dependientes son calculadas en todos los puntos de la malla. Las aproximaciones de las derivadas en tiempo y espacio son:

$$\frac{\partial f}{\partial t} = \frac{f_i^{j} - f_{i-1}^{j}}{\Delta t}, \quad \text{(Ecuación 19)} \quad \frac{\partial G}{\partial x} = \frac{G_i^{j+1} - G_i^{j-1}}{2\Delta x} \quad \text{(Ecuación 20)}$$

• Esquema Gunaratnam – Perkins

El esquema Gunaratnam – Perkins (1970), es una aproximación de diferencias finitas de las ecuaciones de flujo escritas de una forma lineal. Las aproximaciones de las derivadas en tiempo y espacio son:

$$\frac{\partial f}{\partial t} = \frac{1}{6} \frac{f_i^{j-1} - f_{i-1}^{j-1}}{\Delta t} + \frac{2}{3} \frac{f_i^{j} - f_{i-1}^{j}}{\Delta t} + \frac{1}{6} \frac{f_i^{j+1} - f_{i-1}^{j+1}}{\Delta t}, \quad \frac{\partial f}{\partial x} = \frac{f_i^{j+1} - f_i^{j-1}}{2\Delta x}$$
(Ecuación 21) (Ecuación 22)

Consecuentemente el esquema es totalmente implícito y relacionan tres puntos consecutivos j-1, j y j+1, que conduce a un sistema de 2N-4 ecuaciones para 2N variables

no conocidas. Dos condiciones de frontera y dos ecuaciones características son conocidas para los puntos límites j=1 y j=N.

• Esquema de Preissmann

El esquema fue introducido por Preissmann en 1961 y desde entonces ha sido descrito en innumerables artículos científicos. Las aproximaciones de las derivadas en el tiempo y espacio pueden ser obtenidas mediante:

$$\frac{\partial f}{\partial t} = \frac{\left[\phi u_i^{j+1} + (1 - \phi) u_{i-1}^{j+1} \right] - \left[\phi u_i^{j} + (1 - \phi) u_{i-1}^{j} \right]}{\Delta t} \qquad \text{(Ecuación 23)}$$

$$\frac{\partial u}{\partial x} = \theta \frac{u_{i-1}^{j+1} - u_i^{j+1}}{\Delta x} + (1 - \theta) \frac{u_{i-1}^{j} - u_i^{j}}{\Delta x} \qquad \text{(Ecuación 24)}$$

Cuando ϕ =0,5, la Ecuación 24, se conoce como el esquema de Preissmann de 4 puntos en el cual la derivada en el tiempo se aproxima como:

$$\frac{\partial u}{\partial t} = \frac{u_i^{j+1} + u_{i-1}^{j+1} - u_i^{j} - u_{i-1}^{j}}{2\Delta t}$$
 (Ecuación 25)

El valor del coeficiente θ en la Ecuación 24, puede tomar valores entre 0,5 y 1,0.

El propósito de la discretización es hacer posible el cálculo de las variables no conocidas en N nodos computacionales para el nivel de tiempo t^{n+1} .

2.5. ESQUEMA IMPLÍCITO DEL MODELO HIDRODINÁMICO

El esquema implícito de diferencias finitas utilizado en la presente investigación doctoral es el esquema de Preissmann o método ponderado de cuatro puntos. En la Figura 30, si la variable que describe el flujo, tal como el caudal o la profundidad de agua, se denota por 'u', la derivada temporal de 'u' se aproxima promediando los valores de las diferencias finitas en los puntos de distancias i e i-l. El valor en el punto de distancia 'i' es $(u_{i-1}^{j+1}-u_{i-1}^{j})/\Delta t$ y en el punto de distancia 'i-l' es $(u_{i-1}^{j+1}-u_{i-1}^{j})/\Delta t$, luego la ecuación utilizada para $\frac{\partial u}{\partial t}$ es la Ecuación 25.

Asimismo, se adopta una aproximación levemente diferente para estimar la derivada espacial $\partial u/\partial x$. Para dicha derivada espacial, los términos de diferencias en las líneas de tiempo 'j' y 'j+1' se calculan $(u_{i-1}^j-u_i^j)/\Delta x$ y $(u_{i-1}^{j+1}-u_i^{j+1})/\Delta x$, respectivamente. Luego

se aplica el factor de ponderación θ para definir la derivada espacial $\frac{\partial u}{\partial x}$, mediante la Ecuación 24.

El valor de θ toma el valor de $\Delta t'/\Delta t$, lo que permite localizar el punto M verticalmente en la una celda.

Cuando θ es igual a *cero*, el punto M se localiza en la línea de tiempo 'j' y el esquema es completamente explicito, mientras que para un valor de θ igual a *uno* el esquema se conoce como completamente implícito y el punto M se localiza en la línea de tiempo 'j+1'.

La diferencia entre los métodos explícitos e implícitos es que los métodos implícitos son incondicionalmente estables para todos los intervalos de tiempo, mientras que los explícitos son numéricamente estables sólo para intervalos de tiempo menores que un valor critico determinado por la condición de Courant.

Sin embargo Cunge et al. (1980), menciona que la posible estabilidad incondicional de los esquemas implícitos no debe ser aplicada a ciegas con cualquier valor arbitrario de intervalos de tiempo ' Δt ' y espacio ' Δx '.

Por otra parte, las ecuaciones originales basadas en la hipótesis de Saint-Venant son aplicadas frecuentemente a tramos rectos de cauces naturales o canales pero rara vez a tramos enteros de un curso natural de agua, por ejemplo para el caso de los ríos Amazónicos que presentan marcadas discontinuidades en las características geométricas o hidráulicas del curso de agua. Ejemplos típicos son las confluencias en las cuales la sección transversal cambia de repente. Estos incidentes son locales y requieren leyes hidráulicas especificas que tienen que estar ligadas a las ecuaciones diferenciales de flujo no permanente.

De este modo, la representación geométrica del modelo hidrodinámico planteado en la presente investigación, puede ser considerada como un conjunto de tramos en la cual la hipótesis de Saint-Venant es válida y ligada a puntos especiales donde se introducen leyes particulares. Estos puntos por analogía con las verdaderas condiciones de borde se conocen como condiciones de borde internas.

En seguidamente, se presentan las consideraciones realizadas para evitar los problemas de convergencia y estabilidad y la técnica de resolución del sistema de ecuaciones lineales.

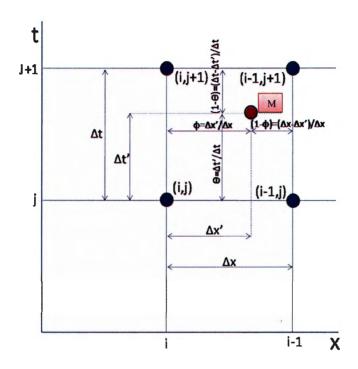


Figura 30 Plano de solución x-t

2.6. PROBLEMAS DE CONVERGENCIA Y ESTABILIDAD

Para explicar los problemas de convergencia y estabilidad que pueden presentarse en este tipo de modelación matemática, O'Brien (1949), presenta las siguientes terminologías y definiciones:

Sea DP la solución exacta de una ecuación diferencial parcial, ΔP la solución exacta de una ecuación de diferencias parciales y SN la solución numérica de la ecuación de diferencias parciales. Se denomina error de truncación a la diferencia entre $(DP - \Delta P)$ y esta crece debido a la distancia finita entre puntos de una malla. Encontrar la condición en la cual ΔP tienda a DP es un problema de convergencia.

Por otra parte, la diferencia entre $(\Delta P - SN)$ es el error numérico. Aunque $(\Delta P - SN)$ puede consistir en varios tipos de errores, usualmente se atribuye al error de redondeo. Encontrar las condiciones para las cuales la diferencia entre ΔP y SN sea pequeña en una determinada región de integración es un problema de estabilidad. Según Salaheldin et al. (2000), la estabilidad de un modelo numérico puede ser analizada comprobando si un error crece o decrece a medida que el proceso resolutivo avanza.

Según Cunge et al. (1980), no se dispone de métodos para estudiar la convergencia de esquemas de diferencias finitas para problemas generales. Las únicas herramientas que

pueden ser utilizadas son para ecuaciones lineales las cuales son derivadas de expresiones completamente no lineales. Los primeros tratamientos de la convergencia de los métodos de diferencias finitas sólo para los problemas del valor inicial (sin considerar condiciones de borde) fueron escritos por Richtmyer (1957). Godunov y Ryabenki (1964) introdujeron una metodología para estudiar la convergencia de los esquemas de diferencias finitas para problemas del valor inicial y de frontera.

En el caso de los esquemas explícitos, para ser estables deben trabajar con incrementos de tiempo pequeños. El análisis de estabilidad para esquemas explícitos (Abbott, 1979), a partir de la teoría de las características para soluciones continuas lleva a la conclusión que dichos esquemas, para ser estables, deben cumplir la condición de Courant, que para las ecuaciones unidimensionales es:

$$\Delta t \le \frac{\Delta x}{|v \pm c|}$$
 (Ecuación 26)
$$C = \frac{|v \pm c|\Delta t}{\Delta x} \le 1$$
 (Ecuación 27)

Donde C es el número de Courant, también llamado número de Courant, Friedrichs y Lewy CFL (Courant et al.,1928). La condición de Courant significa que el dominio de dependencia de un punto en un esquema en diferencias explícitas (que está formado por los puntos del espacio que intervienen en el esquema) debe comprender al dominio de dependencia para la ecuación diferencial, ya que precisamente $|v\pm c|$ es la velocidad de propagación de una onda, o velocidad de transmisión de la información, que limita el dominio de dependencia para la solución exacta.

En el caso unidimensional lo que debe cumplirse:
$$\Delta t \le \frac{\Delta x}{c}$$
 (Ecuación 28)

Donde c es la celeridad o velocidad de propagación de la onda más rápida del problema de Riemann asociado. En la práctica las condiciones de las ecuaciones anteriores se suelen considerar equivalentes, aunque en algún caso, como el avance en lecho seco, podría llevar a inestabilidades por estar infravalorando la velocidad de propagación de la onda.

Según Lewy y Friedricks (1967), el número de Courant 'C', permite relacionar la celeridad física y la celeridad numérica.

$$C = \frac{c}{\frac{\Delta x}{\Delta t}}$$
 (Ecuación 29)

Donde:

C: Número de Courant

c: Celeridad del flujo (LT⁻¹)

 $\frac{\Delta x}{\Delta t}$: Celeridad numérica (LT⁻¹)

Esta última ecuación muy importante para la aplicación de soluciones numéricas, permite

obtener el cociente $\frac{\Delta x}{\Delta t}$, teniendo en cuenta el valor del número de Courant 'C', con el fin

de evitar dificultades de estabilidad y convergencia en el modelo numérico.

Finalmente, dado un valor de Δx , el valor de Δt se calcula mediante la siguiente ecuación considerando la ecuación de Manning. (Ponce V.M. et al., 1997).

$$\Delta t = \frac{C\Delta x}{c} = \frac{3C\Delta x}{5v}$$
 (Ecuación 30)

Estos últimos criterios de estabilidad y convergencia han sido considerados en el modelo matemático desarrollado en la presente investigación a pesar de ser un modelo implícito.

Para dar solución al sistemas de ecuaciones lineales se utiliza la técnica de eliminación de Gauss con pivoteo a diferencia de la técnica original de eliminación de Gauss, y consiste en seleccionar como pivote el coeficiente de mayor valor absoluto en la columna relevante a la matriz reducida y realizar el intercambio de filas correspondientes.

A pesar de la programación adicional y el mayor tiempo de computo que emplea el método de Gauss con pivoteo, se asegura la solución del problema al encontrar los coeficiente de mayor valor absoluto que los que van resultando en la diagonal principal de la matriz.

El modelo hidrodinámico desarrollado en la presente investigación doctoral utiliza la eliminación de Gauss con pivoteo para resolver simultáneamente las 2N-2 ecuaciones que se forman en cada intervalo de tiempo.

2.7. ALTIMETRÍA RADAR

Según Hall et al. (2010), desde que los primeros satélites altimétricos tipo radar, fueron puestos en marcha como el GOES-3 en 1975 y SEASAT en 1978, se han producido mejoras sustanciales en la precisión de sus mediciones (Chelton et al., 2001).

Inicialmente diseñados para estudios oceánicos, la altimetría satelital mediante radar ha sido probada muy satisfactoriamente para calcular los niveles de agua en grandes ríos y lagos (Birkett, 1998; Campos et al., 2001; Birkettet al., 2002; Calmant and Seyler, 2006; Calmant et al, 2008).

La primera aplicación de éstas técnicas en la cuenca del río Amazonas fueron realizadas por Koblinsky et al. (1993), mediante el GEOSAT, para investigar los niveles de agua del Amazonas; posteriormente Campos et al. (2001), investigó la utilidad del uso del altímetro TOPEX/Poseidon (T/P) y los comparó con datos registrados de los niveles de agua del río Amazonas entre 1993 al 2000, concluyendo que el satélite T/P era capaz de estimar los niveles del agua en época de crecidas, pero era incapaz de identificar con éxito los cuerpos de agua en períodos de bajo caudal.

Más recientemente, el satélite ambiental ENVISAT Radar Altímetro 2 (RA-2), tuvo como tarea el registrar observaciones de elevación de la superficie terrestre y niveles de agua de las grandes cuencas. Frappart et al. (2006), llegó a la conclusión de que los resultados del ENVISAT fueron mejores que los obtenidos por el T/P y en definitiva representa una mejora en la comprensión hidrológica de las cuencas. Según Santos Da Silva et al. (2010), se realizaron estudios en la cuenca Amazónica, con el altímetro ENVISAT y su predecesor ERS-2, encontrándose que el ENVISAT proporciona errores por debajo de 30 cm en lugar de los 70 cm del ERS-2.

Aunque estos satélites radar permiten disponer de datos para el monitoreo de los niveles de agua en ausencia de estaciones hidrométricas, tienen la desventaja de la resolución temporal de los datos. Las mediciones son cada 10 a 35 días para el T/P y ENVISAT respectivamente, lo cual no se adapta necesariamente al requerimiento del monitoreo hidrológico (Calmant y Seyler, 2006).

En cada localización donde el satélite radar ha realizado transeptos sobre las superficies libres de agua (Llamadas estaciones virtuales), es posible generar series temporales de niveles de agua mediante un muestreo que se repite entre los 10 a 35 días dependiendo de la misión de altimetría radar. Las estaciones virtuales han sido usadas como un mecanismo de soporte para el monitoreo hidrológico, especialmente en búsqueda de información

hidráulica (pendiente de fondo, profundidad del flujo, coeficiente de rugosidad de Manning, etc.), que previamente pudo sólo ser medida desde mediciones directas en el campo (León et al., 2006). Getirana et al. (2009), utilizó estaciones virtuales para validar un modelo hidrológico espacialmente distribuido de la cuenca del río Negro. La altimetría radar ofrece entonces la posibilidad de conocer los niveles de agua en diferentes secciones transversales del río. Esto posibilita la calibración de modelo hidrodinámicos considerando la presencia de singularidades internas de la geometría del río tales como las islas.

Para obtener los niveles de agua de una determinada sección transversal en el río, se utilizó el programa VALS (Virtual ALtimetry Station) que consiste en una rutina desarrollada en el ámbito del GRAS GIS 6.1 freeware SIG(Santos da Silva, 2006). Este programa ha sido desarrollado por investigadores del proyecto ORE HYBAM.

La presente investigación evalúa la utilidad de la información proporcionada por la altimetría radar en condiciones de ausencia de información registrada en campo.

III. MATERIALES Y METODOLOGÍA

3.1. MATERIALES

- Información hidrométrica del río Amazonas en las estaciones Tamshiyacu y
 Tabatinga proporcionada por el Proyecto ORE HYBAM
- Información hidrométrica del río Napo en las estaciones NuevoRoca Fuerte y Bellavista Mazan proporcionada por el Proyecto ORE HYBAM
- Información de altimetría radar del río Napo proporcionada por la ANA Brasil.
- Lenguaje JAVA
- Programa Netbeans.
- Programa ArcGIS v.10.0
- Laptop
- Impresora
- Cabe indicar que gran parte de la investigación se desarrolló en la sede del GET (Géosciences Environnement Toulouse) - Francia, donde se contó con la disposición de una oficina equipada con equipos de cómputo, biblioteca y asesoría constante por parte de investigadores del GET.

3.2. MÉTODOLOGÍA

Con el fin de cumplir con los objetivos de la investigación, la metodología del estudio se divide en dos partes. En primer lugar, se utiliza el modelo hidrodinámico 1-D para simular un caso teórico y cuantificar la sensibilidad de las variables de salida: profundidad de agua (y), caudal (Q), ancho transversal del espejo de agua (w) y velocidad del flujo (v), de acuerdo con el rango de valores esperados de los parámetros de entrada del modelo: la geometría de la sección transversal, coeficiente de rugosidad de Manning (n) y pendiente longitudinal del río (s).

De esta manera, se evalúa la sensibilidad del modelo hidrodinámico producida por la variabilidad de sus parámetros de entrada y por la formulación matemática y numérica propia del modelo.

Según Burgman et al., 2005, la incertidumbre de la modelación tiene dos posibles fuentes principales de error: El error de muestreo y el error del modelo propiamente dicho.

El error de muestreo ocurre debido a que no es posible registrar a todos los miembros de una población, por lo que se debe hacer inferencias acerca de las características de la población a partir de la información de las muestras registradas. El error del modelo es causado por la formulación matemática y esquema numérico de un modelo hidrodinámico 1-D.

Entonces, la primera etapa consiste en evaluar la sensibilidad de las vari bles de salida del modelo (y, v, w y Q), de acuerdo a posibles valores que puedan tomar los parámetros de entrada para el caso de los ríos Amazónicos.

En segundo lugar, se calibra y valida el modelo hidrodinámico 1-D para un tramo anastomosado del río Amazonas (Latrubesse M. 2008), mediante la comparación de caudales y profundidades de flujo registradas en campo. La bondad de ajuste es descrita por el coeficiente de eficiencia de Nash y Sutcliffe (E) y la raíz del error medio cuadrático (RMSE). Este análisis evidencia el error del modelo.

Finalmente, se realiza la modelación del perfil de flujo del río Napo y se compara las elevaciones del flujo simuladas con respecto al registro de altimetría radar. La bondad de ajuste también es evaluada mediante *E* y *RMSE*. Este análisis evidencia el error de muestreo producido por la utilización de registros de altimetría radar en lugar de registros de campo.

3.2.1. LA MODELACIÓN HIDRODINÁMICA DE LOS GRANDES RIOS DE LA CUENCA AMAZONICA

La metodología utilizada para desarrollar el modelo hidrodinámico, corresponde a la resolución simultánea de las ecuaciones propuestas por Barre de Saint-Venant, quien en el año 1871 publica el articulo 'Theorie du Mouvement Non-permanent des Eaux avec Application aux Crues des Rivieres et l' Introduction des Varées dans leur Lit' y que son resueltas mediante el esquema numérico de Preissmann. El modelo hidrodinámico desarrollado para un curso natural de río fue idealizado como el formado por un conjunto de tramos de cauce en los cuales es válida la hipótesis de Saint-Venant, estando a su vez ligada a lugares particulares donde se introducen ecuaciones específicas relacionadas con las condiciones de borde internas.

Existen ejemplos de estudios que han tomado en cuenta el aspecto de la geometría de cauces complejos relacionada con la modificación de la ecuación de momentum o cantidad de movimiento con el fin de incrementar la estabilidad computacional de los modelos.

Shippa Leonardo et al. (2008), remplazó el término que representa la pendiente local de fondo por una expresión alternativa del efecto de la presión debido a las irregularidades de la sección transversal en cauces no prismáticos, los resultados obtenidos sobre un cauce real (río Reno –Italia) y sobre un conjunto de casos teóricos, confirmaron la idoneidad del modelo.

Por otra parte, Trigg et al., 2009, señala que la información batimétrica contenida en el cauce de un río muestra que cuando se compara los niveles de amplitud de las ondas de flujo del Amazonas, éstas son relativamente insensibles al contenido de información batimétrica del cauce y el uso de una sección aproximada de cauce natural introduce un error de 0,10 m. a 0,15 m. en los niveles de agua predichos. En la presente investigación, el modelo aproxima la sección de cauce natural de un río con una sección rectangular que varía su ancho en función de la profundidad de flujo, mediante una relación empírica entre el ancho del espejo de agua y la profundidad, a diferencia por ejemplo con el modelo HEC-RAS, el cual necesita incorporar la batimetría de las secciones transversales del río.

Por otra parte, el modelo hidrodinámico tiene la capacidad de considerar nueve casos distintos de configuración del cauce, lo cual permite detectar y modelar un gran número de posibles geometrías de cauce. La tabla 7, muestra los nueve casos considerados en la modelación hidrodinámica, el número y composición de las ecuaciones a resolver y un gráfico que muestra la disposición del nodo analizado dentro de la geometría del cauce.

Tabla 7 Casos y composición de ecuaciones respectivas

N°	Caso	Número de ecuaciones	Composición	Gráfico			
	Primer tramo del río en el cual es conocida la		Energia (n_puntos - n_puntos-1)	Frontera agues erriba n puntos-1			
1	condición de borde aguas arriba (hidrograma de caudales y profundidades	3	Energia (n_puntos - n_puntos-2)	Histograms do caudetes o profunciados do profunciados do profunciados do para conocido o la la n. puntos 2			
	de agua) con presencia de una isla aguas abajo.		Continuidad (n_puntos - n_puntos-1 y n_puntos - n_puntos-2)	n_puntos V			
	Último tramo del río con condición de frontera		Continuidad (Nodo 1 - Nodo 3 y Nodo 2)	Frontera aguas abajo			
2	conocida aguas abajo (hidrograma de salida) e isla aguas arriba.	3	Energia (Nodo 1 - Nodo 3)	Isla nodo=1 ocucióes conocidos			
	aguat amba.		Energia (Nodo 1 - Nodo 2)	7			
			Continuidad (Nodo i - Nodo i+2 y Nodo i+1)				
			Energia (Nodo i - Nodo i+2)	η			
_	Tramo intermedio en el cual		Energia (Nodo i - Nodo i+1)	Nodo=i+2 ○ → ○ Nodo=i-1			
3	existen islas aguas amiba y aguas abajo.	6	Energia (Nodo i - Nodo i-1)				
			Energia (Nodo i - Nodo ⊦2)	7			
			Continuidad (Nodo i - Nodo i-1 y Nodo i-2)				
			Energia (Nodo i - Nodo i+2) + Energia (Nodo i - Nodo i+1)	N N			
4	Tramo intermedio en cuyo extremo aguas amba existe una isla y hacia aguas abajo un tramo recto.	4	Continuidad (Nodo i - Nodo i+2 y Nodo i+1)	Nodo=i+2O → Nodo=i isla Nodo=i-1			
			Continuidad (Nodo i - Nodo i-1)	Nodo=i+10			
			Momentum (Node i - Node i-1)	η			
	Tramo dentro de una ramificación, en la cual existe una isla aguas amba y hacia aguas abajo confluye con la rama restante.	3	Energia (Nodo i - Nodo i+2)	ONodo=i+2			
5			Energia (Nodo i - Nodo i+1)	Nodo=i+40			
			Continuidad (Nodo i - Nodo i+2 y Nodo i+1)	o Nodo=i-1			
	Tramo intermedio sin islas		Continuidad (Nodo i - Nodo i-1)	Nodo=i+1 Nodo=i Nodo=i-1			
6	Tramo intermedio sin islas aguas arriba ni aguas abajo.	2	Morrentum (Nodo i - Nodo i-1)				
			,	n n			
7	Tramo en cuyo extremo aguas amba existe condiciones conocidas	2	Continuidad (n_puntos - n_puntos-1)	Nodo=n_puntos -1 Nodo=n_puntos -2			
	(hidrograma de caudates y profundidades de agua) sin ista aguas abajo.	2	Momentum (n_puntos - n_puntos -1)	in in its			
			Continuidad (Nodo i - Nodo i+1)				
8	Tramo intermedio en cuyo extremo aguas amba no hay isla y hacia aguas abajo existe una isla.	4	Energia (Nodo i - Nodo i-1)	Nodo≈i Isla			
			Energia (Nodo i - Nodo i-2)	→ © Nodo=i-2			
			Continuidad (Node i - Node i-1 y Node i-2)	J. J			
	Tramo dentro de una ramificación, en la cual aguas abajo existe una isla y hacia aguas amiba confluye con la rama restante.		Energia (Nodo i - Nodo i-1)	Ø Node ≕-1			
9		3	Energia (Nodo I - Nodo F2)	Nodo=i-2 Nodo=i-3 Nodo=i-1			
			Continuidad (Nodo i - Nodo i-1 y Nodo i-2)	Nodosi-4			

El procedimiento de modelación hidrodinámica consiste en primer lugar en analizar la incertidumbre de los resultados del modelo, en vista de la limitada información disponible para calibrar y validar el modelo. La incertidumbre producida por el error de muestreo es de dos tipos. Por un lado, la resultante en el caso que se cuente con registros de caudales y profundidades de agua medidos en campo, y por otro lado, la resultante en el caso de sólo disponer de información registrada por altimetría radar. En ambos casos, la incertidumbre es evaluada mediante el coeficiente de eficiencia de Nash y Sutcliffe (E) (Ecuación 58).

La comparación de los E obtenidos para ambos casos, sirve para evaluar la aplicabilidad de la altimetría radar en la calibración y validación de los modelos hidrodinámicos.

La información de ingreso al modelo son los hidrogramas de caudal y profundidad de agua respectivamente en la sección de entrada ubicada en el extremo aguas arriba, la geometría del cauce del río y funciones empíricas que describen el ancho del espejo de agua en función de la profundidad de agua. La información de salida del modelo en el extremo aguas abajo son los hidrogramas de y, Q, w y v en cada sección transversal predefinida dentro del tramo de río simulado con presencia o sin presencia de islas.

Entre las restricciones del modelo se pueden señalar las siguientes:

- El modelo no simula el flujo en las áreas de inundación. Todos los niveles de agua simulados se encuentran debajo del nivel superior del cauce principal.
- Se asumen constantes el coeficiente de rugosidad de Manning (n) y la pendiente longitudinal del río (s) durante el tiempo de simulación. La razón de ello se sustenta en los altos niveles de turbidez del agua en el río y que no permite un alto crecimiento de vegetación acuática en su lecho de cauce y por lo tanto la rugosidad no tiende a cambiar. Asimismo se supone que los procesos de erosión y sedimentación en el lecho del cauce no cambian significativamente la pendiente longitudinal durante la simulación.

En la siguiente sección, se presentan las ecuaciones hidrodinámicas y procedimiento numérico utilizados en la modelización hidrodinámica 1-D.

a. Ecuaciones de continuidad en masa y cantidad de movimiento de Saint-Venant utilizadas en la modelación de los cauces sin islas.

El modelo hidrodinámico 1-D, encuentra las soluciones simultáneas de las ecuaciones de continuidad y cantidad de movimiento (Ecuación y Ecuación) propuestas por Barre de Saint-Venant y Boussinesq (1881), así como los trabajos de Massau, quien en 1889 publicó los primeros intentos para resolver dichas ecuaciones mediante el método de las características. Otras contribuciones destacadas para el desarrollo de tales métodos fueron realizadas por Henry (1938), Bergeron (1937), Khristianovich (1938), Lévin (1942), Craya (1946), Arkhangelskii (1947), Holsters (1953), Stoker (1948), Putman (1949), Lamoen (1949), Dmitriev (1949), Escoffier (1950), Ransford (1951), Lin (1952), Uchida (1952), Nougaro (1953), Iwagaki y Sueishi (1954), Isaacson, Stoker y Troesch (1956), Dahl (1955), etc.

Las hipótesis primarias de esta teoría es considerar que la densidad del agua es constante, la presión que ejerce el agua sobre el lecho es hidrostática, las pendientes longitudinales de los tramos de río son bajas y la velocidad de sedimentación se considera igual a la velocidad media del flujo.

La Ecuación de cantidad de movimiento descrita anteriormente puede también ser expresada según la Ecuación 31.

Ecuación de cantidad de movimiento [L³T⁻²]

$$\varphi \frac{\partial Q}{\partial t} + \varphi \frac{\partial}{\partial x} \left(w \frac{Q^2}{A} \right) + gA \frac{\partial y}{\partial x} + gAS_f = \beta qv$$
(Ecuación 31)

Donde s_f es línea de la pendiente de energía (pendiente de fricción), g es la aceleración debida a la gravedad [LT⁻²], A es la sección transversal del área del flujo [L²], v es la velocidad del flujo lateral, esto es, en la misma dirección del flujo principal del río, φ es el factor de inercia parcial local (Fread et al., 1986) y β es el coeficiente de Boussinesq.

El coeficiente de Boussinesq (β) toma en cuenta la no uniformidad de las distribuciones de velocidades de flujo en la sección transversal del río en el cálculo del cantidad de movimiento. Los valores característicos de β tiene un rango entre 1,01 a 1,33 para canales rectos prismáticos y ríos, respectivamente.

Por otra parte, muchos de los algoritmos utilizados para dar solución al flujo transitorio, se hacen inestables cuando el flujo pasa por adoptar profundidades críticas. La solución de las ecuaciones de flujo transitorio consideran el cálculo de las derivadas (cambio de la

profundidad y velocidad del flujo con respecto al tiempo y espacio) en la solución de las ecuaciones. Cuando el flujo pasa por la profundidad crítica, las derivadas se hacen muy grandes y ello causa oscilaciones en la solución. Estas oscilaciones tienden a crecer hasta que el programa se vuelve completamente inestable. Para evitar este problema, el modelo hidrodinámico desarrollado incorpora la técnica propuesta por Fread et al. (1986), denominada Inercia Parcial Local – LPI (Local Partial Inertia), para monitorear el número de Froude en todas las secciones transversales en cada paso de tiempo. Cuando el número de Froude se acerca a 1,0, el modelo automáticamente reduce la magnitud del término inercial en la ecuación de cantidad de movimiento, incrementando la estabilidad del modelo (p.e. HEC-RAS – Hydrologic Engineering Center's River Analysis System., 2005).

El factor de inercia parcial local (φ) afecta al término inercial de la ecuación de cantidad de movimiento, cuando el Número de Froude (F) se acerca a 1, de la siguiente manera:

$$\varphi = Ft - F^m$$
, para $(Ft \ge F; m \ge 1)$
(Ecuación 32)
$$\varphi = 0$$
, para $(F > Ft)$

Donde F es el número de Froude, Ft es el número de Froude límite y varía entre 1 a 2 y m es un exponente que varía entre 1 y 128.

Para el modelo hidrodinámico desarrollado, se ha supuesto los valores por defecto que considera el programa HEC-RAS, esto es, para Ft igual a 1 y m igual a 10.

Se debe tener en cuenta que a mayor incremento de Ft ó m, se produce menor estabilidad pero mayor exactitud.

Aplicación del esquema de Preissmann usado en las ecuaciones de continuidad de masa y cantidad de movimiento.

Las aproximaciones por diferencias finitas son mostradas término a término para la ecuación de continuidad de masa (Ecuación 2) mediante el esquema de Preissmann (Ecuación 33 y Ecuación 34).

$$\frac{\partial y}{\partial t} = \phi \frac{y_{i-1}^{j+1} - y_{i-1}^{j}}{\Delta t} + (1 - \phi) \frac{y_{i}^{j+1} - y_{i}^{j}}{\Delta t}$$
(Ecuación 33)

ii)
$$\frac{1}{w} \frac{\partial Q}{\partial x} = \frac{2}{w_{i-1} + w_i} \left[\theta(\frac{Q_{i-1}^{j+1} - Q_i^{j+1}}{\Delta x}) + (1 - \theta)(\frac{Q_{i-1}^{j} - Q_i^{j}}{\Delta x}) \right]$$
 (Ecuación 34)

Donde θ es el factor de ponderación en el tiempo, ϕ es el factor de ponderación en el espacio, i es el nodo, j es el intervalo de tiempo, Δx es el paso de espacio [L] y Δt es el paso de tiempo [T]. La explicación de los factores de ponderación θ y ϕ se muestran en el dominio espacio – tiempo (Figura 30).

Asimismo, las aproximaciones por diferencias finitas son mostradas término a término para la ecuación de cantidad de movimiento (Ecuación 31) mediante el esquema de Preissmann, son las mostradas entre las Ecuación 35 a la Ecuación 39.

i)
$$\frac{\partial Q}{\partial t} = \varphi(1 - \phi) \frac{\Delta Q_i}{\Delta t} + \varphi \phi \frac{\Delta Q_{i-1}}{\Delta t}$$
 (Ecuación 35)

$$ii) \quad \frac{\partial}{\partial x} \left(\frac{\mathcal{Q}^2}{A} \right) = -\frac{2\Theta \mathcal{Q}_i}{A_i \Delta x} \beta \varphi \Delta \mathcal{Q}_i + \frac{2\Theta \mathcal{Q}_{i-1}}{A_{i-1} \Delta x} \beta \varphi \Delta \mathcal{Q}_{i-1} + \frac{\Theta w_i \mathcal{Q}_i^2}{\Delta x A_i^2} \beta \varphi \Delta y_i - \frac{\Theta w_{i-1} \mathcal{Q}_{i-1}^2}{\Delta x A_{i-1}^2} \beta \varphi \Delta y_{i-1} + \frac{\mathcal{Q}_{i-1}^2}{A_{i-1} \Delta x} \beta \varphi - \frac{\mathcal{Q}_i^2}{A_i \Delta x} \beta \varphi \Delta y_{i-1} + \frac{\mathcal{Q}_{i-1}^2}{A_{i-1} \Delta x} \varphi \Delta y_{i-1} + \frac{\mathcal{Q$$

(Ecuación 36)

iii)
$$gA\frac{\partial y}{\partial x} = -\frac{gA}{\Delta x}\Theta\Delta y_i + \frac{gA}{\Delta x}\Theta\Delta y_{i-1} + \frac{gA}{\Delta x}(y_{i-1}^j - y_i^j)$$
 (Ecuación 37), donde $A = \frac{A_{i-1} + A_i}{2}$

$$gASf = \frac{gn^2\Theta Q_i^J}{M_i^J} \Delta Q_i - \frac{gn^2\Theta}{2} (\frac{Q_i^J}{M_i^J})^2 \Delta M_i + \frac{gn^2\Theta Q_{i-1}^J}{M_{i-1}^J} \Delta Q_{i-1} - \frac{gn^2\Theta Q_{i-1}^{J^2}}{2M_{i-1}^{J^2}} \Delta M_{i-1} + gn^2 (\frac{Q_i^{J^2}}{2M_i^J} + \frac{Q_{i-1}^{J^2}}{2M_{i-1}^{J}})$$
(Ecuación 38)

Donde:

$$\Delta Q_{i} = \left(Q_{i-1}^{j+1} - Q_{i}^{j}\right), \ \Delta y_{i} = \left(y_{i}^{j+1} - y_{i}^{j}\right), \ \Delta Q_{i-1} = \left(Q_{i-1}^{j+1} - Q_{i-1}^{j}\right), \ \Delta y_{i-1} = \left(y_{i-1}^{j+1} - y_{i-1}^{j}\right)$$

$$M_{i} = A_{i}R_{i}^{\frac{4}{3}}$$

$$\partial M = \left(\frac{4}{3}AR^{\frac{1}{3}}\frac{\partial R}{\partial y} + R^{\frac{4}{3}}w\right)\partial y$$

Si
$$A_i \cong w_i y_i$$
 y $R \cong y$, entonces $\partial M \cong \frac{7}{3} w y^{\frac{4}{3}} \partial y$ (Ecuación 39)

Linealización de las ecuaciones de continuidad de masa y cantidad de movimiento.

Una vez expresado cada componente de las ecuaciones de continuidad en masa y cantidad de movimiento mediante diferencias finitas, ellas son agrupadas en los términos no conocidos ΔQ_b Δy_b ΔQ_{i-1} , Δy_{i-1} y de los términos conocidos Q_{i-1}^j y Q_i^j . Las siguientes Ecuaciones 40 y 41 representan las versiones lineales de la ecuación de continuidad de masa y cantidad de movimiento respectivamente, donde A'_b B_b C_b D_i , E_b F_b G_b H_b ε_i y λi son coeficientes.

- Ecuación de continuidad de masa

$$A'_{i} \Delta Q_{i} + B_{i} \Delta y_{i} + C_{i} \Delta Q_{i-1} + D_{i} \Delta y_{i-1} = \varepsilon_{i}$$
(Ecuación 40)

Donde:

$$A'_{i} = -\frac{\Theta}{\Delta x}; B_{i} = \frac{(1-\phi)\bar{w}}{\Delta t}; C_{i} = \frac{\Theta}{\Delta x}; D_{i} = \frac{\phi\bar{w}}{\Delta t}; \varepsilon_{i} = \frac{qlat}{\Delta x} - \frac{1}{\Delta x}(Q_{i-1} - Q_{i})$$
$$\bar{w} = \left(\frac{w_{i} + w_{i-1}}{2}\right)$$

- Ecuación de cantidad de movimiento

$$E_{i}\Delta Q_{i}+F_{i}\Delta y_{i}+G_{i}\Delta Q_{i-1}+H_{i}\Delta y_{i-1}=\lambda_{i}$$
 (Ecuación 41)
$$E_{i}=\frac{(1-\phi)\phi}{\Delta t}-\frac{2\Theta Q_{i}}{\Delta xA_{i}}\beta\phi+2gn^{2}\Theta(1-\phi)\frac{Q_{i}}{M_{i}}$$

$$F_{i}=\frac{\Theta w_{i}Q_{i}^{2}}{\Delta xA_{i}^{2}}\beta\phi-\frac{g\Theta}{\Delta x}\left(\frac{A_{i}+A_{i-1}}{2}\right)-(1-\phi)gn^{2}\Theta\frac{Q_{i}^{2}}{M_{i}^{2}}\frac{\partial M_{i}}{\partial y_{i}}++\frac{g\Theta\bar{w}}{\Delta x}(\phi y_{i-1}-(1-\phi)y_{i})$$

$$G_{i}=\frac{\phi\phi}{\Delta t}+\frac{2\Theta Q_{i-1}}{\Delta xA_{i-1}}\beta\phi+2gn^{2}\Theta\phi\frac{Q_{i-1}}{M_{i-1}}$$

$$H_{i}=-\frac{\Theta w_{i-1}Q_{i-1}^{2}}{\Delta xA_{i-1}^{2}}\beta\phi+\frac{g\Theta}{\Delta x}\left(\frac{A_{i}+A_{i-1}}{2}\right)-gn^{2}\Theta\phi\frac{Q_{i-1}^{2}}{M_{i-1}^{2}}\frac{\partial M_{i-1}}{\partial y_{i-1}}+\frac{g\Theta\bar{w}}{\Delta x}(\phi y_{i-1}-(1-\phi)y_{i})$$

$$\lambda_{i}=-\frac{1}{\Delta x}\left(\frac{Q_{i-1}^{2}}{A_{i-1}}-\frac{Q_{i}^{2}}{A_{i}}\right)\beta\phi-\frac{g}{\Delta x}\left(\frac{A_{i}+A_{i-1}}{2}\right)\left(y_{i-1}-y_{i}\right)-gn^{2}\left((1-\phi)\frac{Q_{i}^{2}}{M_{i}}+\phi\frac{Q_{i-1}^{2}}{M_{i-1}}\right)+\beta qv$$
 Donde:
$$\frac{\partial M}{\partial y}\cong\frac{7}{3}wy^{\frac{4}{3}}, v\cong\frac{Q_{i}}{2}$$

Ecuaciones hidrodinámicas para las condiciones de borde interno aplicadas a secciones con islas generando convergencias y divergencias.

Las ecuaciones particulares para las condiciones de borde internas son la ecuación de conservación de la masa y la ecuación de conservación de la energía, aplicadas a secciones con islas que producen convergencias y divergencias (Figura 31).

De la misma manera que la conversión lineal de las ecuaciones de continuidad en masa y cantidad de movimiento descritas anteriormente, se procedió a linealizar las ecuaciones de continuidad de la masa y la ecuación de la conservación de la energía en los términos no conocidos ΔQ_{il} , Δy_{il} , ΔQ_{i2} , Δy_{i2} , ΔQ_{i} , Δy_{i} y en términos conocidos $Q_{i_1}^{j}$, $Q_{i_2}^{j}$, Q_{i}^{j} . La

Ecuación 44 es la versión lineal de la ecuación de continuidad de la masa (Ecuaciones 42 y 43). Los términos I_b J_b K_b L_i , M_b N_t y γ_i son coeficientes conocidos.

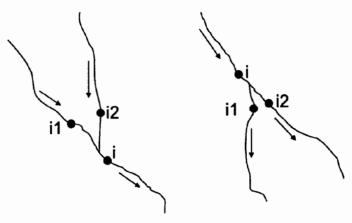


Figura 31 Casos de Convergencia y Divergencia

Ecuación de continuidad de masa [LT-1]

$$\frac{\partial y}{\partial t} + \frac{1}{w} \frac{\partial Q}{\partial x} = \frac{q}{w \partial x}$$

i)
$$\frac{\partial y}{\partial t} = \frac{\Delta y_i}{2\Delta t} + \frac{(\Delta y_{i1} + \Delta y_{i2})}{2\Delta t}$$
 (Ecuación 42)
ii)
$$\frac{1}{w} \frac{\partial Q}{\partial x} = \frac{\Theta}{w\Delta x} \left(\Delta Q_i - \left(\Delta Q_{i1} + \Delta Q_{i2} \right) \right) + \frac{1}{w\Delta x} \left(Q_i^J - \left(Q_{i1}^J - Q_{i2}^J \right) \right)$$

$$\frac{\Delta y_i}{2\Delta t} + \frac{(\Delta y_{i1} + \Delta y_{i2})}{2\Delta t} + \frac{\Theta}{w\Delta x} \left(\Delta Q_i - \left(\Delta Q_{i1} + \Delta Q_{i2} \right) \right) = \frac{q}{w\Delta x} - \frac{1}{w\Delta x} \left(Q_i^J - \left(Q_{i1}^J - Q_{i2}^J \right) \right)$$
(Ecuación 43)

$$I_i \Delta Q_{i1} + J_i \Delta y_{i1} + K_i \Delta Q_{i2} + L_i \Delta y_{i2} + M_i \Delta Q_i + N_i \Delta y_i = \gamma_i$$
 (Ecuación 44)

$$I = -\frac{\Theta}{\Delta x}; J = \frac{(1-\phi)\overline{w}}{\Delta t}; K = -\frac{\Theta}{\Delta x}; L = \frac{(1-\phi)\overline{w}}{\Delta t}; M = \frac{\Theta}{\Delta x}; N = \frac{\phi}{\Delta t}$$
$$\gamma = -\frac{q}{\Delta x} - \frac{1}{\Delta x} \left(Q_i^j - (Q_{i1}^j + Q_{i2}^j) \right)$$

Donde
$$\overline{w} = \frac{\left(\frac{w_{i1} + w_{i2}}{2} + w_i\right)}{2}$$

Ecuación de la conservación de la energía [L]

Para resolver el problema de la simulación de las profundidades de agua alrededor de una isla, existen diversas alternativas tales como asumir que las profundidades de agua alrededor de las islas son las mismas. Sin embargo, en la presente investigación se plantea

utilizar la ecuación de conservación de energía para simular secciones transversales con islas. Las ecuaciones de conservación de la energía entre los nodos i_l e i y entre los nodos i_2 e i son las Ecuaciones 45 y 46, respectivamente. La linealización de éstas ecuaciones están representadas en las Ecuaciones 47, 48, 49 y 50, respectivamente. Los términos O_b P_b T_b U_b R_i y S_i son coeficientes conocidos.

De acuerdo a Cunge et al. (1980), para los nodos i, i₁e i₂, se tiene:

$$y_{i1} + \frac{1}{2g} \left(\varphi_{i1} \frac{Q_{i1}}{A_{i1}} \right)^{2} = y_{i} + \frac{1}{2g} \left(\varphi_{i} \frac{Q_{i}}{A_{i}} \right)^{2} \text{ (Ecuación 45)}$$

$$y_{i2} + \frac{1}{2g} \left(\varphi_{i2} \frac{Q_{i2}}{A_{i2}} \right)^{2} = y_{i} + \frac{1}{2g} \left(\varphi_{i} \frac{Q_{i}}{A_{i}} \right)^{2} \text{ (Ecuación 46)}$$

Linealización de la ecuación de conservación de la energía

- Para los nodos i_1 e i

$$\Delta Q_{i1} \left(\varphi_{i1} \frac{Q_{i1}}{g A_{i1}^{2}} \right) + \Delta y_{i1} \left(1 - \varphi_{i1} \frac{w_{i1} Q_{i1}^{2}}{g A_{i1}^{3}} \right) - \Delta Q_{i} \left(\varphi_{i} \frac{Q_{i}}{g A_{i}^{2}} \right) - \Delta y_{i} \left(1 - \varphi_{i} \frac{w_{i} Q_{i}^{2}}{g A_{i}^{3}} \right) = 0$$

$$(Ecuación 47)$$

$$O_{i} \Delta Q_{i1} + P_{i} \Delta y_{i1} + R_{i} \Delta Q_{i} + S_{i} \Delta y_{i} = 0$$

$$(Ecuación 48)$$

$$O_{i} = -\left(\varphi_{i1} \frac{Q_{i1}}{g A_{i1}^{2}} \right); P_{i} = -\left(1 - \varphi_{i1} \frac{w_{i1} Q_{i1}^{2}}{g A_{i1}^{3}} \right); R_{i} = \left(\varphi_{i} \frac{Q_{i}}{g A_{i}^{2}} \right); S_{i} = \left(1 - \varphi_{i} \frac{w_{i} Q_{i}^{2}}{g A_{i}^{3}} \right)$$

- Para los nodos i2 e i

$$\Delta Q_{i2} \left(\varphi_{i2} \frac{Q_{i2}}{gA_{i2}^{2}} \right) + \Delta y_{i2} \left(1 - \sigma_{i2} \frac{w_{i2}Q_{i2}^{2}}{gA_{i2}^{3}} \right) - \Delta Q_{i} \left(\varphi_{i} \frac{Q_{i}}{gA_{i}^{2}} \right) - \Delta y_{i} \left(1 - \varphi_{i} \frac{w_{i}Q_{i}^{2}}{gA_{i}^{3}} \right) = 0$$
(Ecuación 49)
$$T_{i} \Delta Q_{i2} + U_{i} \Delta y_{i2} + R_{i} \Delta Q_{i} + S_{i} \Delta y_{i} = 0$$
(Ecuación 50)
$$T_{i} = -\left(\varphi_{i2} \frac{Q_{i2}}{gA_{i2}^{2}} \right); U_{i} = -\left(1 - \varphi_{i2} \frac{w_{i2}Q_{i2}^{2}}{gA_{i2}^{3}} \right); R_{i} = -\left(\varphi_{i} \frac{Q_{i}}{gA_{i}^{2}} \right); S_{i} = -\left(1 - \varphi_{i} \frac{w_{i}Q_{i}^{2}}{gA_{i}^{3}} \right)$$

Metodología para la resolución de las ecuaciones hidrodinámicas propuestas

La metodología utilizada para simular la hidrodinámica de cauces complejos consistió en plantear nueve casos de disposición de nodos en un determinado tramo de cauce. El modelo identifica el caso correspondiente en cada nodo e incorpora a la matriz las correspondientes ecuaciones referidas en la Tabla 7. Por lo tanto, se crea un sistema de ecuaciones lineales con 2N-2 ecuaciones que son resueltas por el modelo ara cada paso de tiempo usando el proceso de eliminación de Gauss — Seidel, donde N es el número de nodos que tiene el tramo de cauce. Con el objeto de explicar la composición del sistema de ecuaciones lineales según los casos presentados en la Tabla 8, se presenta la siguiente tabla que muestra la posición (P0 a la P9) de los coeficientes de las ecuaciones lineales que afectan las variables incógnitas (ΔQ_{i+1} , ΔY_{i+1} , ΔQ_{i+1} , ΔY_{i+1} , $\Delta Q_b \Delta Y_b \Delta Q_{i-1}$, ΔY_{i-1} , ΔQ_{i-1} , ΔY_{i-1}), así como el coeficiente conocido en la posición P10. Cabe mencionar que el nodo ubicado en el extremo aguas arriba tiene el mayor subíndice = N y el ubicado en el extremo aguas abajo tiene el menor subíndice = I.

Cabe mencionar que en la presente investigación, los casos involucrados en los modelos hidrodinámicos para el río Amazonas y río Napo son exclusivamente el uno, dos, tres, cuatro y ocho.

Tabla 8 Composición de las ecuaciones lineales para los nueve casos

	Nodo arri	aguas ha 1	Nodo aguas arriba 2		do	Nodo aguas abajo 1		Nodo aguas abajo 2				
Nº Cara	P0	P1	P2	P3	P4	P5	P6	P7	P8	P9	Coeficiente	
Caso	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	conocido P10	
	Qi+1	Yi+1	Qi+1	Yi+1	Qi	Yi	Qi-1	Yi-1	Qi-1	Yi-1		
					R	S			T	U	∆h _t /∆x	
1					R	S	0	P'			$\Delta h_t/\Delta x$	
					M	N	I	J	K	L	γ	
	I	J	K	L	M	N					γ	
2			T	U	R	S					$\Delta h/\Delta x$	
	0	P'			R	S					$\Delta h/\Delta x$	
	I	J	K	L	M	N					γ	
			T	U	R	S					∆h,∕∆x	
3	0	P'			R	S					∆h/∆x	
)					R	S			T	U	<i>∆h,</i> /∆x	
					R	S	0	P'			$\Delta h/\Delta x$	
					M	N	I	J	K	L	γ	
	0	P'			R	S					∆h/∆x	
4	I	J	K	L	M	N					γ	
4					A'	В	C	D			ε	
					E	F	G	Н		,	λ	

	0	P'			R	S					$\Delta h_t / \Delta x$
5			T	U	R	S					$\Delta h/\Delta x$
	I	J	K	L	M	N					γ
6					A'	В	C	D			ε
0					E	F	G	H			λ
7					A'	В	C	D			ε
'					E	F	G	H			λ
					R	S			T	U	$\Delta h/\Delta x$
8	A'	В			C	D					λ
•					R	S	0	P'			$\Delta h_t/\Delta x$
					M	N	I	J	K	L	γ
					R	S	0	Ρ'			$\Delta h/\Delta x$
9					M	N	I	J	K	L	γ
					R	S			T	U	$\Delta h/\Delta x$

El código numérico fue desarrollado en JAVA y está compuesto por un programa principal y tres subrutinas. El diagrama de flujo del programa se presenta en la Figura 34.

c. Estabilidad del modelo

El hecho de que se simule cauces complejos con significativa variabilidad del ancho transversal del espejo de agua y pendiente longitudinal en cada nodo, hizo que surja la necesidad de controlar la estabilidad del modelo. De acuerdo a Cunge et al. (1980), los esquemas implícitos son generalmente considerados incondicionalmente estables a diferencia de los esquemas explícitos. No obstante, Cunge también señala que no es posible tomar valores arbitrarios de intervalos de tiempo y espacio (Δt y Δx). Aunque el esquema numérico del modelo hidrodinámico desarrollado es implícito, se ha considerado tener en cuenta la condición de Courant (Ecuación 29 y Ecuación 30).

La condición de Courant es muy importante para la aplicación de soluciones numéricas, debido a que éstas permiten calcular Δx y Δy , evitando dificultades de estabilidad en el modelo numérico. En la mayoría de los casos, el valor de Δx depende de la configuración del cauce, según la presencia de islas, estrechamientos y ensanchamientos del cauce, curvaturas, etc. El valor de Δy esta en función de Δx , de la celeridad física y del Número de Courant, según la Ecuación 29.

Por ejemplo, para simulaciones de ondas cuadradas de flujo advectivas se determinaron pasos de tiempo utilizando la condición impuesta por el número de Courant, Friedrichs y Levy (CFL) con un número de 0,6 (Robertson et al., 2009). Asimismo, para la integración

temporal en el esquema de discretización espacial de Nambu, el número de Courant utilizado fue de 0,5 (Shin et al., 2010).

Con el objeto de garantizar la convergencia y estabilidad del modelo hidrodinámico desarrollado, se tuvo en cuenta la aplicación de la ecuación 30, con el fin de calcular los pasos de tiempo Δt . Con respecto a la velocidad del flujo del río Amazonas, se utilizaron datos reportados por Trigg et al., 2009, en el rango de 0,77 m/s (época de vaciante) a 1,30 m/s (época de creciente). Por otra parte, los intervalos de espacio Δx considerados para los modelos del río Amazonas y Napo se presentan en las tablas 1 y 3 del Anexo 2, respectivamente. En dichas tablas se observa que los valores mínimos de Δx son 1115,1 m. para el río Napo y 5233,5 m. para el río Amazonas. Luego el valor de Δt mínimo en segundos para el río Amazonas puede calcularse con Δt = 2415,46 x C. De manera experimental y verificando que no existe problemas de estabilidad, se determino que C debe tener un valor mínimo de 0,23. La razón de ello está dada por la alta variabilidad del ancho transversal del espejo de agua de los ríos Amazónicos que determina aceleraciones y desaceleraciones del flujo, lo que condiciona que el paso de tiempo utilizado en el método numérico deba ser bastante pequeño para captar dichas singularidades del flujo.

Un procedimiento adicional propuesto para asegurar la estabilidad del modelo, es la verificación del balance de energía en los casos de cauces con presencia de islas que producen divergencias y convergencias. Para hacer esto, se asume que las fuerzas específicas en los nodos i₁ e i₂ (Figura 31) son iguales (Ecuación 51).

$$\frac{Q_{i1}^2}{gA_{i1}} + A_{i1}y_{i1} = \frac{Q_{i2}^2}{gA_{i2}} + A_{i2}y_{i2}$$
 (Ecuación 51)

Asimismo se utiliza la siguiente ecuación paramétrica, donde $\alpha_0 y \beta_0$ son dadas por la ecuación de Manning. (Ecuación 39)

$$y = \left(\frac{Q}{\alpha_0}\right)^{\frac{1}{\beta_0}}$$
 (Ecuación 52)

Donde:

Remplazando $Q_{i2} = Q_i - Q_{iI}$, la función residuo 'r' y la función $(\frac{\partial r}{Q_{i1}})$ son determinadas en las Ecuaciones 53 y 54, respectivamente.

$$r = \frac{Q_{i1}^{\frac{2\beta_{0}-1}{\beta_{0}}}}{gb_{i1}\left(\frac{1}{\alpha_{0i1}}\right)^{\frac{1}{\beta_{0}}}} + b_{i1}\left(\frac{1}{\alpha_{i1}}\right)^{\frac{2}{\beta_{0}}}Q_{i1}^{\frac{2}{\beta_{0}}} - \frac{(Q_{i}-Q_{i1})^{\frac{2\beta_{0}-1}{\beta_{0}}}}{gb_{i2}\left(\frac{1}{\alpha_{0i2}}\right)^{\frac{1}{\beta_{0}}}} - b_{i2}\left(\frac{1}{\alpha_{0i2}}\right)^{\frac{2}{\beta_{0}}}(Q_{i}-Q_{i1})^{\frac{2}{\beta_{0}}} \approx 0$$

(Ecuación 53)

$$\frac{\partial r}{\partial Q_{i1}} = \frac{\left(\frac{2\beta_{0}-1}{\beta_{0}}\right)Q_{i1}^{\frac{\beta_{0}-1}{\beta_{0}}}}{gb_{i1}\left(\frac{1}{\alpha_{0_{i1}}}\right)^{\frac{2}{\beta_{0}}}} + \frac{2b_{i1}}{\beta_{0}}\left(\frac{1}{\alpha_{0_{i1}}}\right)^{\frac{2}{\beta_{0}}}Q_{i1}^{\frac{2-\beta_{0}}{\beta_{0}}} + \frac{\left(\frac{2\beta_{0}-1}{\beta_{0}}\right)(Q_{i}-Q_{i1})^{\frac{\beta_{0}-1}{\beta_{0}}}}{gb_{i2}\left(\frac{1}{\alpha_{0_{i2}}}\right)^{\frac{1}{\beta_{0}}}} + \frac{2b_{i2}}{\beta_{0}}\left(\frac{1}{\alpha_{0_{i2}}}\right)^{\frac{2}{\beta_{0}}}(Q_{i}-Q_{i1})^{\frac{2-\beta_{0}}{\beta_{0}}}$$
(Ecuación 54)

El procedimiento iterativo Newton – Raphson, encuentra Q_{il} , que satisface la condición r \approx

0. Desde que
$$Q_{i1}^{k+1} = Q_{i1}^{k} + \Delta Q_{i1}$$
, donde $\Delta Q_{i1} = -\frac{r}{\frac{\partial r}{\partial Q_{i1}}}$ (Ecuación 55)

Entonces, se puede finalmente calcular $Q_{i2} = Q_i - Q_{i1}$

Los valores calculados Q_{il} y Q_{i2} son comparados con los valores simulados por el modelo. Si existe diferencia significativa entre ellos, se realiza nuevamente la simulación para dicho intervalo de tiempo, hasta no encontrar diferencias significativas.

Por otra parte, la Tabla 9 muestra la calibración de cinco parámetros internos de las ecuaciones del modelo expuestos anteriormente. El factor de ponderación temporal de Preissmann (θ) y el factor de ponderación espacial de Preissmann(ϕ), fueron calibrados de manera experimental teniendo en cuenta el esquema implícito del modelo y que fuera explicado en el punto 2.5. El número de Courant (C), fue calibrado de manera experimental con el fin de proporcionarle estabilidad al modelo. El factor de inercia parcial local (φ) está en función de los valores de F_t y m y son descritos en la Ecuación 32 y finalmente el coeficiente de Boussinesq (β) que según Chow (1994), para ríos toma un valor característico de 1,33.

Los valores de los parámetros calibrados se muestran en la siguiente tabla.

Tabla 9 Valores de los parámetros del modelo para los casos de tramos de cauce.

Descripción	θ φ		_	φ		
		Ψ	C(minimo)	Ft m		<i>P</i>
Caso tramo sin islas	0,7	0,7	0,23	1	10	1,33
Caso tramo con isla y sin isla	0,7	0,8	0,23	1	10	1,33
Caso tramo con solamente islas	0,5	0,8	0,23	1	10	1,33

La calibración del modelo hidrodinámico para el 'Caso tramo con isla y sin isla', es realizado para el río Amazonas entre las estaciones Tamshiyacu y Tabatinga, con datos registrados de caudales y profundidad de agua in situ en la estación Tabatinga.

La evaluación de los parámetros del modelo para el 'Caso tramo con solamente islas', es realizado para el río Napo entre la estación Nuevo RocaFuerte y la isla Tempestad, con datos registrados mediante altimetría radar, aprovechando que dicha información se dispone en ambos lados de una isla cerca a la localidad de Tempestad. Además, para este caso en particular, se quiso obtener los valores de los parámetros del modelo considerando un caso hipotético en el cual el tramo simulado entre Nuevo RocaFuerte y la localidad de Tempestad no tuviera islas (Caso tramo sin islas).

3.2.2. SENSIBILIDAD DEL MODELO HIDRODINÁMICO

a. Parametrización de la geometría del cauce del río.

Con el fin de realizar el análisis de sensibilidad del modelo, se realiza la parametrización y definición de rangos de las principales variables de entrada al modelo. Según Stewardson et al. (2008), el error del modelo en la estimación del caudal y perfil del agua está relacionado con la geometría del cauce. Por otra parte, existen evidencias que sugieren que las más significativas fuentes de error en la modelación hidráulica es la incertidumbre en el coeficiente de rugosidad y en las condiciones que puedan existir aguas abajo. El efecto del error por las condiciones aguas abajo ha recibido poca atención. Es común considerar en los modelos que la relación caudal — profundidad de agua de la sección aguas abajo tiene flujo uniforme y se asume que la pendiente de energía puede ser estimada por la pendiente longitudinal del tramo del río.

Para el caso del río Amazonas, una de las mayores incertidumbres de los modelos hidrodinámicos es la falta de información batimétrica a lo largo del cauce. Dicha

información está muy relacionada con las ecuaciones de continuidad (Ecuación 2) y cantidad de movimiento (Ecuación 31). Las variables relacionadas con tales ecuaciones hidrodinámicas son el ancho transversal del espejo de agua del cauce y la profundidad de agua.

Para analizar la influencia de la variabilidad del ancho del espejo de agua, se generaron relaciones entre el ancho y la profundidad de agua a través de un parámetro adimensional obtenido a partir de los datos batimétricos de las secciones transversales de los ríos Amazónicos. Dicha relación denominada α está dada por el cambio del ancho del espejo de agua del cauce del río con respecto al cambio de la profundidad de agua en una sección transversal (Ecuación 56).

Donde: α: Parámetro geométrico adimensional

△w: Cambio de la longitud del ancho transversal del espejo de agua (m)

△y: Cambio en la profundidad de agua (m)

De esta forma, la interrogante en la definición de la geometría de la sección transversal del río se reduce a la definición del parámetro adimensional α . Actualmente ningún estudio ha demostrado la validez de la Ecuación 56 para cualquier tipo de geometría de una sección transversal natural. Sin embargo, mediante el análisis de la base de datos del proyecto ORE HYBAM obtenida a partir del Reporte de la campaña 'EQ 52 (PE 16) Río Napo', del mes de octubre del 2004, se pudo determinar 37 perfiles de secciones batimétricas desde la estación Nuevo RocaFuerte a la estación Tempestad. La Figura 32(A) muestra la variabilidad de w versus y para los 37 perfiles. Se encontró que la relación entre las dos variables era lineal con coeficientes de determinación r^2 de 0,41 a 0,95. La Figura 32(B), muestra la distribución de r^2 y la significancia estadística entre w e y.

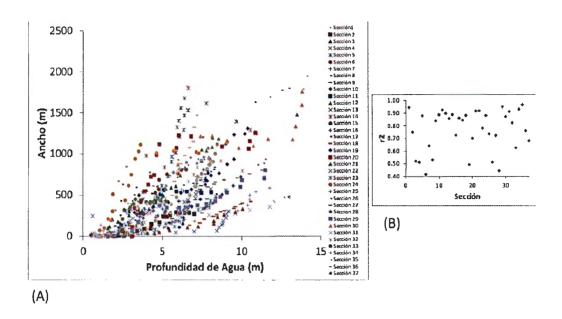


Figura 32 (A) Relación entre el ancho y la profundidad de flujo para secciones transversales entre las estaciones Nuevo RocaFuerte y la estación Tempestad y (B) Cálculo de los coeficientes de determinación r² respectivos.

La Figura 33(A) muestra la variabilidad de α desde secciones transversales del río Napo de aguas arriba hacia aguas abajo. Se puede observar que el valor de α no depende del área de contribución a dichas secciones transversales. Para el río Napo, los valores de α varían con una media (μ) alrededor de 106 de acuerdo con una distribución normal, con una desviación estándar (σ) de 52 y un coeficiente de variación de 49%. (Figura 33(B)).

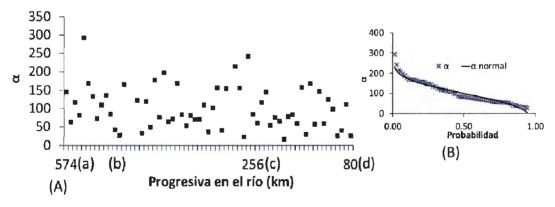


Figura 33 (A) Variabilidad normal de α desde secciones transversales ubicadas aguas arriba hacia aguas abajo (a) Estación Nuevo RocaFuerte, (b) Localidad de Tempestad, (c) Estación Santa Clotilde y (d) Estación Bellavista Mazán y (B) Distribución normal de α .

Luego, α no sólo es una parámetro local, sino puede considerarse como un descriptor de la geometría del cauce del río Napo con una media y desviación estándar que puede ser definida de manera empírica. Los valores de α para el río Napo fueron utilizados como referencias en el análisis de sensibilidad del modelo hidrodinámico 1-D. Según las propiedades de la distribución normal, $\alpha=\mu$ +/- σ cubre el 68,26% y $\alpha=\mu$ +/- 2σ cubre el 95,44% de los posibles valores de α , respectivamente. Debido a que α es un parámetro con un amplio rango de valores, constituye una de las principales fuentes de incertidumbre en los resultados del modelo.

b. Sensibilidad del modelo hidrodinámico

Para analizar la sensibilidad del modelo hidrodinámico, fue necesario considerar un caso teórico referencial o línea base de comparación con las demás simulaciones de casos realizadas.

Los valores de n son escogidos en el rango de los ríos amazónicos, estando entre 0.025 s/m^{1/3} y 0.045 s/m^{1/3}. Los valores de s son también escogidos en el rango de pendientes observadas en los ríos Amazonas y Napo (Bourrel et al., 2009), estando entre 0.07 m/km y 0.35 m/km para la llanura Amazónica y entre 0.1 m/km y 1.8 m/km para el piedemonte de la cuenca Amazónica.

El caso teórico referencial esta compuesto por un tramo de cauce con una longitud de 400 km. Se consideró para este tramo de cauce, valores particulares para el río Amazonas entre las localidades de Iquitos y Tabatinga. El valor de la pendiente (s) de 0,07 m/km y el valor del coeficiente de rugosidad de Manning (n) de 0,035 s/m^{1/3}, respectivamente.

Las demás simulaciones de casos se encuentran en el rango de variabilidad de los valores de n entre 0,035 s/m^{1/3} a 0,045 s/m^{1/3} y el rango de variabilidad de los valores de s entre 0,07 m/km a 3,0 m/km. El rango de variabilidad de n busca cubrir condiciones menos rugosas a más rugosas de la condición media del cauce. Asimismo, el rango de variabilidad de s buscan someter al modelo hidrodinámico desde condiciones de llanura Amazónica (tramo Iquitos – Tabatinga), a condiciones de piedemonte.

Los casos simulados se muestran en la Tabla 10. Cada simulación fue conducida para un periodo 01 año (365 días).

Tabla 10 Valores del Coeficiente de rugosidad de Manning (n) y Pendiente longitudinal (s), considerada en el análisis de sensibilidad.

Caso	Coeficiente de Manning (n) s/m ^{1/3}	Caso	Pendiente longitudinal (s) m/km
n ₇	0,045	<i>S</i> 7	3,00
<i>n</i> ₆	0,044	<i>S</i> ₆	2,75
n 5	0,043	S5	2,50
n ₄	0,042	<i>S</i> 4	2,25
<i>n</i> ₃	0,040	<i>S</i> 3	2,00
<i>n</i> ₂	0,030	s ₂	1,00
n_1	0,025	s_1	0,20
n ₀ (a)	0,035	s ₀ (a)	0,07

La sensibilidad del modelo es analizada estimando la variabilidad en porcentaje de las variables de salida: Profundidad de agua (y), caudal (Q), ancho transversal del espejo de agua (w) y velocidad del flujo (v) en la sección del río extrema aguas abajo, en respuesta al rango de valores del: Parámetro geométrico adimensional (a), Coeficiente de rugosidad de Manning (n) y pendiente longitudinal del tramo de cauce (s).

De acuerdo a la base de datos del ORE HYBAM, α varía en un rango entre 20 a 300 siguiendo una distribución de probabilidad normal (Figura 33(A)). Por lo tanto, la geometría del cauce teórico se ajusta a un conjunto de valores de α aleatorio siguiendo una distribución normal. Ello determina que los dos parámetros necesarios para representar la geometría del cauce sean el valor medio de α (μ) igual a 106 y su desviación estándar (σ) igual a 52. Estos dos valores corresponden al análisis realizado desde la base de datos del río Napo. La sensibilidad del modelo producida por α se estima mediante la media de diez simulaciones repetidas de las variables de salida del modelo aplicando la misma distribución normal de los valores de α .

El procedimiento para cuantificar la sensibilidad del modelo hidrodinámico 1-D producida por los parámetros de entrada del modelo, son los siguientes:

 Se realiza la sumatoria de las diferencias al cuadrado entre los valores diarios de cada variable de salida del caso simulado con respecto a la correspondiente variable de salida del caso referencial.

- Se obtiene la raíz cuadrada de las sumatorias acumuladas de las diez repeticiones realizadas para cada caso. Luego se divide dicha raíz entre las diez repeticiones y el número de días simulados, obteniéndose la desviación estándar por caso.
- Por otra parte, se realiza la sumatoria de las diferencias entre los valores diarios de cada variable de salida del caso simulado con respecto a la correspondiente referencial. Dicha sumatoria es acumulada para las diez repeticiones realizadas.
- La sumatoria anterior se divide entre las diez repeticiones y el número de días simulados, obteniéndose la diferencia media por caso.
- Finalmente la variabilidad media se calcula mediante el cociente de la desviación estándar y la diferencia media obtenida en el paso anterior.

De esta forma, el criterio de sensibilidad consiste en medir la magnitud de las desviaciones producidas con respecto al caso referencial y se realiza mediante la Ecuación 57 en términos de porcentaje de variabilidad media.

$$\%_{Variabilidad} = \frac{\sqrt{\sum_{1}^{R} \sum_{1}^{Dy} (V_{salida} - V_{referencia})^{2}}}{\sum_{1}^{R} \sum_{1}^{Dy} (V_{salida} - V_{referencia})} \times 100$$
(Ecuación 57)

Donde R: total de repeticiones, Dy: total de días simulados, V_{salida} : variable de salida del modelo en el extremo aguas abajo, $V_{referencia}$: variable de salida del modelo de caso referencial en el extremo aguas abajo, para $\alpha = 106$, n = 0.035 s/m^{1/3}, s = 0.07 m/km.

3.2.3. CALIBRACION Y VALIDACION DEL MODELO HIDRODINAMICO

La calibración del modelo es realizada para el río Amazonas entre las estaciones Tamshiyacu (TAM) y Tabatinga (TAB) utilizando la primera mitad de la información disponible de Q e y (Entre el 01 de septiembre del 2002 al 01 de septiembre del 2005). La segunda mitad de información fue utilizada para la validación (Entre el 02 de septiembre del 2005 al 28 de octubre del 2008). Las metodologías de bondad de ajuste fueron el coeficiente de eficiencia de Nash y Sutcliffe (E) y la raíz del error medio cuadrático (RMSE), siendo entonces indicadores del error del modelo. El coeficiente de eficiencia de Nash y Sutcliffe (E) es definido por la siguiente Ecuación 58 (Krause et al., 2005):

$$E = 1 - \frac{\sum_{i=1}^{Nu} (Ob_{i} - Si_{i})^{2}}{\sum_{i=1}^{Nu} (Ob_{i} - \bar{Ob})^{2}}$$
(Ecuación 58)

Donde Ob_i : valor observado, Si_i : valor simulado, \overline{Ob} : valor medio observado, Nu: número de observaciones.

El rango de valores de E varía de $-\infty$ a 1. Un E=1, corresponde a un ajuste perfecto entre los valores observados y los valores simulados. Un E=0, indica que el modelo tiene igual exactitud que el valor medio de los valores observados y un E<0, indica que el valor medio de los valores observados es mejor estimador que el modelo. La calibración realizada busca la mejor correlación entre los niveles de agua simulada y niveles de agua registrada en la estación Tabatinga. La bondad de ajuste es evaluada mediante E, siendo un indicador del error del modelo causado por las limitaciones de ser un modelo 1-D y cantidad de información disponible.

Por otra parte, se evalúa la aplicabilidad de la altimetría radar en los procesos de calibración y validación del modelo. Para realizar ello, la elevación de la altimetría radar (y_r) es recopilada desde las misiones del ENVISAT, derivada desde bases de datos existentes publicadas por ESA (European Space Agency). La metodología manual para acceder a dichas bases de datos es descrita por Silva et al. (2010) y Roux et al. (2010) y han sido usadas para definir las estaciones virtuales desde donde son cuantificadas las series de las variaciones de la elevación de agua desde medidas radar. El geoide utilizado en este estudio es el EGM2008, mediante la solución de la marea media (Tapley et al., 2004).

El estudio analiza cuatro trayectorias del satélite ENVISAT que cruzan el río Amazonas y el río Napo desde el año 2002 (Tabla 11). Estas trayectorias fueron escogidas para explorar la influencia del ancho del río en la incertidumbre de la elevación de la altimetría radar (y_r) , en las secciones transversales con islas y sin islas.

Tabla 11 Características generales de la información de altimetría radar.

Río	Path (ENVISAT Goid EGM 2008)	Latitud (°) WGS84	Longitud (°) WGS84	Periodo de tiempo	Distancia desde el extremo aguas arriba (km)	Ancho aproximado (m.)	Observaciones
Napo	966	-74,86	-1,29	29 sept 2002 al 17 oct 2010	55,0	580,0/618,0	Cruza sección transversal con isla
	164	-70,4	-3,79	06 oct 2002 al 18 sept 2010	321,2	5800,0	Cruza sección transversal sin isla
Amazonas	837	-71,6	-3,77	24 sept 2002 al 12 oct 2010	163,9	3260,0	Cruza sección transversal sin isla
	794	-72,5	-3,52	01 die 2002 al 10 oct 2010	31,5	490,0/2110,0	Cruza sección transversal sin isla

Para el caso del río Amazonas – sector Peruano, existen registros de caudales y profundidad de agua en las estaciones de TAM y TAB para el periodo comprendido entre el 01 Septiembre 2002 al 28 Octubre 2008 (ORE HYBAM, 2008).

Asimismo, la trayectoria del satélite radar ENVISAT (Path 794), cruza el río Amazonas en un punto localizado a 45,2 km aguas abajo de la confluencia entre los ríos Napo y Amazonas. Esta información es utilizada para comparar los niveles de agua simulados por el modelo hidrodinámico y aquellos registrados por altimetría radar. Asimismo, la bondad de ajuste es evaluada mediante el cálculo de E, que para este caso, vendría a ser un indicador de la incertidumbre de la altimetría radar y_r .

Para el caso del río Napo, existe información de caudales y profundidad de agua en la estación Nuevo Rocafuerte para el periodo del 04 Marzo 2001 al 29 Septiembre 2010 (ORE HYBAM, 2008). Para la evaluación del modelo, se utiliza datos de altimetría radar ENVISAT (Path 966) registrada entre Septiembre 2002 a Julio 2003, aprovechando que dicha trayectoria del satélite radar cruza el río Napo en una isla cercana a la localidad de Tempestad y por lo tanto se tiene registros de altimetría radar en ambos lados de la isla. La calibración del modelo se realizó buscando la mejor correlación entre los niveles de agua simulada en ambos lados de la isla y los niveles de altimetría radar registrados en Tempestad. Como fue mencionado anteriormente, también se consideró un caso hipotético en el cual el tramo simulado en el río Napo no tuviera presencia de islas.

La bondad de ajuste es realizada mediante el cálculo de *E*. Una vez calibrado el modelo, se realiza la simulación del perfil de flujo hidrodinámico de los ríos Amazonas y Napo y se evalúa la posibilidad de validación de los resultados del modelo con los datos de altimetría radar.

3.2.4. APLICACIÓN DEL MODELO HIDRODINÁMICO EN LOS RÍOS AMAZONAS (PERU) Y NAPO.

El propósito de realizar simulaciones del perfil de flujo de los ríos Amazonas y Napo es considerar sus diferencias en los aspectos hidrodinámicos. El río Napo está localizado principalmente en el piedemonte de la cuenca Amazónica y el tramo del río Amazonas es localizado en la llanura Amazónica.

La simulación del río Amazonas en el sector Peruano, fue conducida desde la confluencia del río Napo con el río Amazonas conocida como la estación Francisco de Orellana (FOR) hacia la estación Tabatinga (TAB) en Brasil, cubriendo una longitud de 396 km. La disponibilidad de información hidrométrica y batimétrica data desde el año 2002 para las estaciones TAM y TAB, faltando información para FOR. Sin embargo, como la geometría de la sección transversal en TAM es muy próxima a la sección transversal en FOR, el caudal en FOR se obtiene mediante la suma del caudal aforado en TAM y el caudal aforado en la estación Bellavista (BEL) (ver Figura 37-c).

Por otra parte, la simulación del río Napo se llevó a cabo entre las estaciones Nuevo RocaFuerte (ROC) y la localidad de Tempestad (TEMP). La estación ROC se localiza cerca de la frontera entre Perú y Ecuador y se encuentra a 55 km aguas arriba de TEMP. Muy cerca a TEMP, existe una isla donde la trayectoria del satélite ENVISAT (Path 966) registra la información del nivel del agua en ambos lados de dicha isla. En ROC existe disponibilidad de información hidrométrica y nivel del agua desde el 2002. En TEMP sólo se tiene información de altimetría radar (Ver Figura 37-b).

Para ambos ríos se establecen secciones transversales (denominadas nodos en el modelo), los cuales definen la resolución espacial del tramo del río utilizado para la simulación.

Las Tablas 1 y 3 del Anexo 2, resumen las características de los nodos de los ríos Amazonas y Napo respectivamente.

Las Figuras 1 y 2 del Anexo 2, representan los dominios computacionales de las simulaciones de los ríos Amazonas y Napo, respectivamente. Cabe mencionar que el programa de cómputo desarrollado resuelve en cada paso de tiempo 2N-2 ecuaciones,

donde N es el número de nodos principales. Las condiciones de frontera del modelo (Espacio = 0 km, para todo el tiempo de simulación), están dadas por los hidrogramas de caudales y profundidades de flujo diarios conocidos en el extremo aguas arriba. La condición inicial del modelo (Tiempo = 0 días, para todo los nodos), está dada por caudales y profundidades de flujo supuestos en todos los nodos.

Las demás suposiciones de las simulaciones fueron que la pendiente longitudinal (s) de los ríos Amazonas y Napo son constantes e iguales a 0,07 m/km y 0,17 m/km, respectivamente. Asimismo se supuso que el valor típico del coeficiente de rugosidad de Manning (n), para los ríos Amazonas y Napo tiene un valor de 0,035 s/m^{1/3}. El conjunto de valores de α se definen de manera aleatoria dentro de una distribución normal con media 106 y desviación estándar de 52.

3.2.5. MODELACIÓN CONVENCIONAL MEDIANTE EL PROGRAMA HEC-RAS

Con el objeto de comparar los resultados obtenidos del modelo hidrodinámico con el programa HEC-RAS, se realiza la simulación del perfil de flujo del tramo analizado del río Napo.

El HEC-RAS es un sistema integrado diseñado por la US Army Corps of Engineers para ser utilizado de manera interactiva en un ambiente de red multiusuario. El sistema comprende una interfase gráfica (GUI), el análisis por separado de los componentes hidráulicos, almacenamiento de datos, capacidad para manejar gráficos y facilidad para realizar reportes.

El sistema HEC-RAS contiene 04 componentes de análisis uni-dimensional del río:

- Simulación de flujo permanente
- Simulación de flujo no permanente
- Cálculo del transporte y movimiento del sedimento
- Análisis de la calidad del agua

El elemento clave de éstos cuatro componentes radica en que utiliza la misma representación de datos geométricos y rutinas de cálculo geométrico e hidráulico. En adición a los cuatro análisis de componentes, el sistema contiene varios utilitarios de diseño hidráulico que pueden ser utilizados una vez que el perfil de la superficie de agua haya sido calculada.

El componente de modelación de flujo no permanente es capaz de simular el flujo a través de una red de cauces abiertos. La solución de las ecuaciones de flujo no permanente fue adaptada por el Dr. Robert L. Barkau en el modelo UNET (Barkau, 1992 y HEC, 1997). Este componente de flujo no permanente, fue desarrollado primariamente para el cálculo del flujo en régimen subcrítico. Los cálculos hidráulicos para secciones transversales, puentes, alcantarillas y demás estructuras fueron desarrolladas para régi en permanente y luego fueron incorporadas para el régimen no permanente. Asimismo, la simulación del flujo en régimen no permanente tiene la capacidad de modelar áreas de almacenamiento y las conexiones hidráulicas entre dichas áreas de almacenamiento, como también entre tramos de cauce.

IV. RESULTADOS

4.1. MODELO HIDRODINÁMICO 1-D

El modelo hidrodinámico 1D es desarrollado en código JAVA y utiliza como plataforma el programa Netbeans IDE 6.9.1.

Java es un lenguaje de programación libre orientado a objetos, desarrollado por Sun Microsystems a principios de los años 90. El lenguaje en sí mismo toma mucha de su sintaxis de C y C++, pero tiene un modelo de objetos más simple y elimina herramientas de bajo nivel, que suelen inducir a errores, como la manipulación directa de punteros o memoria.

NetBeans IDE es un entorno de desarrollo integrado libre, hecho principalmente para el lenguaje de programación Java. Existe además un número importante de módulos para extenderlo. NetBeans IDE es gratuito, sin restricciones de uso y consta con una gran base de usuarios, una comunidad en constante crecimiento, y con cerca de 100 socios en todo el mundo. Sun MicroSystems fundó el proyecto de código abierto NetBeans en junio de 2000 y continúa siendo el patrocinador principal de los proyectos.

El modelo hidrodinámico desarrollado tiene un tamaño de 6,97 MB y el tiempo de ejecución de las simulaciones de los ríos Amazonas y Napo dura 26'02" y 4'21", respectivamente. La computadora utilizada para las simulaciones tiene un procesador Intel Core i7; 2,7 GHz; con 4,0 GB RAM.

El algoritmo del modelo hidrodinámico se representa en el diagrama de flujo mostrado en la Figura 34. Dicho algoritmo o procedimiento de cálculo consiste en primer lugar en identificar el caso de disposición de nodos según los mostrados en la Tabla 7. Realizado ello, se plantea el conjunto de ecuaciones correspondientes y se completa la matriz tridiagonal a resolver para cada paso de tiempo, según los explicados en la Tabla 8. Un logro importante de este algoritmo radica en que el número de ecuaciones para cualquier combinación de casos proporciona siempre 2N-2 ecuaciones que son resueltas por el modelo, donde N es el número de nodos o secciones transversales del modelo.

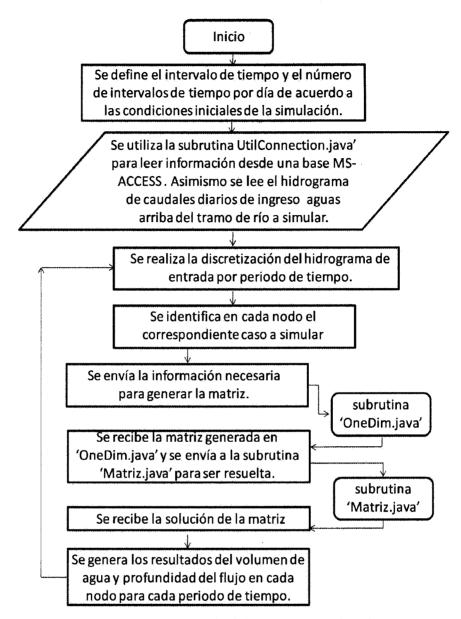


Figura 34 Diagrama de Flujo del Modelo Hidrodinámico 1-D

El programa está compuesto de un programa principal y tres rutinas. El programa principal define el lapso de tiempo y el número de intervalos de tiempo por día acorde a las condiciones iniciales definidas por cada simulación.

La rutina 'UtilConnection.java', lee desde una base de datos tipo MS-ACCESS, el hidrograma de caudales diarios de ingreso y la topología del tramo de río a ser simulado. En el Anexo 4, se presenta un ejemplo de la base de datos.

La rutina 'OneDim.java', calcula los respectivos coeficientes de las ecuaciones de acuerdo al caso identificado en el programa principal y genera la matriz tri-diagonal.

La rutina 'Matriz.java', resuelve la matriz 2N-2 por el método Gauss Seidel y retorna los resultados al programa principal.

En el Anexo 5 se presentan ejemplos de los resultados brindados por el programa.

4.2. SENSIBILIDAD DEL MODELO 1-D CON RESPECTO A SUS PARÁMETROS PRINCIPALES.

El procedimiento para determinar la sensibilidad del modelo 1-D, se realiza de la siguiente manera: los valores de n y s mostrados en la Tabla 10, son comparados con el caso referencial. En primer lugar, manteniendo constante n=0.035 s/m^{1/3}, se procede a variar los siete valores de s; luego se mantiene constante s=0.07 m/km y se varía los siete valores de n. Las anteriores combinaciones se realizan para $\alpha=\mu+/-\sigma$, $\alpha=\mu+/-2\sigma$ y $\alpha=2\mu+/-\sigma$, con diez repeticiones en cada caso de α .

De acuerdo a los resultados de sensibilidad, el cálculo del ancho transversal del espejo de agua (w) es la variable de salida más sensible del modelo, seguida de la velocidad del flujo (v). Dicha sensibilidad es producto del hidrograma de caudales de entrada en el extremo aguas arriba (como condición de frontera) y al rango de variabilidad de los parámetros principales de entrada al modelo. La profundidad de agua (y) y el caudal de salida (Q), muestran bajo porcentaje de variabilidad respecto a los cambios de los parámetros principales.

La Figura 35-a, muestra que el porcentaje de variabilidad del ancho del espejo de agua aumenta de 0.6% a 2.3% (3.8 veces más), cuando el rango de α pasa de [159,7 a 263,1] a [54 a 157,4]. Un comportamiento similar se observa en el porcentaje de variabilidad de la velocidad del flujo pero a una tasa menor, aumentando de 0.6% a 0.7% (1.2 veces más).

La Figura 35-b, muestra que el porcentaje de variabilidad del ancho del espejo de agua (w) y la velocidad del flujo (v), aumenta de acuerdo al mayor porcentaje de la distribución de valores de α . Con respecto a w, el porcentaje aumenta de 2,3% a 4,4% (1,9 veces más) cuando el rango de α pasa de [54 a 157,4] que representa el 68,26% al rango de [2,3 a 209,1] que representa el 95,44%. La velocidad del flujo tiene un comportamiento similar al anterior, pasando de 0,7% a 1,6% (2,3 veces más).

Asimismo, se puede observar que el porcentaje de variabilidad del ancho del espejo de agua (w) y la velocidad del flujo (v), aumenta de acuerdo al mayor porcentaje de la distribución de valores de α . Con respecto a w, el porcentaje aumenta de 0,6% a 4,4% (7,3) veces más) cuando el rango de α pasa de [159,7] a [263,1] que representa el [68,26%] al rango

de [2,3 a 209,1] que representa el 95,44%. La velocidad del flujo tiene un comportamiento similar al anterior, pasando de 0,6% a 1,6% (2,7 veces más).

La Figura 36-a, muestra que el porcentaje de variabilidad de w, v, y, Q, son poco sensibles a la de variación de n. El porcentaje de variabilidad de w es en promedio 7,2% y para el caso de v, y y Q de 2,23%.

La Figura 36-b, de manera similar al caso anterior, se muestra que el porcentaje de variabilidad de w, v, y, Q, son poco sensibles a la de variación de s. El porcentaje de variabilidad de w es en promedio 7,3% y para el caso de v, y y Q de 2,23%.

La siguiente Tabla 12, resume los resultados expuestos anteriormente y muestra de manera jerarquizada, el rango de variación de cada variable de salida del modelo, según el valor de los parámetros del modelo hidrodinámico.

Tabla 12 Rango de variación de las variables de salida según valor de los parámetros de entrada del modelo hidrodinámico.

0/ 37	Valores de los parámetro							
% Variabilidad	de entrada del modelo							
+/- 7,3% en el w	$2,0 \text{ m/km} \le s \le 3,0 \text{ m/km},$							
+/- 1,5 70 en ei w	$54,0 \le \alpha \le 157,4$							
	$0.040 \text{ s/m}^{1/3} \le n \le 0.045$							
+/- 7,2% en el w	s/m ^{1/3} ,							
	$54,0 \le \alpha \le 157,4$							
	$2,3 \le \alpha \le 209,1;$							
+/- 4,4% en el w	s = 0.07 m/km; n =							
	$0.035 \text{ s/m}^{1/3}$							
	$54,0 \le \alpha \le 157,4;$							
+/- 2,3% en el w	s = 0.07 m/km; n =							
	$0.035 \text{ s/m}^{1/3}$							
	$159,7 \le \alpha \le 263,1;$							
+/- 0,6% en el w	s = 0.07 m/km; n =							
	$0.035 \text{ s/m}^{1/3}$							
	$0.040 \text{ s/m}^{1/3} \le n \le 0.045$							
+/- 2,4% en la v	s/m ^{1/3} ,							
	$54,0 \le \alpha \le 157,4$							
1/ 0.20/ on low	$2,0 \text{ m/km} \le s \le 3,0 \text{ m/km},$							
+/- 2,3% en la v	$54,0 \le \alpha \le 157,4$							
	$2,3 \le \alpha \le 209,1;$							
+/- 1,6% en la v	s = 0.07 m/km; n =							
	$0.035 \text{ s/m}^{1/3}$							
	$54,0 \le \alpha \le 157,4;$							
+/- 0,7% en la v	s = 0.07 m/km; n =							
	$0.035 \text{ s/m}^{1/3}$							
	$159,7 \le \alpha \le 263,1;$							
+/- 0,6% en la v	s = 0.07 m/km; n =							
	$0.035 \text{ s/m}^{1/3}$							
+/- 2,2% en la y	$2,0 \text{ m/km} \le s \le 3,0 \text{ m/km},$							
17- 2,270 OII 1a y	$54,0 \le \alpha \le 157,4$							
	$0.040 \text{ s/m}^{1/3} \le n \le 0.045$							
+/- 2,2% en la y	$s/m^{1/3}$,							
	$54,0 \le \alpha \le 157,4$							
+/- 2,2% en el <i>Q</i>	$2.0 \text{ m/km} \le s \le 3.0 \text{ m/km},$							
T/- 2,2 /0 cm ci Q	$54,0 \le \alpha \le 157,4$							
	$0.040 \text{ s/m}^{1/3} \le n \le 0.045$							
+/- 2,2% en el <i>Q</i>	s/m ^{1/3} ,							
	$54,0 \le \alpha \le 157,4$							

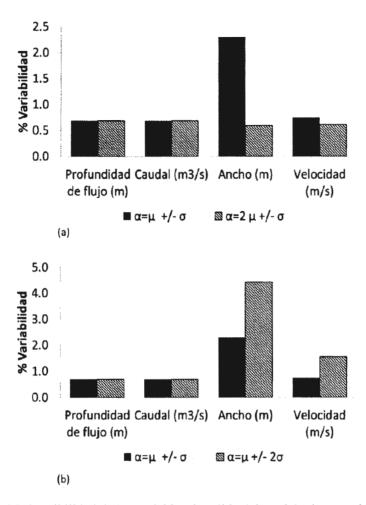


Figura 35 Sensibilidad de las variables de salida del modelo de acuerdo con la variabilidad de la geometría del cauce del río. (a) Para μ y 2μ , (b) Para+/- σ y+/- 2σ

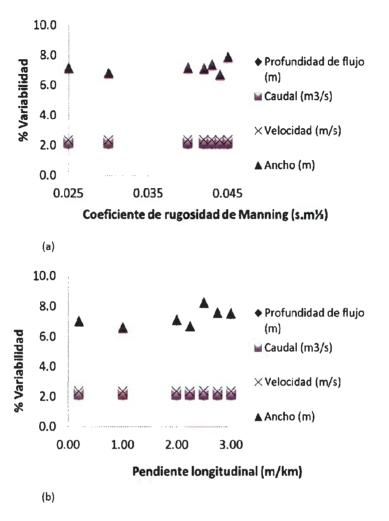


Figura 36 Sensibilidad de las variables de salida del modelo de acuerdo con: (a) Coeficiente de rugosidad de Manning y (b) Pendiente longitudinal.

4.3. CALIBRACION Y VALIDACION DEL MODELO

El propósito de realizar las simulaciones de los ríos Amazonas y Napo fue evaluar el modelo desarrollado para ríos con diferentes características hidrodinámicas y diferentes disponibilidades de información. La sección del río Napo se encuentra localizada en el piedemonte de la Cuenca Amazónica y el tramo del río Amazonas está localizado en la llanura Amazónica, ambos con diferentes regímenes de flujo y pendiente longitudinal. La Figura 37, muestra los tramos simulados en la cuenca del río Napo y en la cuenca del río Amazonas.

La Tabla 13, muestra de manera comparativa las características generales de cada caso. Cada simulación también está asociada con diferente rango de información batimétrica, caudales, profundidades de agua e información de altimetría radar.

Tabla 13 Características general de los ríos peruanos Amazonas y Napo.

Características Generales	Río Amazonas	Río Napo Mayo-Julio			
Periodo de aguas altas	Marzo-Mayo				
Periodo de aguas bajas	Agosto-Octubre	Enero-Febrero			
Caudal medio (m ³ /s)	34815	5838			
Velocidad media (m/s)	1,69	1,18			
Ancho medio(m)	1213	1312			
Pendiente longitudinal (m/km)	0,07 – 0,35	0,1 – 1,8			
Profundidad de agua media(m)	23,5(Est. Tamshiyacu)	12,77(Est. Bellavista)			
Área de contribución (km²)	726403(Est. Tamshiyacu)	100518(Est. Bellavista)			

Fuente: Base de datos del Proyecto ORE HYBAM

4.3.1. SIMULACIÓN HIDRODINÁMICA DEL RÍO AMAZONAS

La simulación del río Amazonas fue realizada para calibrar y validar el modelo hidrodinámico y se desarrolló desde la confluencia del río Napo y el río Amazonas (Estación Francisco de Orellana) hasta la estación Tabatinga (Brasil). Para propósitos del estudio, la sección transversal de la estación Francisco de Orellana se aproxima a la sección transversal de la estación Tamshiyacu y esta es denominada simulación hidrodinámica del perfil de flujo entre Tamshiyacu y Tabatinga.

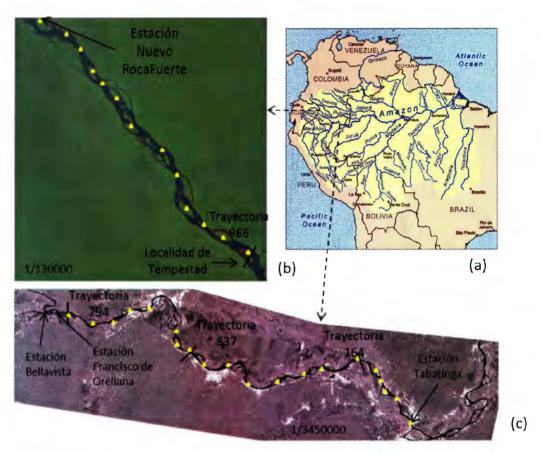


Figura 37 (a) Ubicación de los tramos simulados, (b) Río Napo: Tramo Estación Nuevo RocaFuerte – Isla Tempestad, (c) Río Amazonas: Tramo Estación Francisco de Orellana – Estación Tabatinga.

El hidrograma de los caudales de entrada al tramo simulado corresponde a la confluencia entre los ríos Amazonas y Napo, siendo entonces la suma de los caudales registrados en la estación Tamshiyacu - río Amazonas y estación Bellavista - río Napo (Figura 38).

Los caudales de ingreso registrados para el periodo 01/Septiembre/2002 al 28/Octubre/2008 son: medio multianual: 34830 m³/s, máximo 55450 m³/s y mínimo 13280 m³/s, respectivamente.

El intervalo de tiempo (Δt), calculado para la simulación hidrodinámica del río Amazonas fue de 2,7 horas, considerando un intervalo de espacio (Δx) medio de 12014,4 m, una velocidad media del flujo de 1,69 m/s y una condición de número de Courant de 2,25. En base a lo anterior, los caudales de entrada al tramo simulado cada 2,7 horas se obtienen mediante interpolación lineal a partir de los caudales medios diarios de la estación Francisco de Orellana.

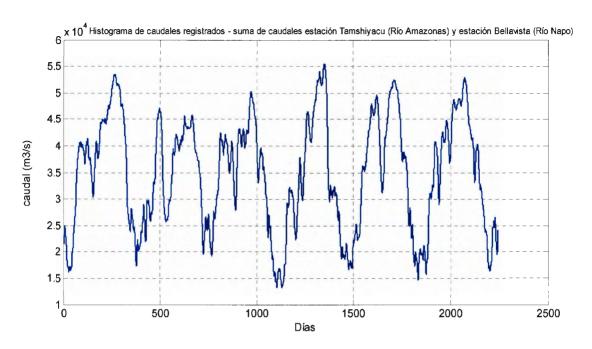


Figura 38 Histograma de los caudales de ingreso al modelo de simulación del río Amazonas.

La calibración del modelo se realiza utilizando la primera mitad de la información disponible para una periodo de 1095 días (Entre el 01 de septiembre del 2002 al 01 de septiembre del 2005). La información calibrada corresponde a la profundidad de agua y caudal registrado en la estación Tabatinga, obteniéndose un *E* de 0,95 y un *RMSE* de 0,69 m. para la profundidad de agua y un *E* de 0,95 y un *RMSE* de 2164,9 m³/s para el caudal. La Figuras 39-a y 39-b, muestran los histogramas registrados y simulados respectivamente. De manera similar, la validación del modelo se realiza para un periodo de 1151 días (Entre el 02 de septiembre del 2005 al 28 de octubre del 2008). Se obtiene un *E* de 0,97 y un *RMSE* de 0,63 m. para la profundidad de agua y un *E* de 0,95 y un *RMSE* de 2511,1 m³/s para el caudal. La Figura 40-a y 40-b, muestra los histogramas registrados y simulados respectivamente. A partir de los resultados encontrados, se puede considerar valida la respuesta global del modelo y específicamente el valor de los parámetros internos.

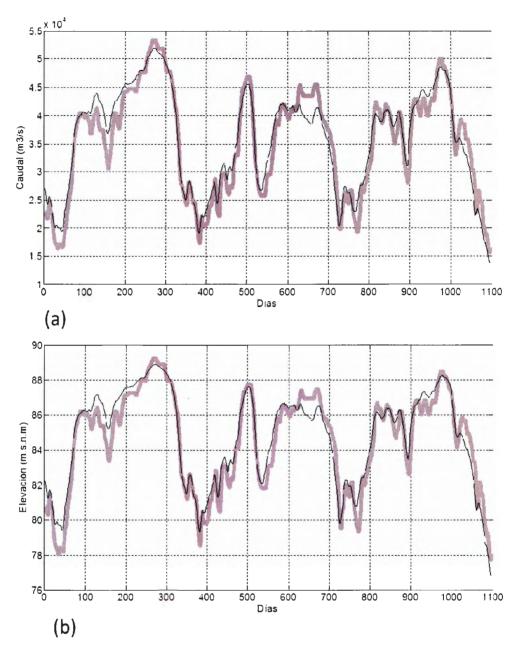


Figura 39 Para la fase de calibración. (a) Comparación de los caudales simulados (en línea gris) y registrados en la estación Tabatinga (en línea negra),(b) Comparación de las elevaciones de agua simuladas (en línea gris) y registradas en la estación Tabatinga (en línea negra).

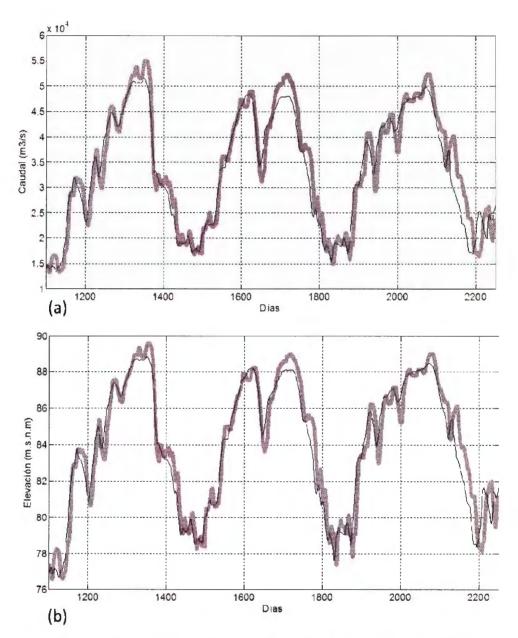


Figura 40 Para la fase de validación. (a) Comparación de los caudales simulados (en línea gris) y registrados en la estación Tabatinga (en línea negra) ,(b) Comparación de las elevaciones de agua simuladas (en línea gris) y registradas en la estación Tabatinga (en línea negra).

4.3.2. SIMULACIÓN HIDRODINÁMICA DEL RÍO NAPO

La simulación hidrodinámica del río Napo fue llevada a cabo en el tramo comprendido entre la estación Nuevo Rocafuerte y una isla localizada cerca al Centro Poblado Tempestad (Provincia de Maynas, Región Loreto, Perú).

La estación Nuevo Rocafuerte está localizada muy cerca de la frontera entre Perú y Ecuador y aproximadamente a 55,0 km aguas arriba de la isla cerca de la localidad Tempestad. Por dicha isla pasa la trayectoria del satélite radar ENVISAT Path 966, la cual proporciona información de altimetría radar en ambos lados de la isla.

A diferencia de la simulación llevada a cabo en el río Amazonas, la modelación hidrodinámica del río Napo no pudo ser calibrada, debido a que no se dispone de información de campo de caudales ni de profundidad de agua. Sin embargo, se realiza el cálculo de *E* y *RMSE*, entre las elevaciones simuladas y registradas por altimetría radar, con el objeto de estimar el error de muestreo producido por la utilización de registros de altimetría radar en lugar de registros de campo. Los datos de altimetría radar ENVISAT registrada entre Septiembre 2002 a Julio 2003, se presenta en la Tabla 4 del Anexo 2.

La simulación del río Napo fue realizada para un periodo de 365 días desde el 1 Septiembre 2002 al 1 Septiembre 2003.

El intervalo de tiempo (Δt), calculado para la simulación hidrodinámica del río Napo fue de 0,9 horas, considerando un intervalo de espacio (Δx) medio de 2685,5 m, una velocidad media del flujo de 1,18 m/s y una condición de número de Courant de 2,25. En base a lo anterior, los caudales de entrada al tramo simulado cada 0,9 horas se obtienen mediante interpolación lineal a partir de los caudales medios diarios registrados en la estación Nuevo RocaFuerte.

La siguiente Figura 31 muestra el histograma de caudales de la estación Nuevo RocaFuerte, que constituye la condición de frontera de la simulación del río Napo. Los caudales registrados medio anual, máximo y mínimo para dicho periodo son: 2093 m³/s, 4341 m³/s y 1058 m³/s, respectivamente.

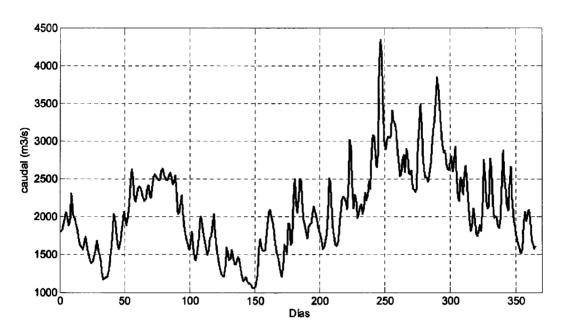


Figura 41 Histograma de los caudales de ingreso al tramo simulado del río Napo.

4.4. APLICABILIDAD DE LA ALTIMETRÍA RADAR

Según las Figuras 42a, 42b, 42c y 42d, se puede observar que los valores de altimetría satelital y_r siguen la variación temporal de los valores de la altura de agua simulada h en los lugares donde y_r fue evaluada (Tabla 11). Por lo tanto, se puede constatar que existe una tendencia lineal significante entre h versus y_r , según los coeficientes de determinación lineal calculados entre 0,75 a 0,93 (Figuras 42e, 42f, 42g y 42h).

Para el caso de la simulación del río Amazonas en Tabatinga, los valores de y_r son menos relevantes que los valores de h debido a que éstos últimos fueron validados con registros de caudales y profundidades de agua medidos en campo. Por lo tanto, para este caso, la incertidumbre de y_r es mayor que la incertidumbre de h.

Para el caso de la simulación del río Napo en Tempestad, debido a que h no puede ser validada por falta de disponibilidad de información registrada en campo, no puede rechazarse el hecho que h tenga un sesgo sistemático. No obstante, si se considera que la incertidumbre de y_r está en el orden de 40 cm en base a los estudios realizados por Santos da Silva et al. (2010), se puede demostrar que los valores de h no se encuentran sesgados como puede verse en la Figura 42a, en la cual seis valores de doce de y_r , se encuentran en el rango de incertidumbre de h, estando dispersos en todo el rango de valores de h.

Por otra parte, los coeficientes de regresión calculados varían de 0,37 a 1,16. Si el coeficiente de regresión entre h e y_r es menor que 1 significa que la amplitud de la variación de y_r es mayor que la amplitud de la variación de h, por lo tanto se demuestra una mayor sensibilidad de y_r . La sensibilidad de y_r decrece linealmente cuando se incrementa el tamaño del ancho de la sección transversal del cauce (Figura 43). Para anchos de secciones de río mayores a 3200 m, las variaciones de h e y_r son similares.

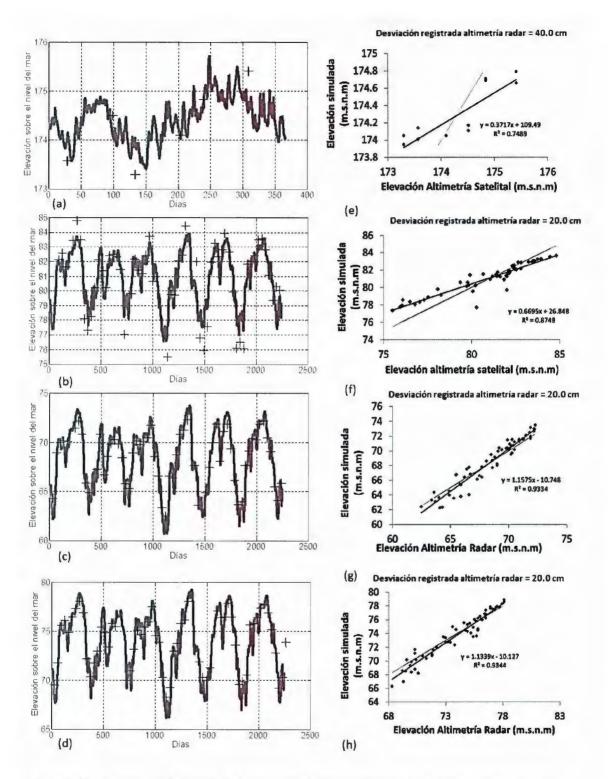


Figura 42 Histograma del nivel del agua simulado y valores de altimetría satelital. (a) Trayectoria 966 – río Napo, (b) Trayectoria 794 – río Amazonas, (c) Trayectoria 164 – río Amazonas, (d) Trayectoria 837 – río Amazonas.

Correlación lineal entre los valores de altimetría radar y los niveles de agua simulados. Comparación con línea punteada de 45° (e) Trayectoria 966, (f) Trayectoria 794, (g) Trayectoria 164, (h) Trayectoria 837.

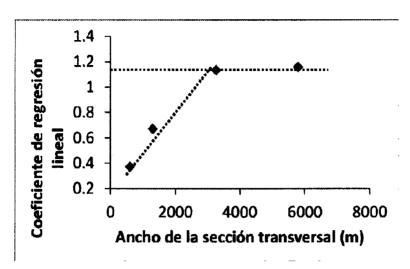


Figura 43 Coeficiente de regresión lineal entre la elevación simulada por el modelo y la elevación registrada mediante altimetría radar para diferentes niveles de ancho transversal del espejo de agua.

4.5. APLICACIÓN DEL PROGRAMA HEC-RAS

Con el objeto de comparar los resultados del modelo hidrodinámico con los resultados obtenidos mediante el programa HEC-RAS, se simuló el mismo tramo del río Napo comprendido entre la estación Nuevo Rocafuerte y la isla Tempestad.

La capacidad gráfica del HEC-RAS, permite obtener la Figura 44, la cual muestra los caudales simulados en cada progresiva del cauce principal para siete fechas de simulación arbitrarias y para el caso en el cual se produce la profundidad máxima.

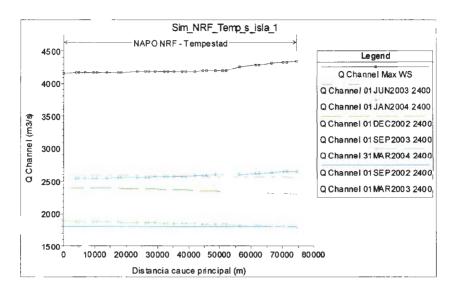


Figura 44 Caudales a lo largo del cauce principal del río Napo para siete fechas de simulación y para el caso del flujo máximo, mediante el programa HEC-RAS. La progresiva 0 se ubica en el extremo aguas abajo del tramo simulado.

Asimismo, la siguiente Figura 45, muestra el perfil de flujo para las siete fechas de simulación elegidas y el perfil de flujo de la profundidad máxima obtenida.

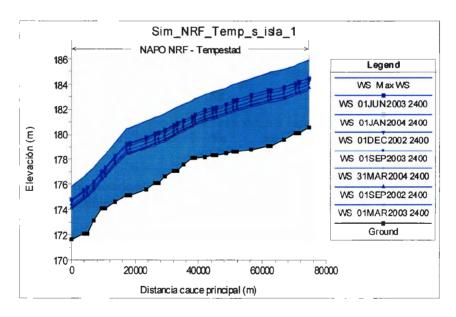


Figura 45 Perfil de flujo del tramo simulado para siete fechas de simulación y perfil máximo de flujo, mediante el programa HEC-RAS. La progresiva 0 se ubica en el extremo aguas abajo del tramo simulado.

La comparación de los resultados entre la elevación simulada por el modelo hidrodinámico y el programa HEC-RAS se presentan en la Figura 46. La figura muestra gran coincidencia entre ambas simulaciones. El grado de coincidencia se refleja en los valores de E=0,937 y RMSE=0,006 m. Asimismo en la misma figura se han incluido sólo de manera referencial las elevaciones de altimetría satelital.

Cabe mencionar que la principal diferencia entre el modelo hidrodinámico y el HEC-RAS, radica en que el modelo hidrodinámico aproxima la sección de cauce natural de un río con una sección rectangular que varía su ancho en función de la profundidad de flujo, mediante una relación empírica entre el ancho del espejo de agua y la profundidad. El HEC-RAS tiene un editor de secciones transversales que permite ingresar las coordenadas de las mismas.

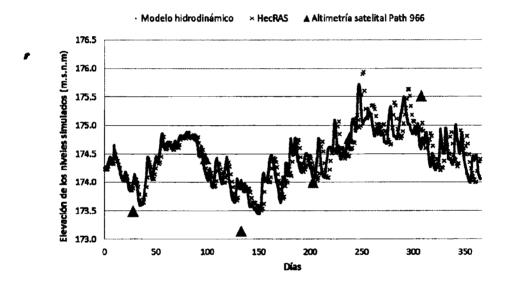


Figura 46 Simulación de la elevación del agua en la Estación Tempestad mediante el modelo hidrodinámico y el programa HEC-RAS. Comparación con la información de altimetría radar.

La correlación entre los hidrogramas de elevación de agua simulados en la estación Tempestad (Río Napo) mediante el modelo hidrodinámico y el modelo HEC-RAS, resulta ser buena como lo muestra la Figura 47, obteniéndose un r² de 0,94 y un coeficiente de correlación lineal de 0,97. Esta comparación confirma aún más que el modelo hidrodinámico resuelve correctamente las ecuaciones hidrodinámicas de flujo no permanente para el caso de los ríos Amazónicos.

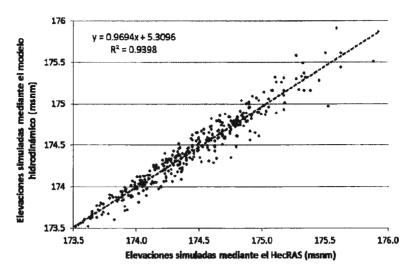


Figura 47 Correlación entre las elevaciones de agua simulada en la Estación Tempestad (río Napo) mediante el modelo hidrodinámico y el modelo HEC-RAS.

113

V. DISCUSION

La presente investigación doctoral tuvo como principal objetivo inicial el desarrollar un modelo hidrodinámico 1-D capaz de incorporar en sus ecuaciones el aspecto anastomosado de la geometría compleja que presentan los ríos Amazónicos. No obstante, debido a la incertidumbre de los parámetros del modelo por la escasa información geométrica e hidráulica que tienen éstos ríos, se planteó un segundo objetivo rela ionado con los factores de incertidumbre del modelo asociado con sus parámetros principales de entrada. El análisis de sensibilidad permitió encontrar rangos de variación esperados de las variables de salida del modelo para valores de los parámetros del modelo.

Para responder a los objetivos anteriormente señalados, se plantearon dos hipótesis. La primera hipótesis fue de disponer de un modelo hidrodinámico 1-D capaz de representar de la mejor forma las características hidrodinámicas del flujo de los ríos Amazónicos considerando las modificaciones del perfil de flujo producida por una geometría de cauces compleja. Para validar esta hipótesis, se desarrolló un algoritmo para simular el perfil de flujo y caudales para diferentes configuraciones de cauces compuestos. Dicho algoritmo fue codificado y permitió desarrollar, calibrar y validar el modelo hidrodinámico 1-D para dos tramos de ríos Amazónicos con diferentes características hidrodinámicas.

La segunda hipótesis consiste en afirmar que existe incertidumbre en los resultados de los modelos hidrodinámicos al no existir suficiente información geométrica e hidráulica de campo. Se ha constatado que el ancho del espejo de agua (w) es la variable de salida más sensible del modelo, seguida de la velocidad de flujo (v). La profundidad de agua (v) y el caudal de salida (Q), muestran menor variabilidad respecto a los cambios de los parámetros principales del modelo. Para simular esta relación, se propone el uso de un parámetro geométrico adimensional a, el cual presupone una relación lineal entre la variación del ancho de la sección transversal y la variación de la profundidad de agua. El análisis de la batimetría de 37 secciones transversales del río Napo sustenta este supuesto. Se demostró que α no sólo es una parámetro local, sino puede considerarse como un descriptor de la geometría del cauce del río Napo con una media y desviación estándar que puede ser definida de manera empírica. La incertidumbre de α es mayor que la incertidumbre de s y n, sin embargo, se debe tener en cuenta que para valores de $s \ge 2,0$ m/km y $n \ge 0,040$ $s/m^{1/3}$, se incrementa levemente la variabilidad de w. Por lo tanto, el conocimiento de la relación entre el cambio de w con respecto al cambio de y obtenidas de las secciones transversales del cauce, así como verificar que $s \ge 2,0$ m/km y $n \ge 0,040$ s/m^{1/3}, son los más importantes datos de entrada al modelo hidrodinámico 1-D. De manera particular, los

resultados muestran una relación lineal entre el grado de variabilidad de las variables de salida w y v, con la incertidumbre de la geometría del cauce representada por α . Por otra parte, Q e y, no varían significativamente con respecto a los valores de los parámetros principales del modelo. Esto sugiere que el modelo hidrodinámico tiene sólo dos grados de libertad (w, v) en vez de cuatro (w, v, Q e y), lo que podría implicar que las suposiciones del modelo, la formulación matemática o la resolución numérica no son correctas. Por lo tanto, para demostrar que el modelo es correcto, fue fundamental su calibración y posterior validación con datos hidrométricos registrados en el río Amazonas, como fue demostrado anteriormente al validar la primera hipótesis.

Si se toma en cuenta los resultados del análisis de sensibilidad de los parámetros principales de entrada de este tipo de modelo hidrodinámico 1- D, el procedimiento de validación debe ser orientado exclusivamente al ajuste de la variación del ancho transversal del espejo de agua y la velocidad del agua. Estas dos variables (w y v) muestran gran sensibilidad a los parámetros de entrada para condiciones de ríos Amazónicos donde la resistencia al flujo debida a la rugosidad comparada con las fuerzas inerciales es muy baja. En síntesis, la reducción de la incertidumbre de los valores de α y la disponibilidad de mediciones diarias de la velocidad del flujo en numerosas secciones a lo largo de los ríos Amazónicos es aún un reto pendiente, especialmente en áreas poco pobladas e inaccesibles.

Con respecto a la potencialidad de uso de la altimetría satelital, se compara los niveles de agua simulados con los datos de altimetría radar en cuatro secciones con diferentes anchos en los ríos Amazonas y Napo. El nivel de agua simulado se ajusta correctamente con las medidas por altimetría radar para secciones con anchos mayores a 3200 m. En efecto, la exactitud de la altimetría radar depende fuertemente del tamaño de la superficie de agua (Santos et al., 2010). Si el ancho de la sección es muy pequeño, la celda del radar contendrá puntos de las orillas del río y vegetación. Este estudio muestra que la tecnología de la altimetría radar tiene actualmente una limitada aplicación para la calibración y validación de los modelos hidrodinámicos.

Las principales perspectivas del estudio doctoral son las siguientes:

- Contribuir con esta investigación al Proyecto ORE-HYBAM en el estudio de las transferencias de agua y sedimento en la cuenca Amazónica, desde los Andes hasta el Océano Atlántico.
- Contribuir con mejoramiento de las condiciones de navegabilidad de los ríos
 Amazónicos, especialmente en territorio Peruano, buscando disminuir los costos
 por pérdida de tiempo en navegación, posibles daños a las naves y pérdida de
 profundidad en los canales de acceso a los puertos, lo que impide actualmente un
 tráfico de gran escala, económico y seguro.
- Incluir en el modelo hidrodinámico, la formulación matemática y las rutinas o
 procedimientos computacionales para considerar lecho móvil del fondo del cauce y
 su influencia en el perfil de flujo, así como el cálculo dela fase sólida ó transporte
 de sedimentos del río.
- Incluir el efecto hidrodinámico de las áreas de inundación en la modelación del perfil de flujo de los ríos.
- Ampliar el análisis de sensibilidad de la altimetría satelital con relación al ancho del espejo de agua de los ríos Amazónicos.
- Realizar pronósticos de la variación de los niveles hidrométricos de los ríos a corto plazo.
- Realizar simulaciones de la variación de los niveles hidrométricos de los ríos para escenarios futuros de cambio climático.
- Trabajar de manera más estrecha con los organismos estatales, particulares, locales, nacionales e internacionales, que tengan injerencia en la investigación y proyección social en el ámbito de la cuenca Amazónica. Particularmente en lo relacionado al mejoramiento de la navegabilidad mediante proyectos para implementar de señalización fluvial diurna y nocturna e incrementar y mejorar la infraestructura portuaria, etc.
- Contribuir con los Planes Estratégicos de Manejo Socio Ambiental y Políticas de Desarrollo de la cuenca Amazónica.
- Con respecto a la aplicabilidad de la altimetría radar, se pueden mencionar las siguientes perspectivas en el ámbito de la cuenca Amazónica:
 - En vista de la gran cantidad de información de altimetría radar registrada en la cuenca del rio Amazonas, durante estas dos últimas décadas, principalmente

por las misiones Envisat y Jason-2, surgen algunas perspectivas como: Recomendar que las futuras misiones de satélites estén programados para pasar por las mismas órbitas para generar series de tiempo largas y consistentes. Asimismo, será muy importante realizar estudios que permitan reconstruir series de larga duración mediante la fusión de datos procedentes de diferentes misiones, en vista que cada misión tiene un determinado algoritmo de rastreo y diferente procesamiento de los datos altimétricos con sus propios sesgos.

- Actualmente la utilización de la altimetría radar en la modelación hidrodinámica, se restringe al curso principal del rio Amazonas. Se tiene como perspectiva que esta limitación sea superada en el futuro por ejemplo por la misión SWOT (Surface Water and Ocean Topography) de la NASA / CNES, que viene cada vez aportando una amplia franja altimétrica para medir niveles de agua. La futura integración entre los modelos globales de ríos y las medidas globales del SWOT aumentarán la comprensión y la capacidad de predicción del proceso de almacenamiento y transporte del agua en el río Amazonas.
- Finalmente, una nueva alternativa del sensoramiento remoto la constituye el denominado Sistema Geocientífico de Altimetría Laser (Geoscience Laser Altimeter System GLAS), que se encuentra a bordo del satélite ICESat (Ice, Cloud and land Elevation satellite). Su utilidad ha sido recientemente demostrada en el sistema fluvial del rio Danubio y ha evidenciado que los datos de ICESat pueden ser utilizados para la calibración y validación de los grandes modelos hidráulicos de cuencas remotas como la del Amazonas donde los datos son o escasos o inexistentes.

VI. CONCLUSIONES

El 60% del área territorial del Perú, se encuentra dentro de la cuenca Amazónica, por lo tanto, el conocimiento de la hidrodinámica del río Amazonas es fundamental para tratar los temas ambientales, económicos y sociales de dicha región y aún más importante en éstos últimos años, debido a la mayor frecuencia de ocurrencia de eventos extremos. Bajo este punto de vista, la modelación hidrodinámica constituye una herramie ta importante para la toma de decisiones, planes estratégicos y políticas de desarrollo que se pudieran plantear en el ámbito de la cuenca Amazónica, principalmente los relacionados con la protección de la gente que vive cerca del cauce del río por daños a las viviendas, agricultura y el ecosistema, así como el mejoramiento de la navegabilidad de los ríos como únicas vías de comunicación que tiene la población. Sin embargo debe tenerse en cuenta que en la modelación hidrodinámica es necesario hacer un gran número de suposiciones simplificadoras e introducir parámetros y coeficientes empíricos que remplazan los detalles reales de los procesos hidrodinámicos, por lo que es muy importante la calibración y validación del modelo.

Por otro lado, también es importante conocer el grado de incertidumbre de los resultados del modelo a causa de que es un modelo unidimensional y asimismo por la incertidumbre de los parámetros de entrada del modelo; debido por un lado a la falta de información geométrica e hidráulica del río y por otro lado a la alta variabilidad espacial y temporal que tiene dicha información.

En base a lo anteriormente señalado, las conclusiones particulares para el ámbito de estudio compuesto por dos tramos de ríos con diferentes características hidrodinámicas de piedemonte y llanura Amazónica en territorio peruano son las siguientes:

- La investigación realizada para modelar la dinámica del flujo en los grandes ríos de la cuenca Amazónica, se basó en un modelo hidrodinámico unidimensional con capacidad para simular el perfil de flujo de los ríos Amazónicos, teniendo en cuenta geometrías de cauce compleja, producida principalmente por la presencia de islas en el cauce. Teniendo en cuenta el análisis de sensibilidad realizado, así como la calibración y validación del modelo tanto en los tramos del río Amazonas y del río Napo, se puede concluir que el modelo propuesto es capaz de simular la dinámica del perfil de flujo y caudales de manera satisfactoria, a pesar de las limitaciones de información hidráulica y batimétrica registrada en campo.
- Los resultados obtenidos en el análisis de sensibilidad del modelo hidrodinámico 1-D
 permiten concluir que las variables de salida del modelo que presentan mayor

sensibilidad son el ancho del espejo de agua con un 7,3% de variabilidad, seguido de la velocidad del flujo con un 2,4% de variabilidad. La profundidad de agua y el caudal son poco sensibles a la variación de los parámetros del modelo. Los parámetros del modelo que influyen de mayor a menor intensidad en sobre las variables de salida del modelo son: la pendiente longitudinal del río cuando es igual o mayor a 2,0 m/km, el coeficiente de rugosidad de Manning cuando es igual o mayor a 0,04 s/m^{1/3} y la geometría del cauce.

- La resolución simultánea de la ecuación de conservación de la masa y la ecuación de la conservación de la energía fue satisfactoria para simular las condiciones de borde interno generadas por islas dentro del cauce de los ríos Amazónicos. Ello constituye una metodología intermedia entre el asumir igual profundidad de agua en los cauces ubicados en ambos lados de la isla o utilizar la ecuación completa de cantidad de movimiento. Esta última metodología necesitaría información precisa sobre aceleraciones locales y convectivas que puedan generarse en los cauces con islas y que resultan escasas en el ámbito de la Amazonía Peruana.
- A partir de los resultados obtenidos sobre la aplicabilidad de la altimetría radar, se puede concluir que esta tecnologia constituye una nueva alternativa para monitorear la evolución de las ondas de flujo a lo largo de los ríos y por otra parte, es útil en los procesos de calibración y validación de los modelos hidrodinámicos en el ámbito de la cuenca Amazónica, especialmente para ríos con anchos de espejo de agua mayores o iguales a 3200 m.

VII. RECOMENDACIONES

- Registrar y monitorear de manera continua y georeferenciada el comportamiento de los ríos Amazónicos, con estudios minuciosos y sistemáticos de campo, apoyados con las descripciones de los habitantes de la zona que conozcan los tramo del río durante varios años y estén en capacidad de caracterizar adecuadamente el cauce y en especial, la variación del ancho del cauce con respecto a la variación de la profundidad de agua, en un mayor número de secciones transversales de los ríos de la cuenca Amazónica, para definir si α sigue una tendencia a escala continental.
- Invertir en proyectos de equipamiento para la limpieza de palizada, troncos y ramas presentes en los ríos Amazónicos.
- Si bien es cierto, el modelo hidrodinámico unidimensional desarrollado en la tesis es capaz de simular los caudales y profundidades de agua a lo largo de los tramos estudiados del río Amazonas, también es cierto que el modelo tiene una serie de suposiciones que deberán examinarse en el futuro. Por ejemplo, el hecho que sea unidimensional, no permite tener en cuenta el flujo en las llanuras de inundación durante principalmente las épocas de avenidas, pues durante estos eventos se tienen condiciones mucho mayores de rugosidad debido a la vegetación. Por lo tanto, se recomienda extender los estudios a modelos bidimensionales para lo cual será necesario mayor instrumentación con el objeto de contar con mayor información sobre la hidráulica fluvial y una topografía muy detallada para dar resultados fiables.
- Si bien la altimetría radar tiene actualmente limitaciones para utilizarse en la calibración y validación de modelos hidrodinámicos aplicados en los ríos de la Amazonía Peruana, existen buenas perspectivas en lo relacionado al desarrollo de nuevos sensores remotos y algoritmos, respectivamente. Por lo tanto, se recomienda seguir investigando la aplicabilidad de la altimetría radar en ríos navegables de la Amazonía Peruana como el Marañon, Ucayali, Putumayo, Purús, Madre de Dios, etc.

VIII. BIBLIOGRAFIA

- Abbott 1979. Computational Hydraulics Elements of the Theory of Free Surface Flows, Pitman Publishing Limited, London.
- Alsdorf D., Shin-Chan H., Bates P., Melack J. 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment 114. 2448–2456.
- 3. Álvarez Falcón Cesar. (2011). 'La necesidad de empoderar la Amazonía Peruana'.
- 4. Amein M., Fang C. 1970. Implicit flood routing in natural channels. Journal of Hydraulics Division, ASCE 96 (12), 2481–2500.
- 5. Apaestegui, J., Seyler, F., León, J., Guyot, JL., Crave, A. 2009. "Aplicación de la altimetría radar por satélite para la determinación de niveles de agua en los ríos amazónicos del Perú". Third Scientific Meeting (ORE) HYBAM in concert to Amazon large river. Tabatinga (Brasil) & Leticia (Colombia).
- 6. Barre de Saint-Venant. (1871). 'Theorie du Mouvement Non-permanent des Eaux avec Application aux Crues des Rivieres et l' Introduction des Varées dans leur Lit', Competes Rendus Hebdomadaires des Seances de l' Academie des Science, Paris, France, Vol.73, pág.148-154.
- 7. Bates, P D., De Roo, A. P. J. 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology 236 (2000) 54–77.
- 8. Barthem, R. B., Charvet-Almeida, P., Montag, L. F. A. and A. E. Lanna. 2004. Global International Waters Assessment Amazon Basin. University of Kalmar. United Nations Environment Programme.
- Beighley R. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Journal: Hydrological Processes - HYDROL PROCESS, vol. 23, no. 8, pp. 1221-1235, 2009. DOI: 10.1002/hyp.7252.
- Benavides M. 2010. Atlas de comunidades nativas y áreas naturales protegidas del nordeste de la amazonía Peruana. Lima: Instituto del Bien Común, 132 p.Español (ISBN:978-9972-2702-5-3).
- 11. Bernal et al. 2009. Amazonia y Agua. Desarrollo Sostenible en el siglo XXI. Servicio Editorial de la UNESCO. ISBN: 978-84-934779-8-1.
- 12. Birkett, C. M.1998. Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. WaterResour. Res., 34(5), 1223–1239.

- Birkett C.M., Mertes L.A.K., Dunne T., Costa M., Jasinski J. Altimetric remote sensing of the Amazon: Application of satellite radar altimetry. J. Geophys. Res. 107 (D20) (2002) 8059.
- 14. Bourrel et al. 2009. Estudio de la relación entre la pendiente de los ríos (obtenidas a partir de mediciones DGPS) y la distribución de la granulometría por tres tributarios andinos del río Amazonas: el caso de los ríos Beni (Bolivia), Napo (Ecuador-Perú) y Marañon (Perú). Tercera reunión científica del Observatorio de Investigación del Medio Ambiente sobre los ríos Amazónicos (ORE) HYBAM. Tabatinga (Brasil) & Leticia (Colombia) 20 23 de Octubre del 2009.
- 15. Burgman, M.A., 2005. Risks and decisions for conservation and environmental management, vol. xii. Cambridge University Press, Cambridge, New York, p. 488.
- Calmant S., Seyler F. 2006. Continental surface waters from satellite altimetry. C.
 R. Geoscience 338 (2006) 1113–1122.
- 17. Calmant S., Seyler F., Cretaux J. 2008. Monitoring Continental Surface Waters by Satellite Altimetry. SurvGeophys (2008) 29:247–269.
- 18. Campos, I. de O., Mercier F., Maheu C., Cochonneau G., Kosuth P., Blitzkow D., Cazenave A. 2001. Temporal variations of river basin waters from TOPEX/Poseidon satellite altimetry: Application to the Amazon basin. EarthPlanet. Sci., 333(10), 633–643.
- Canelón, D., 2003. Análisis de estabilidad numérica del esquema implícito de los cuatro puntos basado en diferencias finitas. Geoenseñanza. Vol.8-2003 (2). 105-113.
- 20. Chow, V.T., 1994. Open Channel Hydraulics. McGraw-Hill, New York. 667 p.
- 21. Chow, V.T. et al. 1995. Hidrologia Aplicada, McGraw Hill, Colombia.
- 22. Coe M.T., Costa M., Soares-Filho B. 2009. The influence of historical and potential future deforestation on the stream flow of the Amazon River Land surface processes and atmospheric feedbacks. Journal of Hydrology 369 (2009) 165–174.
- 23. Coe M.T., Costa M., Howard E. 2007. Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrological Processes. DOI 10.1002/hyp.
- Collischonn et al. 2001. Simulação hidrológica de grandes bacias. Ph.D. Thesis (in portuguese). Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. 194p.

- 25. Collischonn et al. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. J. Hydrol. 360 (1-4), 207-216.
- 26. Courant, R., Friedrichs, K.O., Lewy, H., 1928. On the partial difference equations of mathematical physics. Math. Ann., 100, p.32.
- 27. Cunge J., Holly, F.M., Jr. and Verwey, A.,1980. Practical aspects of computational river hydraulics', Pitman Publishing Limited. London. 420p.
- 28. Dumont J.F. 1992. Rasgos morfoestructurales de la llanura amazónica del Perú: Efecto de la neotectónica sobre los cambios fluviales y la delimitación de las provincias morfológicas'. Bull.Inst.fr.etudesandines, 1992, 21(3): 801-833.
- 29. Espinoza J.C. et al. 2009. Contrasting regional discharge evolutions in the Amazon basin (1974–2004). Journal of Hydrology 375 (2009) 297–311. DOI 10.1016/j.jhydrol.2009.03.004.
- 30. Federici B., Paola C., 2003. Dynamics of channel bifurcations in noncohesive sediments. WaterResour, Res., 39 (6), 1162.
- Fraizy P. 2004. Reporte de la campaña EQ 52 (PE 16) Río Napo Octubre 2004.
 Environmental Research Observatory (ORE) HYBAM.
- 32. Fraizy P. 2006. Informe de misión PE30: Amazonas 2006. Environmental Research Observatory (ORE) HYBAM Report 01-17.
- Frappart, F. et al. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment 100 (2006) 252 – 264. DOI 10.1016/j.rse.2005.10.027
- Fread et al.,1986. An LPI numerical implicit solution for unsteady mixed flow simulation. North American Water and Environmental Congress. Destructive Water. ASCE.
- 35. García, M., 2007. Modelación hidrodinámica de sistemas cauces planicies de inundación en grandes ríos aluviales de llanura. III Simposio Regional sobre hidráulica de ríos. Córdova, Argentina.
- Getirana et al. 2009. Evaluating parameter effects in a DEM 'burning' process based on land cover data. Hydrological Process Volume 23, issue 16, pp. 2316– 2325.
- 37. Getirana et al. 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrol. Process. doi:10.1002/hyp.7747.

- 38. Ghostine R.,2009. Contribution à la résolution numérique des équations de Barré de Saint-Venant bidimensionnel les par une méthode de type éléments finis discontinus: application à la simulation des écoulements au sein des carrefours dans la ville. Thése Doctorale. Université de Strasbourg.
- 39. Godunov, S. K., Ryabenki, V.S. 1964. Theory of difference Schemes. North Holland, Amsterdam.
- 40. Hall A., Schumann G., Bamber J., Bates P. 2010. Tracking water level changes of the Amazon Basin with space-borne remote. Physics and Chemistry of the Earth. PII: S1474-7065(10)00217-2, DOI: 10.1016/j.pce.2010.12.010, Reference: JPCE 1889, 2010.
- 41. Harman et al. 2008. Variability and uncertainty in reach bankfull hydraulic geometry. Journal of Hydrology (2008) 351,13–25. DOI 10.1016/j.jhydrol.2007.11.015.
- 42. Horritt M.S., Bates P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268 (2002) 87–99. DOI 10.1016/S0022-1694(02)00121-X.
- 43. Hydrologic Engineering Center's River Analysis System.,2005. HECRAS v. 3.1.3, User Manual Chapter 16.
- 44. Jacovkis P.M., 1990. Modelos numéricos hidrodinámicos en redes fluviales complejas. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. Vol. 6, 4, 543-572. Buenos Aires, Argentina.
- 45. Latrubesse, M. 2008. Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers. Centro de Investigaciones Geológicas-CIG-LATYR-CONICET, Universidad Nacional de La Plata-FCNyM, Calle 1 N 644 (1900), La Plata, Argentina.
- 46. Leon, J. G., Seyler , F., Calmant, S., Bonnet, M. P., Cauhope, M., 2006. Hydrological parameter estimation for ungauged basin based on satellite altimeter data and discharge modeling. A simulation for the Caqueta River (Amazonian Basin, Colombia). Hydrology and Earth System Sciences, D. 3, 2006b, pp. 3023-3059.
- 47. Lewis et al. 2011. The 2010 Amazon drought. Sience. 311, 554. DOI. 10.1126/science.1200807.

- 48. Lewy et al., 1967. On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, Volume: 11, Issue: 2, Page(s): 215 234.
- Liggett, J.A. and Cunge, J.A., 1975. Numerical method of solution of the unsteady flow equations. In: K.Mahmood and V. Yevjevich (Editors), Unsteady Flow in Open Channels. WaterResourcesPubl., Fort Collins, CO, pp. 89-182.
- Marengo M. 1992. Interannual variability of surface climate in the Amazon basin.
 Journal: International Journal of Climatology , vol. 12, no. 8, pp. 853-863, 1992.
 DOI: 10.1002/joc.3370120808
- 51. Meade R. et al. 1991. Backwater effects in the Amazon River Basin. Environ. Geol. Water Sci. Vol 18, No 2, 105 114.
- 52. Paiva R. et al. 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology 406 (2011) 170-181. DOI 10.1016/j.jhydrol.2011.06.007.
- 53. Phillips et al. (2009) Drought sensitivity of the Amazon rainforest. Science. 323: 13441347.
- 54. Ponce, V. M. et al., 1978. Applicability of kinematic and diffusion models. Journal of the Hydraulics Division, ASCE, 104(HY3), 353-360.
- 55. Ponce V. M. et al., 1997. Generalized conceptual modeling of dimensionless overland flow hydrographs, Journal of Hydrology, Volume 200, Issues 1–4, 15 December 1997, Pages 222–227.
- 56. Ponce V. M. et al., 1986. Diffusion wave modeling of catchment dynamics, Journal of Hydraulic Engineering, ASCE, 112(8), 716-727.
- 57. Ponce V. M. et al., 2002, Milestone of Hydrology. http://ponce.tv/milestones.html
- 58. Ribeiro et al. 2005. Hydrological modelling in Amazonia—use of the MGB-IPH model and alternative data base. In: Prediction in Ungauged Basins: Promises and Progress (ed. By M. Sivapalan, T. Wagener, S. Uhlenbrook, E. Zehe, V. Lakshmi, Xu Liang, Y. Tachikawa & P. Kumar) (Proc.. Foz do Iguaçu Symp., 2006), 246–254. IAHS Publ. 303, IAHS Press, Wallingford, UK.
- 59. Richtmyer, R.D. 1957. Difference methods for boundary value problems. Interscience. New York.
- 60. Robertson, B., Kravtsov, A., Gnedin, N., Abel, T., Rudd, D. 2009. Computational Eulerian Hydrodynamics and Galilean Invariance. Mon. Not. R. Astron. Soc. 000, 1–16 (2009).

- 61. Salaheldin T., Imran J., Chaudhry M. 2000. 'Simulación de flujos en canales abiertos con pendientes fuertes', Ingeniería del Agua. Vol. 7 Nº 4, Diciembre 2000.
- 62. Saleska S.R. et al. (2007) Amazon forests green-up during 2005 drought. Science. 318: 612. DOI: 10.1126/science.1146663.
- 63. Santos Da Silva et al. 2010. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sensing of Environment 114 (2010) 2160–2181. DOI 10.1016/j.rse.2010.04.020.
- 64. Santos da Silva et al.2006. 3D Selection of Envisat data for improved water stage times series on the rio negro and adjacent wetlands (Amazon basin). Second Space for Hydrology Workshop.
- 65. Serman & Asociados y CSI Ingenieros. 2010. Estudio Binacional de Navegabilidad del río Napo (Ecuador Perú). Banco Interamericano de Desarrollo, República del Ecuador, República del Perú.
- Servicio Nacional de Meteorología e Hidrología del Perú SENAMHI. 2011.
 Evaluación hidrológica de las cuencas Amazónicas Peruanas. Octubre 2011.
- 67. Shin, S., Sommer, M., Reich, S. Névir, P. Evaluation of three spatial discretization schemes with the Galewsky et al test. 2010. In press.
- 68. Schippa, L. 2008. Analytical treatment of source terms for complex channel geometry. Journal of Hydraulic ResearchVol. 46, No. 6 (2008), pp. 753–763 doi:10.3826/jhr.2008.3211
- 69. Stewardson, M., Rutherfurd, I., 2008. Conceptual and mathematical modelling in river restoration: Do we have unreasonable confidence? In: Darby, S., Sear, D. (Eds.), in River Restoration: Managing the Uncertainty in Restoring Physical Habitat, Wiley, 2008.
- Tapley et al. 2004. Large scale ocean circulation from de GRACE GGM01 Geoid.
 American Geophysical Union.
- 71. Trigg, M., Wilson M., Bates P., Horritt M., Alsdorf D., Forsberg B., Vega M., 2009. Amazon flood wave hydraulics. Journal of Hydrology 374 (2009) 92 105.
- 72. O'Brien G et al. 1949. 'A Study of the numerical solution of partial differential equations', American Mathematical Society.
- 73. Vorosmarty et al. 1989. Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochemical Cycles vol. 3, no. 3, 1989. DOI: 10.1029/GB003i003p00241

- 74. Weinmann, P.E. and Laurenson, E.M. 1979. Approximate Flood Routing Methods: A Review, Proc. ASCE, Journal of the Hydraulics Division, Vol. 105, No. HY12, Dec. 1979, pp 1521-1536.
- 75. Xu et al. 2011. Widespread decline in greenness of Amazonian Vegetation due to the 2010 drought. Geoph. Res. Lett. In press.

ANEXO 1

(Caudales medios diarios ríos Amazonas y Napo. Fuente: Base de Datos del Proyecto ORE HYBAM)

Tabla 1 Información de profundidades y caudales medios diarios en Estaciones Tamshiyacu y Tabatinga – Río Amazonas

					_														
Fecha	Tamshiyacu (Amazonas) + Bellavista (Napo)		Tabatinga			Tamshiyacu (Amazonas) Tabatinga + Bellavista (Napo)			Tamshiyacu (Amazonas) + Bellavista (Napo)		Tabatinga			Tamshiyacu (Amazonas) + Bellavista (Napo)		Tabatinga			
	Profundidad de ague (m)	Caudel (m3/s)	Profundidad de agua (m)	Caudal (m3/s)	Fecha	Profundidad de agua (m)	Caudel (m3/s)	Profundidad da agua (m)	Caudal (m3/s)	Fecha	Profundidad de agua (m)	Caudal (m3/s)	Profundided de agua (m)	Caudal (m3/s)	Fecha	Profundidad de agua (m)	Caudal (m3/s)	Profundidad de agua (m)	Caudal (m3/s)
1/9/02	2.74	23008	5.64	27230	1/1/03	7.46	40924	10.35	43180	1/1/04	7.92	45328	10.17	42510	1/1/05	6.55	35892	9.21	38960
2/9/02	2.64	22538	5.59	27080	2/1/03	7.49	41128	10.41	43400	2/1/04	7.98	45589	10.28	42920	2/1/05	6.5	35317	9.14	38720
3/9/02	2.57	22114	5.48	25730	3/1/03	7.51	41358	10.44	43520	3/1/04	8.03	45818	10.35	43180	3/1/05	6.46	35046	9.06	38450
4/9/02	2.53	21723	5.33	26270	4/1/03	7.53	41424	10.47	43630	4/1/04	8.15	46283	10.44	43520	4/1/05	6,44	34888	8.99	38200
5/9/02	2.55	21556	5.14	25700	5/1/03	7.52	41211	10.48	43670	5/1/04	8.2	45346	10.52	43810	5/1/05	6.44	35004	8.95	38070
6/9/02	2.64	21746	4.93	25060	6/1/03	7.49	40794	10.51	43780	6/1/04	8.26	46529	10.63	44240	6/1/05	5.49	35556	8.93	38000
7/9/02	2.8	22365	4.72	24430	7/1/03	7.43	40227	10.54	43890	7/1/04	8.3	45828	10.76	44740	7/1/05	6.59	36243	8.94	38030
8/9/02	3.05	23647	4.62	24130	8/1/03	7.33	39535	10.52	43810	8/1/04	8.32	47043	10.81	44940	8/1/05	6.66	36585	8.96	38100
9/9/02	3,15	24404	4.69	24340	9/1/03	7.21	38694	10.5	43740	9/1/04	8.33	47071	10.85	45100	9/1/05	6.71	36705	8.99	38200
10/9/02	3,27	24911	4.78	24610	10/1/03	7.11	38089	10.46	43590	10/1/04	8.33	46831	10.88	45230	10/1/05	6.78	36963	9.06	38450
11/9/02	3.2	24630	4.95	25120	11/1/03	7.04	37636	10.41	43400	11/1/04	8.34	46630	10.9	45320	11/1/05	6.9	37565	9.17	38820
12/9/02	3.08	24108	5.08	25520	12/1/03	7.01	37403	10.35	43180	12/1/04	8.32	46461	10.92	45400	12/1/05	7.05	38659	9.23	39040
13/9/02	2.94	23562	5.1	25580	13/1/03	7.03	37516	10.28	42920	13/1/04	8.32	46383	10.94	45490	13/1/05	7.19	39980	9.28	39220
14/9/02	2.83	23165	5.03	25360	14/1/03	7.02	37622	10.24	42770	14/1/04	8.32	46454	10.95	45530	14/1/05	7.3	40731	9.36	39520
15/9/02	2.72	22847	4.94	25090	15/1/03	7.04	37738	10.2	42620	15/1/04	8.33	46480	10.95	45530	15/1/05	7.36	40867	9.46	39890
16/9/02	2.6	22466	4.82	24730	16/1/03	7.06	37750	10.14	42400	16/1/04	8.32	46145	10.95	45530	16/1/05	7.37	40597	9.53	40140
17/9/02	244	21829	4.7	24370	17/1/03	7.07	37835	10.1	42250	17/1/04	8.31	45564	10.95	45530	17/1/05	7.38	40331	9.62	40480
18/9/02	2.31	21120	4.57	23980	18/1/03	7.04	37742	10.08	42180	18/1/04	8.28	44917	10.94	45490	18/1/05	7.37	40120	9.67	40660
19/9/02	2.16	20228	4,47	23680	19/1/03	6.96	37263	10.06	42100	19/1/04	8.22	44166	10.87	45190	19/1/05	7.33	39872	9.68	40700
20/9/02	1.97	19312	4.33	23310	20/1/03	6.91	36820	10.03	41990	20/1/04	8.15	43490	10.78	44820	20/1/05	7.26	39420	9.65	40590
21/9/02	1.77	18544	4.14	22800	21/1/03	6.84	36337	9.98	41810	21/1/04	8.03	42491	10.69	44470	21/1/05	7.14	38725	9.64	40550

					1					i .					ı				
22/9/02	1.66	18091	3.94	2227	22/1/03	6.77	35853	9.9	41510	22/1/04	7.85	41361	10.62	44200	22/1/05	6.95	37586	9.56	40250
23/9/02	1.59	17769	3.74	2173	23/1/03	6.64	35131	9.8	41140	23/1/04	7.47	39252	10.47	43630	23/1/05	6.72	36562	9.46	39890
24/9/02	1.48	17449	3.54	2121	24/1/03	6.59	34674	9.7	40770	24/1/04	7.21	37806	10.31	43030	24/1/05	6.47	35530	9.37	39550
25/9/02	1.42	17325	3.34	2074	25/1/03	6.53	34252	9.6	40400	25/1/04	6.93	36228	10.11	42290	25/1/05	6.2	34332	9.26	39150
26/9 /02	1.44	17261	3.2	2033	26/1/03	6.45	33878	9.49	40000	26/1/04	6.71	34864	9.92	41580	26/1/05	5.95	33198	9.09	38550
27/9/02	1,47	17126	3.14	2017	27/1/03	6.38	33506	9.38	39590	27/1/04	6.48	33629	9.68	40700	27/1/05	5.78	32312	8.88	37830
28/9/02	1.46	17072	3.15	2020	28/1/03	6.27	32835	9.23	39040	28/1/04	6.26	32572	9.35	39480	28/1/05	5.64	31555	8.66	37070
29/9/ 02	1.4	16817	3.22	2038	29/1/03	6.13	32111	9.04	38380	29/1/04	6.08	31715	8.96	38100	29/1/05	5.49	30798	8.47	36410
30/9/02	1.31	16405	3.28	2054	30/1/03	6.04	31544	8.93	38000	30/1/04	5.92	30965	8.58	36790	30/1/05	5.35	30124	8.24	35630
1/10/02	1.3	16335	3.29	2056	31/1/03	5.97	31095	8.82	37620	31/1/04	5.79	30346	8.14	35300	31/1/05	5.18	29598	8.04	34970
2/10/02	1.32	16474	3.27	2051	1/2/03	5.9	30634	8.77	37450	1/2/04	5.66	29819	7.78	34110	1/2/05	5.06	28970	7.86	34370
3/10/02	1,38	16758	3.21	2036	2/2/03	5.88	30451	8.72	57270	2/2/04	5.48	29032	7.45	33020	2/2/05	4.96	28752	7.67	33750
4/10/02	1.47	17191	3.15	2015	3/2/03	5.92	30659	8.62	36930	3/2/04	5.36	28406	7.11	31920	3/2/05	4.88	28348	7.5	33190
5/10/02	1,48	17272	3.1	2007	4/2/03	6.11	31468	8.58	36790	4/2/04	5.25	27815	6.82	30980	4/2/05	4.82	27981	7.34	32660
6/10/02	1.49	17160	3.1	2007	5/2/03	6,28	32240	8.59	36830	5/2/04	5.2	27534	6.53	30050	5/2/05	4.8	27896	7.16	32080
7/10/02	1.51	17040	3.11	2010	6/2/03	6.41	32792	8.66	37070	6/2/04	5.14	27237	6.32	29370	6/2/05	4.84	28315	7.01	31590
8/10/02	1.5	16849	3.1	2007	7/2/03	6.52	33340	8,73	37310	7/2/04	5.06	26873	6.16	28860	7/2/05	4.96	28922	6.9	31240
9/10/02	1.47	16654	3.08	2002	8/2/03	6.63	34091	8.82	37620	8/2/04	4.98	26467	6.04	28480	8/2/05	5.16	29807	6.83	31010
10/10/02	1.46	16566	3.03	1989	9/2/03	6.77	35072	8.96	38100	9/2/04	4.92	26214	5.88	27980	9/2/05	5.4	31403	6.86	31110
11/10/02	1.48	16599	2.96	1971	10/2/03	6.88	35953	9.09	38550	10/2/04	4.87	25980	5.77	27640	10/2/05	5.65	32827	7.06	31750
12/10/02	1,48	15624	2.88	1950	11/2/03	6.99	36762	9.23	39040	11/2/04	4.82	25816	5.7	27420	11/2/05	5.97	34671	73	32530
13/10/02	1.48	16616	2.84	1940	12/2/03	7.09	37492	9.35	39480	12/2/04	4.79	25710	5.66	27290	12/2/05	6.27	36357	7.66	33720
14/10/02	1.5	16636	2.85	1942	13/2/03	7.22	38364	9.46	39890	13/2/04	4.78	25702	5.59	27080	13/2/05	6.5	37717	8.04	34970
15/10/02	1.72	17399	2.9	1955	14/2/03	7.33	39102	9.56	40250	14/2/04	4.79	25720	5.55	26950	14/2/05	6.69	38995	8.37	36070
16/10/02	1.88	18258	2.95	1968	15/2/03	7.41	39796	9.58	40700	15/2/04	4,83	25867	5.5	26790	15/2/05	6.89	40939	8.64	37000
17/10/02	1.97	18902	3.08	2002	16/2/03	7.47	40337	9.79	41100	16/2/04	4.89	26050	5.48	26730	16/2/05	7.05	41362	8.87	37790
18/10/02	2.15	19690	3.29	2056	17/2/09	7.52	40754	9.9	41510	17/2/04	4.9	26099	5.48	26730	17/2/05	7.16	41773	9.05	38410
19/10/02	2.27	19987	3.6	2136	18/2/03	7.56	40911	9,99	41840	18/2/04	4.93	26207	5.48	26730	18/2/05	7.26	42196	9.24	39080
20/10/02	2.36	19992	3.92	2221	19/2/03	7.57	40805	10.05	42070	19/2/04	4.89	26080	5.53	26890	19/2/05	7.35	42517	9.36	39520
21/10/02	2.58	20430	4.16	2280	20/2/03	7.58	40566	10.11	42290	20/2/04	4.89	26092	5.64	27230	20/2/05	7,41	42840	9.49	40000

					I					ı					l				
22/10/02	2.75	20863	4,3	23230	21/2/03	7.58	40368	10.15	42440	21/2/04	4.89	26100	5.78	27670	21/2/05	7.45	43022	9.59	40370
23/10/02	3.03	21979	4.38	23440	22/2/03	7.54	39903	10.16	42470	22/2/04	4.94	26268	5,89	28010	22/2/05	7.49	43072	9.7	40770
24/10/02	3.23	23082	4,47	23580	23/2/03	7.46	39306	10.19	42590	23/2/04	5.03	26629	6.02	28420	23/2/05	7.5	43036	9.79	41100
25/10/02	3.33	23656	4.65	24220	24/2/03	7.38	38684	10.21	42660	24/2/04	5.14	27155	6.14	28800	24/2/05	7.53	43217	9,85	41320
26/10/02	3.43	23926	4.84	24790	25/2/03	7.32	38142	10.23	42730	25/2/04	5.29	27836	6.24	29110	25/2/05	7.54	43216	9.9	41510
27/10/02	3.54	24264	5.14	25700	26/2/03	7.29	37789	10.24	42770	26/2/04	5.49	28698	6.35	29470	26/2/05	7.55	43250	9.94	41660
28/10/02	3.66	24829	5.3	26180	27/2/03	7.27	37694	10.24	42770	27/2/04	5.65	29389	6.51	29980	27/2/05	7.56	43111	9.96	41730
29/10/02	3.78	25410	5.41	26510	28/2/03	7.24	37697	10.27	42880	28/2/04	5.75	29781	6.74	30720	28/2/05	7.55	42654	10	41880
30/10/02	3.84	25906	5.53	26890	1/3/03	7.24	37848	10.32	43070	29/2/04	5.76	29830	6.96	31430	1/3/05	7.52	41957	10.02	41950
31/10/02	3.88	26307	5.66	27290	2/3/03	7.27	38225	10.35	43180	1/3/04	5.72	29686	7.05	31720	2/3/05	7.49	41384	10,03	41990
1/11/02	3.95	26755	5.82	27790	3/3/03	7.31	38756	10.37	43250	2/3/04	5.7	29680	7.1	31880	3/3/05	7.47	40958	10,08	42180
2/11/02	4.12	27420	6,03	28450	4/3/03	7.4	39414	10.4	43370	3/3/04	5.67	29711	7.18	32140	4/3/05	7.41	40496	10.13	42360
3/11/02	4.3	28092	6.22	29050	5/3/03	7.51	39986	10.42	43440	4/3/04	5.62	29615	7.26	32400	5/3/05	7.36	40099	10.18	42550
4/11/02	4.39	28574	6.41	29660	6/3/03	7.61	40778	10.47	43630	5/3/04	5.6	29574	7.3	32530	6/3/05	7.3	39806	10.2	42620
5/11/02	4.57	29492	6.58	30210	7/3/03	7.69	41708	10.49	43700	6/3/04	5.61	29645	7.34	32660	7/3/05	7.26	39799	10.22	42700
6/11/02	4.85	31005	6.78	30850	8/3/03	7.79	42480	10.53	43850	7/3/04	5.66	29936	7.41	32890	8/3/05	7.24	39946	10.23	42730
7/11/02	5.2	32610	6.97	31460	9/3/03	7.86	42957	10.59	44080	8/3/04	5.74	30398	7.51	33220	9/3/05	7.27	40318	10.23	42730
8/11/02	5.51	33786	7.2	32210	10/3/03	7.91	43129	10.65	44320	9/3/04	5.86	31026	7.58	33450	10/3/05	7.35	41289	10.26	42850
9/11/02	5.74	34462	7.45	33020	11/3/03	7.96	43628	10.69	44470	10/3/04	5.99	31916	7.68	33780	11/3/05	7.44	42208	10.34	43140
10/11/02	5,92	35035	7.6	33520	12/3/03	8.03	44288	10.72	44590	11/3/04	6.09	32804	7.8	34180	12/3/05	7.51	42643	10,42	43440
11/11/02	6.09	35742	7.84	34310	13/3/03	8.08	44530	10.79	44860	12/3/04	6.19	33555	7.89	34470	13/3/05	7.57	42695	10.47	43630
12/11/02	6.23	36564	8.14	35300	14/3/03	8,13	44571	10.83	45020	13/3/04	6.24	34108	7.98	34770	14/3/05	7.6	42783	10.53	43850
13/11/02	6.36	37262	8.36	36030	15/3/03	8.16	44516	10.84	45060	14/3/04	6.29	34385	8.21	35530	15/3/05	7.64	43191	10.6	44120
14/11/02	6.42	37496	8.56	36720	16/3/03	8.17	4411	10.86	45150	15/3/04	6.37	34830	8.42	36240	16/3/05	7.65	43284	10.64	44280
15/11/02	6.55	38012	8.73	37310	17/3/03	8.17	44318	10.89	45280	16/3/04	6.44	36345	8.57	36760	17/3/05	7.63	43086	10.65	44320
16/11/02	6.61	38338	8.87	37790	18/3/03	8.17	44913	10.94	45490	17/3/04	6.52	37751	8.67	37100	18/3/05	7.58	42494	10.67	44390
17/11/02	6.65	38662	9	38240	19/3/03	8.2	44504	10,96	45580	18/3/04	6.56	38849	8.8	37550	19/3/05	7.52	41773	10.71	44550
18/11/02	6.66	39012	9,08	38510	20/3/03	8.21	44660	10.96	45580	19/3/04	6.61	39466	8.96	38100	20/3/05	7,44	41120	10.72	44590
19/11/02	6.71	39381	9.13	38690	21/3/03	8.21	44741	10.97	45620	20/3/04	6.59	39410	9.05	38410	21/3/05	7.36	40650	10.68	44430
20/11/02	6.76	39653	9.21	38960	22/3/03	8.23	44976	10.98	45660	21/3/04	6.53	38922	9.16	38790	22/3/05	7.28	40166	10.63	44240

					1					Į.					1				
21/11/02	6.83	39888	9.26	39150	23/3/03	8.25	45101	10.96	45580	22/3/04	6.48	38587	9.3	39300	23/3/05	7.22	39757	10.56	43970
22/11/02	6.89	40225	9.3	39300	24/3/03	8.25	45030	10.94	45490	23/3/04	6,43	38610	9.4	39670	24/3/05	7.2	39648	10.52	43810
23/11/02	6.92	40552	9.35	39480	25/3/03	8.25	44908	10.94	45490	24/3/04	6.39	38734	9.46	39890	25/3/05	7.22	39800	10.52	43810
24/11/02	6.92	40619	9,41	39700	26/3/03	8.25	44773	10.94	45490	25/3/04	6.38	38475	9.55	40220	26/3/05	7.26	39979	10.5	43740
25/11/02	6.89	40418	9.42	39740	27/3/03	8.25	44716	10.95	45530	26/3/04	6.38	38253	9,61	40440	27/3/05	7.29	40146	10.48	43670
26/11/02	6.87	40160	9.46	39890	28/3/03	8.25	44685	10.96	45580	27/3/04	6.46	38327	9.64	40550	28/3/05	7.33	40406	10.45	43550
27/11/02	6.85	40036	9.47	3992 0	29/3/03	8.26	44528	10.97	45620	28/3/04	6.63	38921	9.66	40620	29/3/05	7.37	40851	10.41	43400
28/11/02	6.86	40278	9.5	40030	30/3/03	8.26	44548	10.97	45620	29/3/04	6.83	39764	9.68	40700	30/3/05	7.43	41527	10.37	43260
29/11/02	6.9	40662	9.5	40030	31/3/03	8.26	44422	10.99	45710	30/3/04	7	40568	9.68	40700	31/3/05	7.49	42201	10.37	43260
30/11/02	6.91	40755	9.52	40110	1/4/03	8.26	44382	10.99	45710	31/3/04	7.13	41282	9.72	40840	1/4/05	7.54	42652	10.4	43370
1/12/02	6.89	40576	9.57	40290	2/4/03	8.26	44456	10.99	45710	1/4/04	7.22	41675	9.77	41030	2/4/05	7.58	42827	10.41	43400
2/12/02	6.82	40113	9.6	40400	3/4/03	8.26	44707	10.99	45710	2/4/04	7.3	41913	9.84	41290	3/4/05	7.62	42917	10.47	43630
3/12/02	6.76	39830	9,6	40400	4/4/03	8.29	45146	10.99	45710	3/4/04	7.36	42113	9.91	41550	4/4/05	7.66	43012	10.51	43780
4/12/02	6.7	39680	9.62	40480	5/4/03	8.29	45097	11.01	45790	4/4/04	7.4	42146	9.95	41690	5/4/05	7.58	42983	10.55	43930
5/12/02	6.69	39726	9.64	40550	6/4/03	8.29	44858	11.02	45840	5/4/04	7.42	42163	10	41880	6/4/05	7.69	42882	10.58	44040
6/12/02	6.71	39887	9.64	40550	7/4/03	8.28	44590	11.05	45970	6/4/04	7.41	42051	10.02	41950	7/4/05	7.69	42737	10.62	44200
7/12/02	6.76	40012	9.64	40550	8/4/03	8.28	44359	11.07	46050	7/4/04	7.38	41851	10.02	41950	6/4/05	7.68	42547	10.69	44470
8/12/02	6.81	40158	9.61	40440	9/4/03	8.25	44174	11.09	46140	8/4/04	7.33	41595	10.02	41950	9/4/05	7.65	42348	10,72	44590
9/12/02	6.85	40264	9.61	40440	10/4/03	8.24	44278	11.1	46180	9/4/04	7.28	41384	10.04	42030	10/4/05	7.64	42421	10.79	#430
10/12/02	6.86	40111	9.61	40440	11/4/03	8.24	44540	11.11	46220	10/4/04	7.24	41266	10.05	42070	11/4/05	7.65	42971	10,75	449
11/12/02	6.88	39774	9.6	40400	12/4/03	8.26	44868	11.12	46270	11/4/04	7.18	41025	10.08	42180	12/4/05	7.67	43818	10.74	400
12/12/02	6.9	39640	9.59	40370	13/4/03	8.27	45207	11.15	46410	12/4/04	7.1	40660	10.05	42070	13/4/05	7.68	44552	10.72	44590
13/12/02	6.93	39505	9.58	40330	14/4/03	8.29	45503	11.22	46730	13/4/04	7.03	40383	10	41880	14/4/05	7.72	45409	10.76	44740
14/12/02	6.96	39341	9.58	40330	15/4/03	8.32	45820	11.27	46960	14/4/04	6.96	40200	9.97	41770	15/4/05	7.77	46082	10.84	45060
15/12/02	6.95	39098	9.58	40330	16/4/03	8.35	46100	11.3	47100	15/4/04	6.87	40163	9.99	41840	16/4/05	7.85	46842	10.9	45320
16/12/02	6.9	38889	9.59	40370	17/4/03	8.39	46335	11.31	47150	16/4/04	6.78	40005	9.96	41730	17/4/05	7.94	47574	10,96	45580
17/12/02	6.86	38713	9,62	40480	18/4/03	8.42	45635	11.31	47150	17/4/04	6.7	39684	9.91	41550	18/4/05	8.04	48178	11.02	45840
18/12/02	6.8	38268	9.68	40700	19/4/03	8,46	47092	11.32	47190	18/4/04	6.62	39246	9.87	41400	19/4/05	8.11	48565	11.08	46090
19/12/02	6.74	37444	9.65	40590	20/4/03	8.5	47514	11.35	47330	19/4/04	6.59	39138	9.82	41210	20/4/05	8.16	48988	11.13	46310
20/12/02	6.69	36743	9.64	40550	21/4/03	8.52	47644	11.39	47520	20/4/04	6.59	39197	9.8	41140	21/4/05	8.22	49459	11.18	46550

201242	
14 15 16 16 16 16 16 16 16	1.23 46780
14 15 15 15 15 15 15 15	.27 46960
201202 7.88 3898 9.64 4590 12405 8.48 47124 11.07 4789 24404 6.66 40556 9.79 41070 124075 8.38 4983 1 201202 7.2 9577 9.34 4250 1340 24405 8.5 47149 11.07 4789 27404 6.66 40356 9.79 4100 124075 8.38 4983 1 201202 7.38 4115 9.57 4270 12405 8.5 4776 11.07 4789 27404 6.66 4031 9.5 4020 124075 8.38 4983 1 201202 7.38 4115 9.57 4270 12405 8.5 4776 11.0 4789 14.0 4789 14.0 4039 14.0 1240 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	33 47240
2012/201 7.1 30073 5.76 4090 77/473 8.5 4090 11.47 4700 24/404 6.6 41.124 5.2 41.20 11.47 4700 11.4	1.4 47560
77112/72 7.2 3977 5.36 4150 1267 5.35 4150 1267 5.35 4776 1147 4789 70/4/M 6.55 48941 5.22 4222 24/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 2415 25/4/5 8.29 4812 1 24/2/72 7.38 4214 24/2/	.45 47800
28/12/02 7.28 48/16 9.97 41770 28/4/53 8.57 47770 11.68 4790 28/4/64 6.67 40790 9.84 41200 28/4/55 8.28 48/50 1 28/12/02 7.24 48/59 11.08 4200 38/4/63 8.5 47277 11.48 4790 38/4/44 6.65 40492 9.86 41500 38/4/55 8.27 42729 9.87 412/02 7.24 48/65 11.28 4250 28/10/3 8.85 4252 11.48 4790 38/4/44 6.65 40492 9.86 41500 38/4/55 8.24 48/60 1 38/10/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60 1 38/60/55 8.24 48/60/55 8.24	.51 48090
28/12/02 7.34 4428 10.08 4280 24/10 8.65 47077 11.48 47940 25/404 6.65 44092 5.85 41850 32/475 8.37 4229 1 28/12/02 7.42 44095 10.28 4280 2/5/10 8.65 44021 11.48 47940 25/404 6.65 40291 5.85 41850 2/5/10 8.84 48891 1 28/12/02 7.42 44095 10.28 4280 2/5/10 8.71 44546 11.5 44040 25/5/04 6.54 41892 5.85 41800 2/5/10 8.28 44620 1 28/12/02 7.42 44095 10.28 4280 2/5/10 8.71 44546 11.5 44040 25/5/04 6.54 41892 3.3 41510 4/5/15 8.28 44620 1 28/10 8.77 49021 11.53 44090 4/5/10 6.54 41894 5.20 41895 5.5/10 6.54 41896 5.5/10 6.54 41896 6.5/10 6.54 41896 6.5/10	.54 48240
30/12/02 7.38 4874 12:13 4250 15/83 8.65 46252 11:48 47940 25/40/4 6.65 40291 9.85 41360 15/605 8.34 48891 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.56 48340
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac	.58 48440
35/03 8.71 48546 11.5 48540 25/04 6.52 41556 9.85 41580 34/05 8.28 44423 45/05 8.74 48763 11.51 48590 35/04 6.54 41522 9.3 41510 45/05 8.26 48447 9.56/05 8.27 48521 11.53 48340 45/04 6.89 41544 9.52 41580 56/05 8.2 44556 9.56/05 8.27 48522 11.55 48340 35/04 6.88 41767 9.56 41580 56/05 8.2 44556 9.56/05 8.27 48525 11.55 48340 35/04 6.85 41423 9.55 41580 7/5/05 8.17 48088 9.56/05 8.26 44556 9.56/05 8.26 44556 9.56/05 8.26 44556 9.56/05 8.26 44556 9.56/05 8.26 44556 9.56/05 8.26 44556 9.56/05 8.27 44556 9.56/05 9	.58 48440
45/09 8.74 45/63 11.51 46/00 38/5/04 6.54 41552 9.3 41510 4/5/05 8.26 44/407 1 5/5/09 8.77 46/01 11.53 46/30 35/5/04 6.58 41267 9.56 41/79 65/05 8.2 44/26 1 6/5/03 8.87 46/62 11.56 46/340 35/5/04 6.58 41767 9.56 41/79 65/05 8.2 44/26 1 7/5/03 8.92 50/93 11.61 46/50 45/04 6.55 44/42 9.55 41/50 7/5/05 8.17 46/26 1 9/5/03 8.96 50/55 11.68 46/940 7/5/04 6.51 44/25 9.55 41/50 7/5/05 8.13 41/26 1 9/5/03 8.97 50/08 11.74 46/240 35/04 6.8 41/27 9.55 41/50 9/5/05 8.0 47/54 1 10/5/03 9.51/63 11.83 46/90 9/5/04 6.8 41/27 9.55 41/50 10/5/05 8.0 47/54 1 11/5/03 9.02 51/5/05 11.89 46/90 11/5/04 6.57 41/11 9.56 40/50 11/5/05 7.97 44/52 1 11/5/03 9.04 51/09 11.89 46/90 11/5/04 6.57 41/11 9.56 40/50 11/5/05 7.87 44/54 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 6.57 42/11 9.56 40/50 11/5/05 7.87 44/54 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 6.57 42/11 9.56 40/50 11/5/05 7.87 44/54 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 6.57 42/11 9.56 40/50 11/5/05 7.87 44/54 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 6.57 42/11 9.56 40/50 11/5/05 7.87 44/54 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 6.57 42/11 9.56 40/50 11/5/05 7.87 44/50 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 6.57 42/11 9.56 40/50 11/5/05 7.8 43/60 1 11/5/03 9.07 51/64 11.59 50/90 11/5/04 7.23 43/18 9.54 40/59 11/5/05 7.8 43/60 1 11/5/03 9.07 51/6/03 9.07 51/6/04 7.23 43/18 9.54 40/59 11/5/05 7.8 43/60 1 11/5/03 9.08 50/67 12/01 50/590 14/5/04 7.2 44/57 9.5 46/50 19/5/05 7.3 43/60 7.4 44/5/0 1 11/5/03 9.08 50/67 12/01 50/590 14/5/04 7.3 43/60 9.8 44/60 11/5/05 7.3 44/60 1 11/5/03 9.1 53/20 12/07 50/90 14/5/04 7.3 45/50 9.8 44/60 1/5/05 7.3 44/60 1 11/5/03 9.1 53/20 12/07 50/90 14/5/04 7.3 45/50 9.8 44/60 10/5/05 7.3 44/60 1 11/5/03 9.1 53/20 12/07 50/90 14/5/04 7.3 45/50 9.8 44/60 10/5/05 7.3 44/60 1 11/5/03 9.1 53/20 12/07 50/90 14/5/04 7.3 45/50 9.8 44/60 10/5/05 7.3 44/60 1	.61 48590
\$\(\begin{array}{cccccccccccccccccccccccccccccccccccc	1.6 48540
65/03 8.87 48522 11.56 48340 5/5/04 6.88 41767 9.96 41790 \$45/05 8.2 44256 1 7/5/03 8.92 50083 11.61 48590 6/5/04 6.85 44723 9.35 41890 7/5/05 8.17 48098 1 8/5/03 8.96 50559 11.69 48940 7/5/04 6.81 41096 9.9 41510 8/5/05 8.13 47866 1 9/5/03 8.77 50808 11.74 4940 8/5/04 6.8 41057 9.85 41520 8/5/05 8.08 47564 1 10/5/03 9 51163 11.83 48990 9/5/04 6.8 41298 9.77 41090 10/5/05 8.03 47176 1 11/5/03 9.02 51296 11.87 48890 10/5/04 6.82 41544 9.7 40770 11/5/05 7.97 445752 1 11/5/03 9.04 51409 11.89 49990 11.6/14 6.87 42111 9.66 40500 12/5/05 7.87 44214 1 13/5/03 9.06 51511 11.99 50190 12/5/04 6.55 42720 9.64 40550 12/5/05 7.8 45869 1 14/5/03 9.07 51448 11.96 50940 13/5/04 7.03 43318 9.64 40550 15/5/05 7.71 45802 1 15/5/03 9.06 50553 11.98 50440 14/5/04 7.1 43842 9.64 40550 15/5/05 7.62 45340 1 15/5/03 9.07 52219 12 50540 15/5/04 7.22 40557 9.73 40860 17/5/05 7.42 44510 1 15/5/03 9.08 50567 12.01 50590 14/5/04 7.23 45527 9.73 40860 17/5/05 7.42 44510 1 15/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 12/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 13/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 13/5/05 7.42 44510 1 13/5/03 9.11 55013 12.08 50890 17/5/04 7.35 45522 9.82 41210 13/5/05 7.42 44510 1	.58 48440
7/5/03 8.92 50093 11.61 48590 6/5/04 6.85 41.422 9.95 41590 7/5/05 8.17 44098 1 8/5/03 8.96 50539 11.68 48940 7/5/04 6.81 41.096 9.9 41510 8/5/05 8.13 47866 9/5/09 8.97 50908 11.74 45140 8/5/04 6.8 41.096 9.9 41510 8/5/05 8.08 47554 1 1.05/03 9 51.163 11.83 48990 9/5/04 6.8 41.298 9.77 41.090 10/5/05 8.03 471.76 1 1.05/03 9.02 51.296 11.87 48990 10/5/04 6.87 42111 9.96 40520 11/5/05 7.97 44752 1 1.25/03 9.04 51.09 11.88 49990 11/5/04 6.87 42111 9.96 40520 11/5/05 7.87 44514 1 1.25/03 9.06 51.511 11.99 50190 12/5/04 6.95 42720 9.94 40550 11/5/05 7.87 44514 1 1.25/03 9.07 51.048 11.98 50190 12/5/04 6.95 42720 9.94 40550 11/5/05 7.71 45002 1 1.25/03 9.06 50.553 11.98 50440 13/5/04 7.03 4321.9 9.94 40550 11/5/05 7.57 45517 11/5/03 9.07 52329 12 50540 13/5/04 7.03 4321.9 9.94 40550 11/5/05 7.57 45517 11/5/03 9.08 50567 11.201 50590 13/5/04 7.32 43507 9.96 40620 11/5/05 7.57 45517 11/5/03 9.08 50567 11.201 50590 13/5/04 7.32 43507 9.96 40620 11/5/05 7.57 45517 11/5/03 9.01 52329 12 50540 13/5/04 7.32 43507 9.96 40620 11/5/05 7.57 45517 11/5/03 9.01 52329 12 50540 13/5/04 7.32 43507 9.73 40880 11/5/05 7.57 45517 11/5/03 9.01 52329 12 50540 13/5/04 7.32 43507 9.73 40880 11/5/05 7.57 45517 11/5/03 9.01 53023 11.201 50590 13/5/04 7.32 43507 9.73 40880 11/5/05 7.52 44510 11/5/	.56 48340
8/5/03 8.96 50559 11.68 48940 7/5/04 6.81 41096 9.3 41510 8/5/05 8.13 47866 9/5/09 8.97 50908 11.74 49240 8/5/04 6.8 41057 9.25 41520 9/5/05 8.08 47564 110/5/03 9 51185 11.83 49890 10/5/04 6.82 41644 9.7 40770 11/5/05 7.97 46752 11/5/03 9.04 51409 11.89 49990 11/5/04 6.87 42111 9.66 40650 11/5/05 7.87 46214 11/5/03 9.06 51611 11.99 50190 12/5/04 6.85 42720 9.64 40550 11/5/05 7.8 45869 11/5/03 9.07 512848 11.98 50940 11/5/04 7.03 43318 9.64 40550 11/5/05 7.7 45902 11/5/03 9.06 52653 11.98 50440 14/5/04 7.1 43842 9.64 40550 15/5/05 7.57 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.2 44557 9.66 40620 17/5/05 7.57 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.2 44557 9.66 40620 17/5/05 7.57 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.2 44557 9.66 40620 17/5/05 7.57 45349 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45307 9.7 40880 17/5/05 7.57 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45507 9.7 40880 17/5/05 7.5 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45507 9.7 40880 17/5/05 7.5 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45507 9.7 40880 17/5/05 7.5 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45507 9.7 40880 17/5/05 7.5 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45507 9.7 40880 17/5/05 7.5 45340 11/5/03 9.07 52229 12 50540 15/5/04 7.3 45507 9.7 40880 17/5/05 7.5 45267 11/5/03 9.0 50690 11/5/04 7.3 45507 9.7 40880 17/5/05 7.4 44538 11/5/03 9.1 53073 9.1 53073 12.08 50690 17/5/04 7.3 45507 9.8 41650 11/5/05 7.4 44538 11/5/05 7.3 44438 11/5/03 9.1 53073 9.1 53073 12.08 50690 17/5/04 7.3 45500 9.8 41650 12/5/05 7.3 44438 11/5/05 7.3 44438 11/5/05 9.1 53070 9.1 53086 11/5/04 7.3 45500 9.8 41650 12/5/05 7.3 44438 11/5/05 7.3 44438 11/5/05 9.1 53070 9.1 53070 9.1 53070 9.1 53070 9.1 53070 9.8 41650 12/5/05 7.3 44438 11/5/05 7.3 44438 11/5/05 9.1 53070 9.1 53070 9.1 53070 9.1 53070 9.0 50600 9.1 53070 9.1 53070 9.0 50600 9.1 53070 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53070 9.0 50600 9.1 53	.54 48240
9/5/03 8.97 50008 11.74 48340 8/5/04 6.8 41057 9.85 41320 3/5/05 8.08 47564 1 10/5/03 9 51163 11.83 48990 9/5/04 6.8 41298 9.77 41030 10/5/05 8.03 47176 1 11/5/03 9.02 51296 11.87 48990 10/5/04 6.82 41544 9.7 40770 11/5/05 7.97 44552 1 12/5/03 9.04 51409 11.89 48990 11/5/04 6.87 42111 9.66 40620 12/5/05 7.87 44214 1 13/5/03 9.06 51651 11.99 50190 12/5/04 6.95 42720 9.64 40850 13/5/05 7.8 48869 1 14/5/03 9.07 51848 11.96 50840 13/5/04 7.03 43318 9.64 40850 13/5/05 7.7 45602 1 15/5/03 9.06 52053 11.98 50840 14/5/04 7.1 43842 9.64 40850 13/5/05 7.62 43340 1 16/5/03 9.07 52219 12 50540 15/5/04 7.22 44557 9.66 40620 11/5/05 7.67 45349 1 17/5/03 9.08 52667 12.01 50590 18/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45349 1 18/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44638 1 19/5/03 9.11 53020 12.07 50900 18/5/04 7.31 45500 9.88 41450 19/5/05 7.32 44638 1	.52 48140
10/5/03 9 51163 11.83 49690 9/5/04 6.8 41298 9.77 41050 10/5/05 8.03 47176 11/5/03 9.02 51296 11.87 49890 10/5/04 6.82 41644 9.7 40770 11/5/05 7.87 46752 11/5/03 9.04 51409 11.89 49890 11/5/04 6.87 42111 9.66 40620 12/5/05 7.87 46214 11/5/03 9.06 51611 11.99 50190 12/5/04 6.95 42720 9.64 40550 13/5/05 7.8 45869 11/5/03 9.07 51848 11.96 50340 13/5/04 7.03 43318 9.64 40550 14/5/05 7.71 45602 11/5/03 9.06 52653 11.98 50440 14/5/04 7.1 43842 9.64 40550 15/5/05 7.52 43340 11/5/03 9.07 52329 12 50840 13/5/04 7.22 44557 9.66 40620 15/5/05 7.57 45267 17/5/03 9.08 52667 12.01 50590 18/5/04 7.32 43507 9.73 40880 17/5/05 7.49 45149 11/5/03 9.11 53023 12.03 50690 17/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 11/5/03 9.11 53023 12.03 50690 17/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 12/5/03 9.11 53020 9.1 53000 12/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 12/5/03 9.1 53000 9.1 53000 12/5/04 7.31 45500 9.88 41430 19/5/05 7.2 44638 12/5/03 9.1 53000 9.1 53000 12/5/04 7.31 45500 9.88 41430 19/5/05 7.2 44638 12/5/03 9.1 53000 9.1 53000 12/5/04 7.31 45500 9.88 41430 19/5/05 7.2 44638 12/5/03 9.1 53000 9.1 53000 12/5/04 7.31 45500 9.88 41430 19/5/05 7.2 44638 12/5/03 9.1 53000 9.1 53000 12/5/04 7.31 45500 9.88 41430 19/5/05 7.2 44638	1.5 48040
11/5/03 9.02 51296 11.87 49890 10/5/04 6.82 41644 9.7 40770 11/5/05 7.87 46752 11/5/03 9.04 51409 11.89 49990 11/5/04 6.87 42111 9.66 40820 12/5/05 7.87 46214 11/5/03 9.06 51611 11.99 50190 12/5/04 6.35 42720 9.64 40550 13/5/05 7.8 45869 11/5/03 9.07 51848 11.96 50340 13/5/04 7.03 4331.8 9.64 40550 13/5/05 7.71 45602 11/5/03 9.06 52053 11.98 50440 14/5/04 7.1 43842 9.64 40550 13/5/05 7.62 43340 11/5/03 9.07 52329 12 50340 13/5/04 7.22 44557 9.66 40620 18/5/05 7.57 45267 11/5/03 9.08 52667 12.01 50590 16/5/04 7.32 45307 9.73 40880 17/5/05 7.42 44970 11/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 11/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 11/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 11/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 11/5/03 9.11 53020 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 11/5/03 9.11 53020 12.07 50900 18/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 11/5/03	.48 47940
12/5/03 9.04 51409 11.89 49990 11/5/04 6.87 42111 9.66 40620 12/5/05 7.87 46214 113/5/03 9.06 51611 11.99 50190 12/5/04 6.95 42720 9.64 40850 13/5/05 7.8 45869 114/5/03 9.07 51848 11.96 50340 13/5/04 7.03 43318 9.64 40850 14/5/05 7.71 45602 115/5/03 9.06 52053 11.98 50440 14/5/04 7.1 43842 9.64 40850 15/5/05 7.62 45340 116/5/03 9.07 52329 12 50840 15/5/04 7.22 44557 9.66 40620 16/5/05 7.57 45267 117/5/03 9.08 52667 12.01 50590 16/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45149 118/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 119/5/03 9.11 53023 12.08 50890 17/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 120/5/03 9.1 53210 12.07 50900 18/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/03 9.1 53286 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 120/5/0	.48 47940
13/5/03 9.06 51611 11.99 50190 12/5/04 6.95 42720 9.64 40550 13/5/05 7.8 45869 1 14/5/03 9.07 51848 11.96 50340 13/5/04 7.03 43318 9.64 40550 13/5/05 7.71 45602 1 15/5/03 9.06 52053 11.98 50440 14/5/04 7.1 43842 9.64 40550 15/5/05 7.62 45340 1 16/5/03 9.07 52329 12 50540 15/5/04 7.22 44557 9.66 40620 16/5/05 7.57 45267 1 17/5/03 9.08 52667 12.01 50590 16/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45149 1 18/5/03 9.11 53023 12.08 50690 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 1 19/5/03 9.11 53210 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 1 20/5/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 1	.47 47890
14/5/03 9.07 51848 11.96 50340 13/5/04 7.03 43318 9.54 40850 14/5/05 7.71 43602 15/5/03 9.06 52053 11.98 50440 14/5/04 7.1 43842 9.54 40550 15/5/05 7.52 43340 16/5/03 9.07 52329 12 50840 15/5/04 7.22 44557 9.56 40620 16/5/05 7.57 45267 17/5/03 9.08 52667 12.01 50890 16/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45149 18/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 19/5/03 9.11 53210 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.00 12.075/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 12.075/03 9.00	.47 47890
15/5/03 9.06 52053 11.98 50440 14/5/04 7.1 43842 9.54 40550 15/5/05 7.62 45340 1 16/5/03 9.07 52329 12 50540 15/5/04 7.22 44557 9.56 40620 16/5/05 7.57 45267 17/5/03 9.08 52667 12.01 50590 16/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45149 18/5/03 9.11 53023 12.09 50690 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 19/5/03 9.11 53210 12.07 50690 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 1 19/5/03 9.1 53296 12.08 50650 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 1	.46 47840
16/5/03 9.07 52329 12 50540 15/5/04 7.22 44557 9.66 40620 16/5/05 7.57 45267 1 17/5/03 9.08 52667 12.01 50590 16/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45149 1 18/5/03 9.11 53023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 1 19/5/03 9.11 53210 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 1 20/5/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 1	.42 47660
17/5/03 9.08 52667 12.01 50590 16/5/04 7.32 45307 9.73 40880 17/5/05 7.49 45349 18/5/03 9.11 53023 12.08 50690 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 19/5/03 9.11 53210 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 12.09/5/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 13	L39 47520
18/5/03 9.11 55023 12.08 50890 17/5/04 7.35 45622 9.82 41210 18/5/05 7.42 44970 1 19/5/03 9.11 55210 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 1 20/5/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 1	L37 47430
19/5/03 9.11 55210 12.07 50900 18/5/04 7.31 45500 9.88 41430 19/5/05 7.32 44638 1 20/5/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195 1	.32 47190
20/5/03 9.1 53296 12.08 50850 19/5/04 7.27 45213 9.94 41660 20/5/05 7.2 44195	27 4 696 0
	1.23 46780
	L17 46500
21/5/03 9.1 53941 12.12 51170 20/5/04 7.22 44736 9.98 41810 21/5/05 7.08 43596	LOS 45090

1					1						ı				
	22/5/03	9.1	53408	12.13	51230	21/5/04	7.18	44365	10.02	41950	22/5/05	6.95	42847	11.02	45840
	23/5/03	9.08	53386	12.14	51280	22/5/04	7.12	43981	10.01	41920	23/5/05	6.77	41818	10.92	45400
	24/5/03	9.04	53246	12.16	51390	23/5/04	7.09	43851	9.97	41770	24/5/05	6.55	40625	10.81	44940
	25/5/03	9.02	53180	12.2	51610	24/5/04	7.04	43757	9,9	41510	25/5/05	6.34	39395	10.68	44430
	26/5/03	9.02	53396	12.21	51660	25/5/04	6.99	43648	9.83	41250	26/5/05	6.14	38240	10.51	43780
	27/5/03	9.01	53385	12.23	51770	26/5/04	6.92	43439	9.77	41030	27/5/05	5.93	37100	10.31	43030
	28/5/03	8.96	53180	12.23	51770	27/5/04	6.88	43500	9.7	40770	28/5/05	5.79	36486	10.08	42180
	29/5/03	8.9	52917	12.24	51830	28/5/04	6.83	43520	9.6	40400	29/5/05	5.62	35708	9.89	41470
	30/5/03	8.86	52704	12.25	51880	29/5/04	6.76	43390	9.54	40180	30/5/05	5.41	34698	9.68	40700
	31/5/03	8.81	52429	12.24	51830	30/5/04	6.7	43220	9.5	40030	31/5/05	5.19	33696	9.44	39810
	1/6/03	8.74	52060	12.24	51830	31/5/04	6.7	43270	9.48	39960	1/6/05	4,99	33084	9.21	38960
	2/6/03	8.69	51772	12.22	51720	1/6/04	6.72	43420	9.46	39890	2/6/05	4.88	33109	8.98	38170
	3/6/03	8.64	51515	12.2	51610	2/6/04	6.76	43600	9.43	39780	3/6/05	4.91	33475	8.74	37340
	4/6/03	8.61	51338	12.17	51450	3/6/04	6.78	43660	9.4	39670	4/6/05	5	33996	8.54	36650
	5/6/03	8.62	51380	12.15	51340	4/6/04	6.78	43670	9.39	39630	5/6/05	5.14	34601	8.4	36170
	6/6/03	8.68	51715	12.13	51230	5/6/04	6.78	43650	9.38	39590	6/6/05	5.29	35380	8.27	35720
	7/6/03	8.69	51753	12.12	51170	6/6/04	6.74	43480	9.36	39520	7/6/05	5.42	36113	8.18	35430
	8/6/03	8.7	51733	12.11	51120	7/6/04	6.71	43330	9.34	39440	8/6/05	5.5	36658	8.14	35300
	9/6/03	8.71	51784	12.08	50950	8/6/04	6.7	43330	9.32	39370	9/6/05	5.57	37223	8.1	35170
	10/6/03	8.72	51794	12.08	50950	9/6/04	6.67	43300	9.28	39220	10/6/05	5.66	37826	8.12	35230
	11/6/03	8.72	51704	12.08	50950	10/6/04	6.65	43320	9.26	39150	11/6/05	5.76	38364	8.15	35330
	12/6/03	8.7	51530	12.08	50950	11/6/04	6.64	43360	9.22	39000	12/6/05	5.82	38792	8.21	35530
	13/6/03	8.68	51408	12.06	50840	12/6/04	6.63	43370	9.19	38890	13/6/05	5,89	39200	8.25	35660
	14/6/03	8.67	51345	12.04	50740	13/6/04	6.61	43380	9.19	38890	14/6/05	5.91	39420	8.3	35830
	15/6/03	8.63	51205	12.04	50740	14/6/04	6.58	43340	9.17	38820	15/6/05	5.94	39580	8.32	35900
	16/6/03	8.61	51142	12.02	50640	15/6/04	6.56	43390	9.16	38790	16/6/05	5.83	39140	8.33	35930
	17/6/03	8.57	50989	11.98	50440	16/6/04	6.52	43350	9.13	38690	17/6/05	5.69	38600	8.31	35860
	18/6/03	8.52	50754	11.96	50340	17/6/04	6.51	43480	9.08	38510	18/6/05	5.65	38410	8.26	35690
	19/6/03	8.45	50408	11.96	50340	18/6/04	6.52	43680	9.06	38450	19/6/05	5,68	38480	8.22	35560
	20/6/03	8.38	50019	11.94	50240	19/6/04	6.56	44050	9.06	38450	20/6/05	5.73	38640	8.18	35430

1						1					1				
	21/6/03	8.3	49590	11.92	50140	20/6/04	6.64	44610	9.1	38580	21/6/05	5.74	38660	8.1	35170
	22/6/03	8.2	49000	11.89	49990	21/6/04	6.69	45020	9.1	38580	22/6/05	5.74	38610	8,04	34970
	23/6/03	8.1	48404	11.85	49840	22/6/04	6,73	45380	9.12	38650	23/6/05	5.7	38360	8	34840
	24/6/03	7.99	47869	11.82	49640	23/6/04	6.75	45620	9.2	38930	24/6/05	5.6	37712	7.98	34770
	25/6/03	7.92	47496	11.78	49440	24/6/04	6.74	45760	9.27	39190	25/6/05	5.48	36873	7.94	34640
	26/6/03	7.88	47368	11.71	49090	25/6/04	6.71	45720	9.38	39590	26/6/05	5.38	36025	7.86	34370
	27/6/03	7.88	47368	11.67	48890	26/6/04	6.69	45640	9.46	39890	27/6/05	5.34	35530	7.74	33980
	28/6/03	7,89	47450	11.65	48790	27/6/04	6.68	45520	9.54	40180	28/6/05	5.35	35424	7.61	33550
	29/6/03	7.91	47578	11.64	48740	28/6/04	6.64	45280	9.64	40550	29/6/05	5.42	35778	7.57	33420
	30/6/03	7.94	47760	11.6	48540	29/6/04	6.58	44860	9.74	40920	30/6/05	5.51	36072	7.51	33220
	1/7/03	7.95	47847	11.53	48190	30/6/04	6.52	44420	9.8	41140	1/7/05	5.53	36078	7.45	33020
	2/7/03	7.95	47844	11.49	47990	1/7/04	6.48	44010	9.84	41290	2/7/05	5,44	35524	7.44	32990
	3/7/03	7.93	47687	11.45	47800	2/7/04	6.44	43560	9.85	41320	3/7/05	5.33	34927	7.46	33060
	4/7/03	7.89	47393	11.41	47610	3/7/04	6.41	43030	9.86	41360	4/7/05	5.17	34271	7.41	32890
	5/7/03	7.83	47012	11.38	47470	4/7/04	6.38	42550	9.88	41430	5/7/05	5.04	33932	7.33	32530
	6/7/03	7.77	46590	11.34	47290	5/7/04	6.33	42040	9.88	41430	6/7/05	4.9	33624	7.22	32270
	7/7/03	7.7	46184	11.28	47010	6/7/04	6.26	41530	9.86	41360	7/7/05	4.73	33247	7.08	31820
	8/7/03	7.64	45767	11.22	46730	7/7/04	6.19	40980	9.85	41320	8/7/05	4.58	32815	6.98	31500
	9/7/03	7.57	45343	11.13	46310	8/7/04	6.11	40450	9.77	41030	9/7/05	4.41	12051	6.9	31248
	10/7/03	7.51	44996	11.01	45790	9/7/04	6.05	39930	9.66	40620	10/7/05	4.22	31040	642	
	11/7/03	7.45	44654	10.93	45450	10/7/04	6	3952 3	9.58	40330	11/7/05	4.1	30325	6.72	100
	12/7/03	7.35	44122	10.86	45150	11/7/04	5.98	39292	9.53	40140	12/7/05	4.12	30272	LSA	
	13/7/03	7.23	43456	10.81	44940	12/7/04	6	39212	9.47	39920	13/7/05	4.17	30461	6.36	250
	14/7/03	7.11	42690	10.73	44630	13/7/04	6.02	39116	9.38	39590	14/7/05	4.17	30428	6.19	20050
	15/7/03	6.99	42024	10.61	44160	14/7/04	6	38847	9.28	39220	15/7/05	4,08	29973	6.06	28550
	16/7/03	6.88	41381	10.48	43670	15/7/04	5.99	38715	9.18	38860	16/7/05	3.99	29404	5.97	28260
	17/7/03	6.8	40862	10.33	43110	16/7/04	5.99	38683	9.08	38510	17/7/05	3.82	28507	5.84	27860
	18/7/03	6.76	40598	10.16	42470	17/7/04	5,98	38685	9	38240	18/7/05	3,54	27120	5.67	27330
	19/7/03	6,68	40224	9.95	41690	18/7/04	5,95	38615	8.95	38070	19/7/05	3.26	25798	5.51	26830
	20/7/03	6.58	39654	9.74	40920	19/7/04	5.9	38373	8.9	37890	20/7/05	2.94	24452	5.3	26180

Ì										1					
	21/7/03	6.42	38828	9.6	40400	20/7/04	5.87	38176	8.86	37760	21/7/05	2.71	23260	5.03	25360
	22/7/03	6,23	37766	9.48	39960	21/7/04	5.83	38053	8.76	37410	22/7/05	2.61	22711	4.72	24430
	23/7/03	5.99	36334	9.28	39220	22/7/04	5.8	37997	8.64	37000	23/7/05	2.63	22753	4.42	23550
İ	24/7/03	5.73	34900	8.94	38030	23/7/04	5.73	37744	8.56	36720	24/7/05	2.79	23646	4.17	22880
	25/7/03	5.44	33495	8.64	37000	24/7/04	5.67	37455	8.52	36590	25/7/05	3	25136	3.98	22370
	26/7/03	5.15	32059	8.33	35930	25/7/04	5,64	37290	8.46	36380	26/7/05	3.19	26403	3.94	22270
	27/17/03	4.86	30568	7.99	34800	26/7/04	5,61	37249	8.37	36070	27/7/05	3.25	25981	4	22430
	28/7/03	4.61	29331	7.64	33650	27/7/04	5.56	37185	8.34	35970	28/7/05	3.15	25756	4,12	22750
	29/7/03	4.4	28363	7.3	32530	28/7/04	5.48	36992	8.31	35860	29/7/05	2.99	25974	4.24	23070
	30/7/03	4,27	27778	6.93	31330	29/7/04	5.4	36723	8.29	35790	30/7/05	2.87	25182	4.38	23440
	31/7/03	4.17	27373	6.64	30400	30/7/04	5.33	36387	8.24	35630	31/7/05	2.81	24698	4.38	23440
	1/8/03	4.08	27295	6.33	29400	31/7/04	5.28	36021	8.16	35360	1/8/05	2.87	24745	4.27	23150
	2/8/03	3.97	27256	6.18	28920	1/8/04	5.19	35611	8.06	35030	2/8/05	2.9	24953	4.16	22850
	3/8/03	3.82	26836	6.08	28610	2/8/04	5.12	35316	7.96	34700	3/8/05	2.82	24904	4.06	22590
	4/8/03	3.7	26373	5.97	28260	3/8/04	5.03	34954	7.83	34280	4/8/05	2.65	2433 9	3.95	22290
	5/8/03	3.62	25912	5.84	27860	4/8/04	4.97	34711	7.67	33750	5/8/05	2.43	23355	3.86	22050
	6/8/03	3.55	25670	5.67	27330	5/8/04	4.91	34458	7.55	33350	6/8/05	2.22	22452	3.78	21840
	7/8/03	3.47	25574	5.56	26980	6/8/04	4.83	34211	7.39	32830	7/8/05	2.04	21671	3.66	21520
	8/8/03	3.42	25350	5.45	26640	7/8/04	4.75	34035	7.26	32400	8/8/05	1.85	20890	3.51	21130
	9/8/03	3.36	25004	5.36	26360	8/8/04	4.63	33681	7.12	31950	9/8/05	1,7	20342	3.31	20610
	10/8/03	3.31	24609	5.27	26090	9/8/04	4,44	32914	6.97	31460	10/8/05	1.58	20075	31	20070
	11/8/03	3,24	24194	5.21	25910	10/8/04	4.24	31988	6.84	31040	11/8/05	1.5	19768	2.91	19580
	12/8/03	3.21	23956	5.12	25640	11/8/04	4.04	31058	6.7	30590	12/8/05	1.35	19122	2.67	19000
	13/8/03	3.26	24105	5.04	25400	12/8/04	3.77	29845	6.52	30010	13/8/05	1.29	18748	2.5	18600
	14/8/03	3.43	24733	4.94	25090	13/8/04	3,55	28778	6.32	29370	14/8/05	1.29	18627	2.36	18270
	15/8/03	3.66	25679	4.89	24940	14/8/04	3.38	28089	6.07	28580	15/8/05	1.35	18825	2.19	17880
	16/8/03	3.9	26866	4.95	25120	15/8/04	3.2	27383	5.8	27730	16/8/05	1.47	19219	2.06	17570
	17/8/03	4.04	27866	5.06	25460	16/8/04	2.97	26306	5.56	26980	17/8/05	1.2	18376	2	17430
	18/8/03	4.07	28258	5.27	26090	17/8/04	2.71	24913	5.37	26390	18/8/05	1.03	17724	1.98	17390
	19/8/03	4.02	28142	5.54	26920	18/8/04	2.44	23578	5.19	25850	19/8/05	0.86	17021	1.98	17390

ı					ı					ı				
20/8/03	3.92	27725	5.75	27580	19/8/04	2.2	22521	4.94	25090	20/8/05	0.67	16284	1.84	17060
21/8/03	3.77	27221	5.87	27950	20/8/04	1.98	21411	4.65	24220	21/8/05	0.56	15811	1.66	16680
22/8/03	3.65	26972	5.92	28110	21/8/04	1.82	20508	4.38	23440	22/8/05	0.49	15644	1.5	16350
23/8/03	3.55	26810	5.95	28200	22/8/04	1.7	19843	4,07	22610	23/8/05	0.34	15541	1.36	16070
24/8/03	3.47	26569	5.97	28260	23/8/04	1.67	19615	3.76	21780	24/8/05	0.31	15760	1.24	15820
25/8/03	3.38	26219	5.93	28140	24/8/04	1.8	20006	3.49	21080	25/8/05	0.4	16161	1.1	15530
26/8/03	3.28	25750	5.85	27890	25/8/04	1.97	20834	3.28	20540	26/8/05	0.36	16231	0.91	15140
27/8/03	3.18	25186	5.74	27540	26/8/04	2.14	21834	3.2	20330	27/8/05	0.29	15993	0.68	14710
28/8/03	3.06	24577	5.57	27010	27/8/04	2.21	22269	3.26	20480	28/8/05	0.2	15423	0.44	14250
29/8/03	3.01	24247	5.4	26480	28/8/04	2.27	22469	3.42	20900	29/8/05	0.11	14883	0.27	13930
30/8/03	3.03	24178	5.21	25910	29/8/04	2.37	22797	3.59	21340	30/8/05	0.02	14462	0.16	13730
31/8/03	3.14	24418	5	25270	30/8/04	2.57	23592	3.77	21810	31/8/05	0.05	14465	0.09	13590
1/9/03	3.24	24652	4.86	24850	31/8/04	2.78	24945	3.92	22210	1/9/05	0.09	14370	0.09	13590
2/9/03	3.24	24590	4.77	24580	1/9/04	2.92	25777	4.09	22670	2/9/05	0.1	14250	0.18	13760
3/9/03	3.12	24295	4.72	24430	2/9/04	3.1	26281	4.41	23520	3/9/05	0.06	14126	0.25	13900
4/9/03	2.95	23761	4.69	24340	3/9/04	3,26	26537	4.72	24430	4/9/05	-0.02	13858	0.3	13990
5/9/03	2.72	22994	4.65	24220	4/9/04	3,38	26680	4.95	25120	5/9/05	-0.1	13482	0.34	14070
6/9/03	25	22187	4.58	24010	5/9/04	3.42	26652	5.16	25760	6/9/05	-0.14	13277	0.4	14180
7/9/03	2.27	21216	4.46	23660	6/9/04	3.35	26233	5.37	26390	7/9/05	-0.07	13549	0,48	14330
8/9/03	2,06	20300	4.29	23200	7/9/04	3.21	25548	5.52	26860	8/9/05	0.12	14216	0.58	14520
9/9/03	1.89	19598	4.1	22690	8/9/04	3,06	24883	5.66	27290	9/9/05	0.26	14902	0.59	14540
10/9/03	1.71	18820	3.93	22240	9/9/04	2.94	24426	5.7	27420	10/9/05	0.36	15563	0.52	14400
11/9/03	1.57	18122	3.69	21600	10/9/04	2.86	24366	5.68	27360	11/9/05	0.41	15918	0.41	14200
12/9/03	1.46	17694	3.48	21050	11/9/04	2.81	24480	5.68	27360	12/9/05	0.44	16139	0.23	13860
13/9/03	1.38	17427	3.25	20460	12/9/04	2.78	24331	5.66	27290	13/9/05	0.49	15328	0.2	13800
14/9/03	1.44	17434	3.04	19920	13/9/04	2.77	24185	5,62	27170	14/9/05	0.56	16417	0.23	13860
15/9/03	1.8	18291	2.83	19370	14/9/04	2.81	24485	5.51	26830	15/9/05	0,64	16589	0.34	14070
16/9/03	2.32	19682	2.7	19070	15/9/04	2.93	25254	5.42	26540	16/9/05	0.73	16878	0.43	14230
17/9/03	2,69	20892	2:72	19110	16/9/04	3.11	26306	5.34	26300	17/9/05	0.75	16880	0.49	14350
18/9/03	2.86	21931	2.91	19580	17/9/04	3.22	26960	5.3	26180	18/9/05	0.74	16662	0.53	14420

1	1					1					ı				
	19/9/03	2.85	22351	3.23	20410	18/9/04	3.28	27133	5.3	26180	19/9/05	0.73	16461	0.58	14520
	20/9/03	2.73	22040	3.5	21110	19/9/04	3.29	27020	5.32	26240	20/9/05	0.81	16494	0.54	14440
	21/9/03	2.56	21314	3.75	21760	20/9/04	3.24	26783	5.32	26240	21/9/05	0.91	16686	0.51	14390
	22/9/03	2.4	20582	3,91	22190	21/9/04	3.1	26170	5.28	25120	22/9/05	0.92	16764	0.45	14270
	23/9/03	2,35	20225	3.95	22290	22/9/04	2,91	25287	5.22	25940	23/9/05	0.81	16457	0.43	14230
	24/9/03	24	20286	3.91	22190	23/9/04	2.72	24370	5.15	25730	24/9/05	0,66	15883	0.45	14270
	25/9/03	2.42	20532	3.85	22050	24/9/04	2.5	23420	5.05	25430	25/9/05	0.5	15262	0,41	14200
	26/9/03	24	20681	3.82	21950	25/9/04	2.3	22652	4.89	24940	26/9/05	0.39	14847	0,35	14080
	27/9/03	2.41	20715	3.8	21890	26/9/04	2.1	21986	4.66	24250	27/9/05	0.26	14485	0.2	13800
	28/9/03	2.44	20593	3.8	21890	27/9/04	1.99	21635	4.51	23800	28/9/05	0.15	14220	0.09	13590
	29/9/03	2.48	20658	3.8	21890	28/9/04	1.88	21330	4.42	23550	29/9/05	0.04	13908	0.03	13480
	30/9/03	2.51	20810	3.85	22030	29/9/04	1.74	20955	4.31	23250	30/9/05	-0.05	13563	0.04	13500
	1/10/03	2.56	20922	3,98	22370	30/9/04	1.62	20663	4.23	23040	1/10/05	-0.1	13326	0.12	13650
	2/10/03	2.61	20901	4.08	22640	1/10/04	1.57	20242	4.2	22960	2/10/05	-0.07	13335	0.21	13820
	3/10/03	2.7	20967	4.16	22850	2/10/04	1.57	19938	4.22	23010	3/10/05	-0.02	13450	0.32	14030
	4/10/03	2.87	21327	4.21	22990	3/10/04	1.55	19648	4.24	23070	4/10/05	0.04	13661	0.41	14200
	5/10/03	3.12	22130	4.28	23170	4/10/04	1.5	19376	4.25	23090	5/10/05	0.06	13803	0.46	14290
	6/10/03	3.32	22950	4.35	23360	5/10/04	1.46	19200	4.21	22990	6/10/05	0.07	13802	0.47	14310
	7/10/03	3,43	23632	4.46	23660	6/10/04	1.46	19360	4.18	22910	7/10/05	0.14	1995	2.49	1430
	8/10/03	3.48	23957	4.62	24130	7/10/04	1.59	19880	4.2	22960	8/10/05	0.2	MAN	8,51	
	9/10/03	3.47	24059	4.76	24550	8/10/04	1.84	20683	4.36	23390	9/10/05	0.29	14270	029	
	10/10/03	3.42	23947	4.84	24790	9/10/04	2.12	21493	4.57	23980	10/10/05	0.57	1411	968	
	11/10/03	3,36	23688	4.88	24910	10/10/04	2.37	22157	4.71	24400	11/10/05	0.48	14604	679	
	12/10/03	3.43	23908	4,9	24970	11/10/04	2.64	22956	4.9	24970	12/10/05	0.63	14957	9.88	15000
	13/10/03	3.66	24800	4.93	25060	12/10/04	2.94	24175	5.02	25330	13/10/05	0.81	15482	0.95	15230
	14/10/03	3,83	25421	4.96	25150	13/10/04	3.32	25779	5.16	25760	14/10/05	1	16248	1.02	15370
	15/10/03	3.92	25656	5.04	25400	14/10/04	3.56	26977	5.33	25270	15/10/05	1.21	17046	1.14	15610
	16/10/03	3.96	25732	5.19	25850	15/10/04	3.74	27617	5.52	25860	16/10/05	1.4	17572	1.4	16150
	17/10/03	4.07	26153	5.35	26330	16/10/04	3.81	27627	5,63	27200	17/10/05	1.48	17640	1.66	16680
ļ	18/10/03	4.22	26775	5.46	26670	17/10/04	3.81	27235	5.74	27540	18/10/05	1.49	17576	1.97	17360

1						ı					l				
	19/10/03	4.34	27436	5.5	26790	18/10/04	3.74	26685	5.8	27730	19/10/05	1.51	17575	2.2	17900
	20/10/03	4.41	28362	5.56	26980	19/10/04	3.7	26251	5.78	27670	20/10/05	1.6	17980	2.4	18370
	21/10/03	44	28928	5.66	27290	20/10/04	3.73	26269	5.77	27640	21/10/05	1.82	19000	2.59	18810
	22/10/03	4.29	28801	5.78	27670	21/10/04	3.81	26551	5.8	27730	22/10/05	2.13	20123	2.84	19400
	23/10/03	4.07	28120	5.91	28080	22/10/04	3.92	26776	5.8	27730	23/10/05	2.5	21420	3.13	20150
	24/10/03	3.76	26924	5.96	28230	23/10/04	4.06	27171	5.84	27860	24/10/05	2.91	23027	3.49	21080
	25/10/03	3.41	25515	5.9	28050	24/10/04	4.19	27488	5.89	28010	25/10/05	3.3	24905	3.87	22080
	26/10/03	3.08	24259	5.77	27640	25/10/04	4.35	27889	5.97	28260	26/10/05	3.65	26542	4.2	22960
	27/10/03	2.8	23338	5.53	28890	26/10/04	4.5	28344	6.05	28510	27/10/05	3.96	27829	4.52	23830
	28/10/03	2,57	22812	5.26	26060	27/10/04	4.65	28891	6.12	28730	28/10/05	4.2	28710	4.86	24850
	29/10/03	2.43	22585	5.05	25430	28/10/04	4.79	29376	6.22	29050	29/10/05	4.34	29094	5.16	25760
	30/10/03	2.31	22271	4.8	24670	29/10/04	4.91	29824	6.35	29470	30/10/05	4.37	29259	5.43	26570
	31/10/03	2.28	22019	4.69	24340	30/10/04	5	30182	6.5	29950	31/10/05	4.32	29182	5.64	27230
	1/11/03	2.39	22119	4.7	24370	31/10/04	4.99	30234	6,64	30400	1/11/05	4.28	29070	5.82	27790
	2/11/03	2.81	23186	4.75	24520	1/11/04	4.97	30347	6.79	30880	2/11/05	4.22	28899	5.94	28170
	3/11/03	3.38	24938	4.82	24730	2/11/04	4.98	30651	6.86	31110	3/11/05	4.15	28647	6.08	28610
	4/11/03	3.86	26778	5.07	25490	3/11/04	5	31039	6.93	31330	4/11/05	4.1	28486	6.17	28890
	5/11/03	4.15	28123	5.42	26540	4/11/04	5.01	31261	6.96	31430	5/11/05	4.14	28619	6.19	28950
	6/11/03	4.35	29078	5.81	27760	5/11/04	5.06	31,379	7.06	31750	6/11/05	4,23	29211	6.18	28920
	7/11/03	45	29699	6.12	28730	6/11/04	5.13	31606	7.23	32300	7/11/05	4.36	30117	6.22	29050
	8/11/03	4.59	29788	6.35	29470	7/11/04	5.24	32058	7,43	32960	8/11/05	4.54	31229	6.31	29340
	9/11/03	4.5	29608	6.51	29980	8/11/04	5.35	32817	7.48	33120	9/11/05	4.7	31976	6.49	29920
	10/11/03	4.58	29279	6.59	30240	9/11/04	5.43	33684	7.56	33390	10/11/05	4.78	32154	6.7	30590
	11/11/03	4.62	29308	6.64	30400	10/11/04	5.54	34422	7.76	34050	11/11/05	4.78	31920	6.88	31170
	12/11/03	4.74	29658	6.71	30630	11/11/04	5.69	35148	7.9	34510	12/11/05	4.74	31619	7.02	31630
	13/11/03	4.8	29685	6.81	30950	12/11/04	5.96	36322	8.03	34930	13/11/05	4.73	31582	7.09	31850
	14/11/03	4.75	29634	6.86	31110	13/11/04	6.32	38166	8.21	35530	14/11/05	4.72	31702	7.09	31850
	15/11/03	4.7	29749	6.93	31330	14/11/04	6.59	39712	8.45	36340	15/11/ 05	4.69	31695	7.05	31720
	16/11/03	4.63	29514	6.97	31460	15/11/04	6.79	40775	8.7	37210	16/11/05	4.66	31484	7	31560
	17/11/03	4.52	28982	6.98	31500	16/11/04	6.92	41488	8.96	38100	17/11/05	4.65	31180	6.94	31370

						,					ı				
	18/11/03	4.34	28172	6.97	31460	17/11/04	7	41972	9.08	38510	18/11/05	4.68	31144	6.86	31110
	19/11/03	4.16	27414	6.89	31210	18/11/04	7.06	42313	9.2	38930	19/11/05	4.71	31262	6.76	30790
i	20/11/03	4.01	26768	6.76	30790	19/11/04	7.11	42482	9.32	39370	20/11/05	4.73	31597	6.66	30460
	21/11/03	3.92	26360	6.61	30300	20/11/04	7.13	42296	9,4	39670	21/11/05	4.73	31746	6.61	30300
	22/11/03	3.89	26147	6.47	29850	21/11/04	7.11	41866	9.48	39960	22/11/05	4.71	31589	6.6	30270
	23/11/03	3.9	26064	6.34	29430	22/11/04	7.06	41443	9.53	40140	23/11/05	4.68	31188	6.6	30270
	24/11/03	3.94	25930	6.23	29080	23/11/04	6.98	40952	9.58	40330	24/11/05	4.65	30822	6.58	30210
	25/11/03	4.05	26112	6.12	28730	24/11/04	6.93	40738	9.56	40250	25/11/05	4.65	30570	6.52	30010
	26/11/03	4.27	25827	6.12	28730	25/11/04	6.92	40836	9.56	40250	26/11/05	4.7	30545	6,42	29690
	27/11/03	4.38	27207	6.33	29400	26/11/04	6.95	41096	9.55	40220	27/11/05	4.78	30624	6.32	29370
	28/11/03	4.46	27571	6.58	302 10	27/11/04	6.96	41067	9.49	40000	28/11/05	4.82	30577	6.24	29110
	29/11/03	4.36	27528	6.7	30590	28/11/04	6.95	40766	9.46	39890	29/11/05	4.8	30255	6.18	28920
	30/11/03	4.19	27195	6.77	30820	29/11/04	6.91	40254	9.44	39810	30/11/05	4.73	29621	6.1	28670
	1/12/03	4.21	27294	6.82	30980	30/11/04	6.89	39800	9.43	39780	1/12/05	4.6	28800	6.04	28480
	2/12/03	4.26	27226	6.81	30950	1/12/04	6.85	39517	9.38	39590	2/12/05	4.43	27909	5.94	28170
	3/12/03	4.32	27331	6.75	30750	2/12/04	6.78	39288	9.32	39370	3/12/05	4.25	27126	5.8	27730
	4/12/03	4.39	27697	6.67	30500	3/12/04	6.68	38744	9.27	39190	4/12/05	4.02	26114	5.68	27960
	5/12/03	4.58	28489	6.61	30300	4/12/04	6.63	38360	9,19	38890	5/12/05	3.85	25297	5.57	27010
	6/12/03	4.84	29478	6.59	30240	5/12/04	6.66	38653	9.18	38860	6/12/05	3.69	24503	5.47	26700
	7/12/03	5.13	30665	6.57	30170	6/12/04	6.76	39433	9.18	38860	7/12/05	3.56	23943	5.34	26300
	8/12/03	5.32	31742	6.71	30630	7/12/04	6.82	40026	9.18	38860	8/12/05	3.48	23678	5.16	25760
	9/12/03	5.49	32633	6.88	31170	8/12/04	6.86	40375	9.19	38890	9/12/05	3.45	23431	4.96	25150
	10/12/03	5.61	33038	7.07	31790	9/12/04	6.89	40602	9.23	39040	10/12/05	3.42	23095	4.76	24550
	11/12/03	5.67	33105	7.24	32330	10/12/04	6.93	40885	9.27	39190	11/12/05	3.35	22722	4.56	23950
	12/12/03	5.73	33171	7.33	32630	11/12/04	6.97	41355	9,29	39260	12/12/05	3.31	22426	4.39	23470
	13/12/03	5.76	33190	7,38	32790	12/12/04	6.98	41766	9.37	39550	13/12/05	3.36	22457	4.31	23250
	14/12/03	5.77	33079	7.47	33090	13/12/04	6.99	42139	9.45	39850	14/12/05	3,46	22728	4.29	23200
	15/12/03	5.76	32979	7.63	33620	14/12/04	6.98	42112	9.57	40290	15/12/ 05	3.61	23312	4.33	23310
	16/12/03	5.76	32892	7.84	34310	15/12/04	6.89	41540	9,65	40590	16/12/05	3.74	23778	4.4	23500
	17/12/03	5.84	33142	7.92	34570	16/12/04	6.93	41514	9.7	40770	17/12/05	3.86	24226	4.51	23800

1					- 1					- 1					
1	8/12/03	6.11	34254	7.96	34700	17/12/04	6.91	41301	9.72	40840	18/12/05	4	24966	4.78	24510
1	9/12/03	6.43	35772	8.04	34970	18/12/04	6.9	41041	9.76	40990	19/12/05	4.2	26346	5.04	25400
2	0/12/03	6.69	37206	8.22	35560	19/12/04	6.92	40872	9.77	41030	20/12/05	4.43	27789	5.29	25150
2	1/12/03	6.9	38476	8.41	36210	20/12/04	6.97	40803	9.72	40840	21/12/05	4.63	28706	5.59	27080
2	2/12/03	7.07	39532	8.74	37340	21/12/04	6.99	40671	9.7	40770	22/12/05	4.78	29193	5.86	27920
2	3/12/03	7.21	40424	8.94	38030	22/12/04	7.04	40521	9.75	40960	23/12/05	4.88	29478	6.06	28550
2	4/12/03	7.32	41278	9.18	38860	23/12/04	7.06	40330	9.78	41070	24/12/05	4.98	29957	6.16	28860
2	5/12/03	7.45	42172	9.36	39520	24/12/04	7.04	39988	9.77	41030	25/12/05	5.11	30861	6.3	29300
2	6/12/03	7.57	43202	9.55	40220	25/12/04	6.99	39414	9.74	40920	26/12/05	5.22	31724	6.55	30110
2	7/12/03	7.68	44432	9.68	40700	26/12/04	6.92	38866	9.73	40880	27/12/05	5.31	32303	6.77	30820
2	8/12/03	7.75	44996	9.77	41030	27/12/04	6.86	38311	9.69	40730	28/12/05	5.46	33124	7.06	31750
2	9/12/03	7.81	45238	9.88	41430	28/12/04	6.78	37772	9.6	40400	29/12/05	5.64	34164	7.33	32630
3	0/12/03	7.84	45197	9.96	41730	29/12/04	6.71	37231	9.5	40030	30/12/05	5.8	95017	7.52	33250
3	1/12/03	7.84	45031	10.06	42100	30/12/04	6.66	36766	9.4	39670	31/12/05	6.08	36282	7.7	33850
						31/12/04	6.61	36247	9.32	39370					

	Tamshiyacu (A + Bellavista	,	Tebetir	ħ		Tamshiyacu (A + Bellavista		Tabatin	ğı		Tamshiyacu (A + Bellavista	•	Tabatin	b		Tamshiyacu (Al + Bellavista		Tabatin	Ē3
Fecha	Profundklad da agua (m)	Caudal (m3/s)	Profundidad de agua (m)	Caudal (m3/s)	Fecha	Profundiciad de agua (m)	Caudal (m3/s)	Profundidad de agua (m)	Caudal (m3/s)	Fecha	Profundidad de ag ua (m)	Caudal (m3/s)	Profundidad de agua (m)	Caudal (m3/s)	Fecha	Profundidad da agua (m)	Caudal (m3/s)	Profundidad de agua (m)	Caudal (m3/s)
1/1/06	6.28	37245	7.84	34310	1/1/07	7.6	44966	10.12	42330	1/1/08	6.77	41521	9.18	38860	1/1/09	4.37	26341	5.36	29110
2/1/06	6.39	37777	7.96	34700	2/1/07	7.56	45523	10.18	42550	2/1/08	6.84	41925	9.32	39370	2/1/09	4.54	26998	5.55	30270
3/1/06	6.43	37784	8.05	35000	3/1/07	7.75	46274	10.26	42850	3/1/08	6.88	42277	9.46	39890	3/1/09	4.7	27788	5.75	31330
4/1/06	6.43	37368	8.18	35430	4/1/07	7.83	46959	10.34	43140	4/1/08	6.91	42442	9.6	40400	4/1/09	4.83	28776	5.94	32400
5/1/06	6.41	36758	8.28	35760	5/1/07	7.92	47563	10.42	43440	5/1/08	6.93	42551	9,72	40840	5/1/09	4,99	29991	6.24	34340
6/1/06	6.35	35977	8.33	35930	6/1/07	7.99	47738	10.52	43810	6/1/08	6.93	42218	9.81	41180	6/1/09	5.24	31608	6.6	35720
7/1/06	6.2	34824	8.32	35900	7/1/07	8.06	47824	10.62	44200	7/1/08	6.95	41945	9.91	41550	7/1/09	5.61	33685	6.93	37000
8/1/06	6.06	33762	8.28	35760	8/1/07	8,11	47602	10.72	44590	8/1/08	6.96	41640	9,98	41810	8/1/09	5.98	35696	7.26	37960
9/1/06	5.92	32675	8.15	35360	9/1/07	8.14	47479	10.8	44900	9/1/08	6.96	41244	10.02	41950	9/1/09	6.27	37427	7.85	38790
10/1/06	5.75	31682	7.99	34800	10/1/07	8.17	47234	10.86	45150	10/1/08	6.94	40708	10.04	42030	10/1/09	6.52	39056	8.27	39590
11/1/06	5.67	31200	7.84	34310	11/1/07	8.21	47080	10.9	45320	11/1/08	6.94	40650	10.04	42030	11/1/09	6.74	40796	8.64	40180
12/1/06	5.58	30774	7,65	33680	12/1/07	8.24	46900	10.94	45490	12/1/08	6.93	40796	10.01	41920	12/1/09	6.92	41995	8.92	40770
13/1/06	5.48	30426	7.42	32930	13/1/07	8.27	46721	10.96	45580	13/1/08	6.96	41073	10	41880	13/1/09	7.08	42783	9.16	41070
14/1/06	5.41	30220	7.25	32370	14/1/07	8.27	46389	11	45750	14/1/08	7	40962	9.99	41840	14/1/09	7,2	43494	9.38	41510
15/1/06	5.35	29992	7.16	32080	15/1/07	8.27	46149	11.03	45880	15/1/08	7.02	40667	10.01	41920	15/1/09	7.29	44044	9.54	41730
16/1/06	5.29	29751	7.13	31980	16/1/07	8.28	45838	11.05	46010	16/1/08	7.06	40606	10.04	42030	16/1/09	7.37	44534	9.7	41880
17/1/06	5.28	29848	7.17	32110	17/1/07	8.32	45775	11.09	46140	17/1/08	7.1	40785	10.06	42100	17/1/09	7.43	44804	9.78	42140
18/1/05	5.32	30188	7.31	32560	18/1/07	8.33	45665	11.1	46180	18/1/08	7.16	41156	10.06	42100	18/1/09	7.5	44999	9.9	42330
19/1/06	5,45	30939	7.43	32960	19/1/07	8.34	45727	11.11	46220	19/1/08	7.23	41676	10.07	42140	19/1/09	7.58	45254	9.96	42590
20/1/05	5.64	31944	7.54	33320	20/1/07	8,33	45813	11.14	46360	20/1/08	7.35	42474	10.12	42330	20/1/09	7.63	45350	10	42810
21/1/05	5.86	33080	7.67	33750	21/1/07	8,34	45958	11.2	46640	21/1/08	7.43	43247	10.18	42550	21/1/09	7.69	45466	10.07	43330
22/1/06	6.03	34034	7.79	34140	22/1/07	8.36	46071	11.25	46920	22/1/08	7.5	44070	10.23	42730	22/1/09	1.11	45743	10.12	43740
23/1/06	6.16	34915	8.06	35030	23/1/07	8.38	46157	11.32	47190	23/1/08	7.56	44520	10.27	42880	23/1/09	7.82	45747	10.19	44120

					ı					ı					ı				
24/1/06	6.29	35889	8.34	35970	24/1/07	8.4	46497	11.36	47380	24/1/08	7.63	44758	10.33	43110	24/1/09	7.29	45843	10.25	44550
25/1/06	6.39	36577	8.57	36760	25/1/07	8.43	46977	11,43	47700	25/1/08	7.66	44789	10.37	43260	25/1/09	7.98	45992	10.39	44900
26/1/06	6.51	37234	8.83	37650	26/1/07	8.45	47482	11.48	47940	26/1/08	7.7	44752	10,38	43290	26/1/09	7.97	46145	10.5	45230
27/1/06	6.63	37775	9.04	38380	27/1/07	8.49	47803	11.5	48040	27/1/08	7.72	44581	10.4	43370	27/1/09	7.98	46403	10.6	45400
28/1/06	6.74	38264	9.21	38960	28/1/07	8.51	48325	11.5	48040	28/1/08	7.72	44417	10.44	43520	28/1/09	7.99	46539	10.71	45580
29/1/06	6.86	38830	9.32	39370	29/1/07	8.54	48948	11.52	48140	29/1/08	7.7	44079	10.47	43630	29/1/09	8	46428	10.8	45790
30/1/06	6.92	39334	9.41	39700	30/1/07	8.57	49213	11.53	48190	30/1/08	7.68	43776	10.48	43670	30/1/09	8	46238	10.88	46010
31/1/06	7.01	40268	9,49	40000	31/1/07	8.59	49201	11.53	48190	31/1/08	7,65	43491	10.48	43670	31/1/09	8.02	46409	10.92	46180
1/2/06	7.1	41152	9.56	40250	1/2/07	8.59	49220	11.56	48340	1/2/08	7.62	43123	10.48	43670	1/2/09	8.04	46431	10.96	46270
2/2/06	7.22	42135	9.62	40480	2/2/07	8.62	49378	11.58	48440	2/2/08	7,58	42428	10.44	43520	2/2/09	8.03	46264	11.01	46360
3/2/06	7.37	43359	9.72	40840	3/2/07	8.64	49550	11.6	48540	3/2/08	7.53	41659	10.39	43330	3/2/09	8,01	45995	11.06	46550
4/2/06	7.5	44366	9.81	41180	4/2/07	8.65	49490	11.6	48540	4/2/08	7.47	40961	10.33	43110	4/2/09	7.99	46179	11.1	46730
5/2/06	7.6	45056	9.94	41660	S/2/07	8.66	491.44	11.59	48490	5/2/08	7.38	40330	10.29	42960	5/2/09	8	46517	11.12	47010
6/2/06	7.67	45526	10.05	42070	6/2/07	8.66	48761	11.58	48440	6/2/08	7.29	39562	10.23	42730	6/2/09	8.06	47298	11.14	47380
7/2/06	7.73	45858	10.15	42440	7/2/07	8.66	48299	11.56	48340	7/2/08	7.18	38651	10.18	42550	7/2/09	8.14	48231	11.18	47800
8/2/06	7.78	46044	10.22	42700	8/2/07	8.64	47848	11.52	48140	8/2/08	7.07	37744	10.09	42210	8/2/09	8.19	48942	11.22	47990
9/2/06	7.83	45196	10.29	42960	9/2/07	8.6	47215	115	48040	9/2/08	6,94	36974	9.98	41810	9/2/09	8.24	49325	11.28	48340
10/2/06	7.89	46400	10.36	43220	10/2/07	8.56	46520	11.46	47840	10/2/08	6.86	36771	9.89	41470	10/2/09	8.28	49470	11.36	48590
11/2/06	7.94	46477	10.47	43630	11/2/07	8.5	45810	11.42	47660	11/2/08	6.83	37065	9.82	41210	11/2/09	8.32	49507	11.45	48840
12/2/06	7.98	46484	10.55	43930	12/2/07	8.43	45101	11.4	47560	12/2/08	6,86	37282	9.76	40990	12/2/09	8.32	49619	11.49	49090
13/2/06	8.01	46482	10.62	44200	13/2/07	8.36	4441	11.36	47380	13/2/08	6.9	37299	9.73	40880	13/2/09	8.34	49946	11,56	49340
14/2/06	8.02	46256	10.66	44360	14/2/07	8.22	43487	11.29	47050	14/2/08	6.95	37504	9.76	40990	14/2/09	8.4	50573	11.61	49640
15/2/06	8.04	45781	10.7	44510	15/2/07	8.12	42695	11.2	46640	15/2/08	7.01	38041	9.77	41030	15/2/09	8.45	51045	11.66	49990
16/2/06	8.05	45130	10.76	44740	16/2/07	8.01	41880	11.12	46270	16/2/08	7.08	38955	9.78	41070	15/2/09	8.5	51210	11.71	50140
17/2/06	8.05	44501	10.77	44780	17/2/07	7.86	40958	11.01	45790	17/2/08	7.19	39904	9.8	41140	17/2/09	8.52	51237	11.76	50240
18/2/06	8.04	43833	10.74	44670	18/2/07	7.7	39933	10.88	45230	18/2/08	7.36	40994	9.86	41360	18/2/09	8.55	51404	11.82	50340
19/2/06	8.01	43288	10.73	44630	19/2/07	7.5	38785	10.74	44570	19/2/08	7.51	42341	9.94	41660	19/2/09	8.59	51661	11.89	50740
20/2/06	7.97	42903	10.7	44510	20/2/07	7.23	37424	10.58	44040	20/2/08	7.64	43469	9.99	41840	20/2/09	8.51	51814	11.92	50840
21/2/06	7.92	42847	10.67	44390	21/2/07	7.08	36594	10.4	43370	21/2/08	7.76	44643	10.1	42250	21/2/09	8.62	51920	11.94	50950
22/2/06	7.86	42257	10.64	44280	22/2/07	6.92	35747	10.18	42550	22/2/08	7.86	45046	10.21	42660	22/2/09	8.64	52050	11.96	\$1060

					1					ı					ı				
23/2/06	7.82	41723	10.6	44120	23/2/07	6.74	34870	9.92	41580	23/2/08	7.97	45468	10.35	43180	23/2/09	8.66	52057	12.04	51390
24/2/06	3 7.78	41234	10.53	43850	24/2/07	6.52	33904	9.63	40510	24/2/08	8,03	45929	10.49	43700	24/2/09	8.66	51891	12.06	51610
25/2/06	7.74	41002	10.48	43670	25/2/07	6.29	32899	9.37	39550	25/2/08	8.1	46531	10.57	44010	25/2/09	8.66	51746	12.08	51770
26/2/06	7.71	40992	10,41	43400	26/2/07	6.15	32270	9.08	38510	26/2/08	8.16	46969	10.66	44360	26/2/09	8,69	51726	12.1	52050
27/2/06	i 7.67	41098	10.36	43220	27/2/07	6.01	31846	8.79	37520	27/2/08	8.23	47391	10.72	44590	27/2/09	8.7	52680	12.16	52160
28/2/06	7.64	40985	10.3	42990	28/2/07	5.88	31445	8.48	36450	28/2/08	8.31	48036	10.81	44940	28/2/09	8.71	51396	12.2	52330
1/3/06	7.62	40680	10.22	42700	1/3/07	5.81	31193	8.21	35530	29/2/08	8.35	48453	10.88	45230	1/3/09	8.75	51720	12.23	52510
2/3/06	7.59	40627	10.17	42510	2/3/07	5.8	31214	7.99	34800	1/3/08	8.37	48510	10.94	45490	2/3/09	8.76	51735	12.28	52630
3/3/06	7.59	40750	10.13	42360	3/3/07	5.84	31524	7.85	34340	2/3/08	8.39	48557	10.98	45660	3/3/09	8.76	51532	12.3	52630
4/3/06	7.62	41504	10.09	42210	4/3/07	5.9	31930	7.81	34210	3/3/08	8.42	48628	11.05	45970	4/3/09	8.77	51461	12.33	52510
5/3/06	7.65	42045	10,05	42070	5/3/07	5.94	32321	7.84	34310	4/3/08	8.44	48533	11.1	46180	5/3/09	8.79	51638	12.36	52930
6/3/06	7.72	42501	10.03	41990	6/3/07	5.93	32824	7.92	34570	5/3/08	8.45	48280	11.14	46960	6/3/09	8.81	51958	12.38	53110
7/3/06	7.78	43539	10.04	42030	7/3/07	5,93	33194	8.04	34970	6/3/08	8.48	48116	11.16	46450	7/3/09	8.85	52398	12.38	53050
8/3/06	7.86	44483	10.07	42140	8/3/07	5.96	33508	8.13	35260	7/3/08	8.47	47759	11.17	46500	8/3/09	8.88	52553	12.36	52990
9/3/06	7.91	44828	10.12	42330	9/3/07	6.01	34047	8.22	35560	8/3/08	8.48	47460	11.17	46500	9/3/09	8.9	52310	12.43	52930
10/3/06	3 7.98	45126	10.2	42620	10/3/07	6.14	94832	8.28	35760	9/3/08	8.48	47213	11.23	45780	10/3/09	8.91	52237	12.46	52870
11/3/00	8.06	45620	10.28	429 20	11/3/07	6.37	36336	8.39	36140	10/3/08	8.5	47135	11.23	45780	11/3/09	8.94	52028	12.45	52930
12/3/06	8.11	46017	10.38	43290	12/3/07	6.64	38072	8.54	36650	11/3/08	8.49	46984	11.23	45780	12/3/09	8.93	51766	12.44	52930
13/3/06	8.15	46214	10.49	43700	13/3/07	6.87	39349	8.74	37340	12/3/08	8.5	46993	11.23	46780	13/3/09	8.92	\$1474	12.43	52000
14/3/06	8.2	46567	10.57	44010	14/3/07	7.09	40147	9.02	38310	13/3/08	8.51	46922	11.24	45820	14/3/09	8.93	51383	12.42	52870
15/3/06	8.26	46960	10.63	44240	15/3/07	7.12	40842	9,23	3904 0	14/3/08	8.5	45772	11.26	46920	15/3/09	8.95	51482	12.43	52870
16/3/06	8.31	47260	10.69	44470	16/3/07	7.21	41491	9.42	39740	15/3/08	8.51	46802	11.31	47150	16/3/09	8.97	51390	12.43	52870
17/3/06	8.36	47439	10.78	44820	17/3/07	7.24	41521	9.59	40370	16/3/08	8.52	46954	11.33	47240	17/3/09	8.99	51357	12.43	52870
18/3/06	8.39	47539	10.83	45020	18/3/07	7.24	41356	9.7	40770	17/3/08	8.5	47079	11.33	47240	18/3/09	9.02	51366	12.42	52870
19/3/00	5 B.43	47637	10.88	45230	19/3/07	7.29	41483	9.8	41140	18/3/08	8.52	47353	11.34	47290	19/3/09	9.05	51834	12.42	52870
20/3/08	8.48	47874	10.92	45400	20/3/07	7.94	41746	9.89	41470	19/3/08	8.54	47670	11.35	47330	20/3/09	9.07	52411	12,42	52990
21/3/06	8.52	48352	10.97	45620	21/3/07	7.39	41933	9.97	41770	20/3/08	8.56	47861	11.38	47470	21/3/09	9.08	52716	12.42	53050
22/3/06	8.59	48672	11.04	45920	22/3/07	7.43	42080	10.02	41950	21/3/08	8.58	47871	11.39	47520	22/3/09	9.11	52921	12,42	53050
23/3/06	8.63	48655	11.08	46090	23/3/07	7.49	42356	10.06	42100	22/3/08	8,6	47879	11.39	47520	23/3/09	9.13	53060	12.42	53050
24/3/06	8.65	48579	11.14	46360	24/3/07	7.58	42947	10.1	42250	23/3/08	8.62	47895	11.39	47520	24/3/09	9.13	53058	12.44	52990

					I					ſ					I				
25/3/06	8.69	48663	11.2	46640	25/3/07	7.66	43493	10.12	42330	24/3/08	8.66	48151	11.4	47560	25/3/09	9.15	53053	12.45	52930
26/3/06	8.76	49203	11.3	47100	26/3/07	7.71	43875	10.16	42470	25/3/08	8.68	48410	11.4	47560	26/3/09	9.16	52979	12.45	52930
27/3/06	8.81	49634	11.37	47430	27/3/07	7.75	44110	10.2	42620	26/3/08	8.71	48576	11.38	47470	27/3/09	9.17	52895	12.45	52990
28/3/06	8.85	50124	11.46	47840	28/3/07	7.79	44182	10.22	42700	27/3/08	8.72	48677	11.38	47470	28/3/09	9.18	52934	12.44	52990
29/3/06	8.87	50469	11.53	48190	29/3/07	7.83	44356	10.26	42850	28/3/08	8.73	48692	11.39	47520	29/3/09	9.2	53219	12.43	52870
30/3/06	8.92	50893	11.58	48440	30/3/07	7,89	45082	10.28	429 20	29/3/08	8.76	48739	11.39	47520	30/3/09	9.2	53080	12.43	52870
31/3/06	8.98	51482	11.62	48640	31/3/07	7.95	45844	10.3	42990	30/3/08	8.79	48793	11.4	47560	31/3/09	9.2	52931	12.44	53110
1/4/06	9	51915	11.68	48940	1/4/07	8.01	46225	10.32	43070	31/3/08	8.81	48829	11.42	47660	1/4/09	9.2	52709	12.44	53290
2/4/06	9,03	52165	11.73	49190	2/4/07	8.06	46611	10.34	43140	1/4/08	8.83	48852	11.42	47660	2/4/09	9.21	52646	12.42	53290
3/4/06	9.08	52284	11.78	49440	3/4/07	8.12	47254	10.37	43260	2/4/08	8.85	48763	11.42	47660	3/4/09	9.21	52649	12.42	53230
4/4/06	9.1	52095	11.8	49540	4/4/07	8.17	47973	10.41	43400	3/4/08	8.86	48491	11.42	47660	4/4/09	9.24	52879	12.45	53230
5/4/06	9.13	52193	11.84	49740	5/4/07	8.23	48493	10.46	43590	4/4/08	8.88	48271	11.45	47800	5/4/09	9.23	52870	12.49	53350
6/4/06	9.14	52222	11.88	49940	6/4/07	8.29	48869	10.53	43850	5/4/08	8.89	47987	11.45	47800	6/4/09	9.24	53012	12.49	53470
7/4/06	9.16	52276	11.94	50240	7/4/07	8.35	49232	10.6	44120	6/4/08	8.91	47816	11.45	47800	7/4/09	9.23	53133	12.48	53530
8/4/06	9.16	52246	11.98	50440	8/4/07	8.4	49439	10.68	44430	7/4/08	8.92	47730	11.46	47840	8/4/09	9.24	52985	12.48	53530
9/4/06	9.17	52312	12	50540	9/4/07	8.45	49515	10.76	44740	8/4/08	8.94	47642	11.46	47840	9/4/09	9.27	52981	12.5	53530
10/4/06	9.18	52697	12.01	50590	10/4/07	8.52	49776	10.82	44980	9/4/08	8.96	47504	11.46	47940	10/4/09	9.29	53067	12.52	53590
11/4/06	9.18	53182	12.02	50640	11/4/07	8.57	50007	10.86	45150	10/4/08	8.97	47668	11.47	47890	11/4/09	9.29	53022	12.53	53650
12/4/06	9.18	53576	12.04	50740	12/4/07	8.6	50162	10.9	45320	11/4/08	8.99	48092	11.47	47890	12/4/09	9.29	53018	12.53	53710
13/4/06	9,19	53860	12.04	50740	13/4/07	8.63	50283	10.92	45400	12/4/08	9	48509	11.47	47890	13/4/09	9.32	53259	12,53	53770
14/4/06	9.2	54000	12.06	50840	14/4/07	8.68	50419	10.95	45530	13/4/08	9.02	48637	11.48	47940	14/4/09	9.32	53403	12.54	53890
15/4/06	9.2	53777	12.08	50950	15/4/07	8.7	50404	11	45750	14/4/08	9.03	48592	11.48	47940	15/4/09	9.35	53718	12.55	54030
16/4/06	9.19	53391	12.08	50950	16/4/07	8.73	50452	11.04	45920	15/4/08	9.05	48741	11.48	47940	16/4/09	9.38	54203	12.56	54100
17/4/06	9,17	52884	12.07	50900	17/4/07	8.78	50645	11.09	46140	16/4/08	9.06	49511	11.5	48040	17/4/09	9.42	54830	12.57	\$4250
18/4/06	9.14	52500	12.06	50840	18/4/07	8.8	50628	11.13	46310	17/4/08	9.08	50332	11,54	48240	18/4/09	9.45	55170	12.59	54670
19/4/06	9.12	52195	12.06	50840	19/4/07	8.85	50888	11.17	46500	18/4/08	9.09	50674	11.56	48340	19/4/09	9.47	55276	12.61	54950
20/4/06	9.1	51913	12.04	50740	20/4/07	8.87	51032	11.2	46640	19/4/08	9.11	50860	11.55	48290	20/4/09	9.51	55566	12.62	55100
21/4/06	9.07	51508	12	50540	21/4/07	8.88	51057	11.24	46820	20/4/08	9.12	51297	11.62	48540	21/4/09	9.57	56222	12.64	55380
22/4/06	9.04	51380	12	50540	22/4/07	8.88	50910	11.32	47190	21/4/08	9.14	51602	11.66	48840	22/4/09	9.63	56845	12.7	55750
23/4/06	9.04	51536	12	50540	23/4/07	8.88	50879	11.37	47430	22/4/08	9.16	51910	11,66	48840	23/4/09	9.66	57343	12.74	56120

					I					ı					ı				
24/4/06	9.04	51640	12	50540	24/4/07	8.9	51235	11.39	47520	23/4/08	9,17	52191	11.7	49040	24/4/09	9.69	57760	12.76	56340
25/4/06	9.04	51566	12.01	50590	25/4/07	8.92	51611	11.4	47560	24/4/08	9.16	52302	11.72	49140	25/4/09	9.72	58220	12.8	56560
25/4/06	9.04	51418	12.02	50640	26/4/07	8.92	51828	11.42	47660	25/4/08	9.16	52469	11.73	49190	26/4/09	9.75	58570	12.85	56560
27/4/06	9.06	51523	12,04	50740	27/4/07	8.92	51909	11.45	47800	26/4/08	9.15	52712	11.76	49340	27/4/09	9.78	58770	12.9	56640
28/4/06	9.07	51833	12.04	50740	28/4/07	8.93	51956	11.44	47750	27/4/08	9.14	52847	11.78	49440	28/4/09	9.79	58870	12,93	56930
29/4/06	9.07	52273	12.02	50640	29/4/07	8.92	52019	11.46	47840	28/4/08	9.14	52760	11.79	49490	29/4/09	9.81	58940	12.96	57010
30/4/06	9.09	52649	12	50540	30/4/07	8.91	52066	11.47	47890	29/4/08	9.13	52618	11.79	49490	30/4/09	9,82	58980	12.96	57160
1/5/06	9.11	52977	11.98	50440	1/5/07	8.88	52129	11.47	47890	30/4/08	9.12	52377	11.8	49540	1/5/09	9.82	58890	12.97	57310
2/5/06	9.16	53421	12	50540	2/5/07	8.86	52228	11.47	47890	1/5/08	9.11	52153	11.82	49640	2/5/09	9.81	58750	13.01	57310
3/5/06	9.26	54272	12.02	50640	3/5/07	8.85	52348	11.47	47890	2/5/08	9.07	51935	11.86	49840	3/5/09	9.81	58740	13.02	57310
4/5/06	9.34	54888	12.02	50640	4/5/07	8.84	52436	11.47	47890	3/5/08	9.07	52205	11.86	49840	4/5/09	9.81	58620	13.04	57390
5/5/06	9.38	55199	12.04	50740	5/5/07	8.82	52436	11.47	47890	4/5/08	9.04	52006	11.84	49740	5/5/09	9.82	58590	13.06	57390
6/5/06	9.39	55265	12.06	50840	6/5/07	8.79	52347	11.46	47840	5/5/08	8.99	51618	11.82	49640	6/5/09	9.81	58310	13.06	57390
7/5/06	9.4	55313	12.08	50950	7/5/07	8.75	52081	11.45	47800	6/5/08	8.93	51159	11.81	49590	7/5/09	9.8	57974	13.06	57390
8/5/06	9.39	55390	12.12	51170	8/5/07	8.73	51840	11.45	47800	7/5/08	8.86	50672	11.78	49440	8/5/09	9.79	57780	13.07	57310
9/5/06	9.38	55452	12.15	51340	9/5/07	8.73	51835	11.44	47750	8/5/08	8.79	50111	11.76	49340	9/5/09	9.78	57480	13.07	57160
10/5/06	9.34	55410	12.18	51500	10/5/07	8.72	51678	11.46	47840	9/5/08	8,72	49752	11.74	49240	10/5/09	9.76	57199	13.07	57010
11/5/06	9.28	55236	12.19	\$1560	11/5/07	8.69	51490	11.46	47840	10/5/08	8,66	49342	11.72	49140	11/5/09	9.76	57104	13.07	56790
12/5/06	9.22	54985	12.19	51560	12/5/07	8.66	51348	11.46	47840	11/5/08	8.55	48835	11.7	49040	12/5/09	9.76	56907	13.06	56560
13/5/06	9.15	54643	12.18	51500	13/5/07	8.62	51160	11.47	47890	12/5/08	8.43	48146	11.68	48940	13/5/09	9,78	57007	13.04	56420
14/5/06	9.08	54233	12.16	51390	14/5/07	8,59	50983	11.48	47940	13/5/08	8.28	47162	11.64	48740	14/5/09	9.77	56912	13.02	56190
15/5/06	8.99	53753	12.14	51280	15/5/07	8.56	50793	11.5	48040	14/5/08	8.13	46144	11.59	48490	15/5/09	9.75	56756	12.99	55970
16/5/06	8.9	53339	12.08	50950	16/5/07	8.53	50637	11.49	47990	15/5/08	7.97	45792	11.52	48140	16/5/09	9,73	47810	12.96	55750
17/5/06	8.78	52750	12.04	50740	17/5/07	8.5	50658	11.49	47990	16/5/08	7.83	45314	11.46	47840	17/5/09	9.71	56147	12.94	55530
18/5/06	8.64	52110	11.99	50490	18/5/07	8.47	50574	11.49	47990	17/5/08	7.72	44839	11.37	47430	18/5/09	9,68	55977	12.91	55240
19/5/06	8.47	51330	11.94	50240	19/5/07	8.44	50360	11.48	47940	18/5/08	7.59	44325	11,28	47010	19/5/09	9.64	55918	12.88	55030
20/5/06	8.27	50260	11.88	49940	20/5/07	8,44	50366	11.48	47940	19/5/08	7.48	43982	11.2	46640	20/5/09	9.61	56052	12.85	54950
21/5/06	8.04	48967	11.82	49640	21/5/07	8.4	49928	11,46	47840	20/5/08	7.38	43881	11.12	46270	21/5/09	9.56	56181	12.82	54670
22/5/06	7.78	47296	11.74	49240	22/5/07	8.34	49388	11.42	47560	21/5/08	7.28	43813	11.03	45880	22/5/09	9.52	56125	12.78	54670
23/5/06	7.43	45223	11.67	48890	23/5/07	8.28	49076	11.4	47560	22/5/08	7.19	43749	10.91	45360	23/5/09	9.5	56078	12.75	54530

					ı					ı					ı				
24/5/06	7.04	43023	11.57	48390	24/5/07	8.21	48767	11.38	47470	23/5/08	7.11	43717	10.85	45100	24/5/09	9.48	55905	12.74	54320
25/5/06	6.62	40684	11.44	47750	25/5/07	8.16	48592	11.33	47240	24/5/08	7.02	43522	10.76	44740	25/5/09	9.44	55641	12.7	54030
26/5/06	6.16	38181	11.26	45920	26/5/07	8,11	48271	11.28	47010	25/5/08	6.92	43243	10.65	44320	26/5/09	9.41	55363	12.7	53830
27/5/06	5.71	35881	11	45750	27/5/07	8.06	47826	11.24	46820	26/5/08	6.83	42986	10.57	44010	27/5/09	9.36	55158	12.68	53650
28/5/06	5.44	34368	10.71	44550	28/5/07	8.01	47234	11.19	46590	27/5/08	6.72	42638	10.46	43590	28/5/09	9.31	55006	12.65	53350
29/5/06	5.23	33124	10.46	43590	29/5/07	7.95	4646 9	11.14	46360	28/5/08	6.62	42340	10.36	43220	29/5/09	9,25	54703	12.61	53110
30/5/06	5.09	32150	10.13	42360	30/5/07	7.9	46238	11.07	46050	29/5/08	6.52	42070	10.23	42730	30/5/09	9.2	54256	12.58	52870
31/5/06	4,94	31331	9.78	41070	31/5/07	7.85	46092	10.98	45660	30/5/08	6.44	41800	10.12	42330	31/5/09	9.14	53678	12.55	52690
1/6/06	4.78	30725	9.4	39670	1/6/07	7.79	45711	10.9	45320	31/5/08	6.36	41490	10.02	41950	1/6/09	9.07	53061	12.5	52570
2/6/06	4.65	30263	9	38240	2/6/07	7.69	45341	10.8	44900	1/6/08	6.3	41250	9.89	41470	2/6/09	9	52475	12.46	52210
3/6/06	4,53	29915	8.61	36900	3/6/07	7.56	45240	10.68	44430	2/6/08	6.28	41130	9.76	40990	3/6/09	8.93	52128	12.42	51940
4/6/06	4.4	29452	8.26	35690	4/6/07	7.4	43638	10.58	44040	3/6/08	6.27	41030	9.66	40520	4/6/09	8.86	52126	12.39	51500
5/6/06	4.43	29491	7.91	34540	5/6/07	7.23	42113	10.46	43590	4/6/08	6.29	41080	9.58	40330	5/6/09	8.8	52031	12.37	51120
6/6/06	4.62	30450	7.64	33650	6/6/07	7.05	41498	10.32	43070	5/6/08	6.34	41190	9,49	40000	6/6/09	8.72	51874	12.31	51010
7/6/06	4.82	32014	7.47	33090	7/6/07	6.83	40789	10.18	42550	6/6/08	6.41	41292	9,44	39810	7/6/09	8.63	51630	12.26	50840
8/6/06	4.86	32591	7.4	32860	8/6/07	6.58	39911	10.01	41920	7/6/08	6.46	41435	9.36	39520	8/6/09	8.54	51395	12.18	50440
9/6/06	4.83	32623	7.46	33060	9/6/07	6.38	39174	9.84	41290	8/6/08	6.46	41453	9.28	39220	9/6/09	8.42	50940	12.11	50240
10/6/06	4.75	32139	7.51	33220	10/6/07	6.16	38386	9.66	40620	9/5/08	6.42	41342	9.23	39040	10/6/09	8.3	50450	12.09	49990
11/6/06	4.63	31539	7.5	33190	11/6/07	5.96	37818	9.44	39810	10/6/08	6,3	40885	9.2	38990	11/6/09	8.17	49670	12.06	49740
12/6/06	4.54	31390	7.45	33020	12/6/07	5.83	37402	9.26	39150	11/6/08	6.11	40038	9.14	38720	12/6/09	8.07	49440	11.98	49440
13/6/06	4.52	31600	7,35	32690	13/6/07	5,73	37128	9.08	38510	12/6/08	5.85	38724	9.04	38380	13/6/09	7.96	49020	11.94	48940
14/6/06	4.54	31631	7.25	32370	14/6/07	5,66	37044	8.94	38030	13/6/08	5.54	37113	8.93	38000	14/6/09	7.86	48670	11.89	48440
15/6/06	4.54	31388	7.18	32140	15/6/07	5.61	37174	8.83	37650	14/6/08	5.23	35518	8.8	37550	15/6/09	7.77	48390	11.84	47940
16/6/06	4.5	30887	7.12	31950	16/6/07	5.62	37430	8.74	37340	15/6/08	4.98	34239	8.61	36900	16/6/09	7.69	48120	11.78	47470
17/6/06	4.49	30451	7.07	31790	17/6/07	5.68	37891	8.68	37140	16/6/08	4.83	33518	8.33	35930	17/6/09	7.6	47730	11.68	47010
18/6/06	4.46	30304	7	31560	18/6/07	5.75	38363	8.7	37210	17/6/08	4.77	33174	8.11	35200	18/6/09	7.51	47290	11.58	46590
19/6/06	4.47	30529	6.83	31010	19/5/07	5.79	38710	8.72	37270	18/6/08	4.89	33433	7.95	34670	19/6/09	7.39	46710	11.48	46450
20/6/06	4,5	30698	6.74	30720	20/6/07	5.79	38840	8.72	37270	19/6/08	5.09	34094	7.8	34180	20/6/09	7.29	46110	11.38	45050
21/6/06	4.53	30907	6.71	30630	21/6/07	5.77	38800	8.72	37270	20/6/08	5.29	35077	7.78	34110	21/6/09	7.18	45480	11.28	45580
22/6/06	4.59	31321	6.72	30660	22/6/07	5.73	38670	8.71	37240	21/5/08	5,52	36415	7.7	33850	22/6/09	7.05	44850	11.19	45060

					I					l					1				
23/6/06	4.67	31736	6.76	30790	23/6/07	5.62	38320	8.67	37100	22/6/08	5.71	37571	7.75	34010	23/6/09	6.93	44120	11.16	44630
24/6/06	4.62	31761	6.78	30850	24/6/07	5.51	37910	8.6	36860	23/6/08	5.78	38170	7.91	34540	24/6/09	6.81	43290	11.07	44200
25/6/06	4.54	31622	6.76	30790	25/6/07	5.45	37670	8.52	3659 0	24/6/08	5.85	38795	8.15	35330	25/6/09	6.75	42741	10.96	43780
26/6/06	4.5	31467	6.7	30590	26/6/07	5.44	37610	8.42	36240	25/6/08	5.9	39086	8.34	35970	26/6/09	6.71	42537	10.84	43440
27/6/06	4.51	31493	6.62	30340	27/6/07	5.48	37800	8.29	35790	26/6/08	5.91	39157	8.54	36650	27/6/09	6.72	42532	10.73	43140
28/5/06	4.57	31896	6.58	30210	28/6/07	5.51	38030	8.18	35430	27/6/08	5.93	39290	8.66	37070	28/6/09	6.75	42657	10.62	42850
29/6/06	4.63	32339	6.56	30140	29/6/07	5.51	38060	8.06	35030	28/6/08	5.96	39540	8.72	37270	29/6/09	6.78	42817	10.51	42590
30/6/06	4.58	32323	6.57	30170	30/6/07	5.46	37940	8	34840	29/6/08	5.99	39790	8.76	37410	30/6/09	6.79	42871	10.42	42390
1/7/06	4.42	31660	6.6	30270	1/7/07	5.38	37700	7.93	3461 0	30/6/08	6.03	40050	8.77	37450	1/7/09	6.76	42862	10.34	42210
2/7/06	4.28	30972	6.61	30300	2/7/07	5.28	37370	7.85	34340	1/7/08	6.05	40200	8.76	37410	2/7/09	6.71	42740	10.26	42090
3/7/06	4.2	30662	6.59	30240	3/7/07	5.15	36880	7.78	34110	2/7/08	6.06	40310	8.74	37340	3/7/09	6.65	42490	10.19	41840
4/7/06	4.15	30649	6.54	30080	4/7/07	5.02	36410	7.7	33850	3/7/08	5.01	36060	8.26	33350	4/7/09	6.58	42220	10.12	41620
5/7/06	4.13	30766	6.49	29920	5/7/07	4.9	35990	7.58	33450	4/7/08	4.78	35180	8.1	32730	5/7/09	6.52	41830	10.09	41360
6/7/06	4.1	30820	6.45	29790	6/7/07	4.81	35640	7.46	33060	5/7/08	4.55	34330	7.9	32080	6/7/09	6.44	41394	10.04	41140
7/7/06	4.08	30857	6.42	29690	7/7/07	4.68	35030	7.33	32630	6/7/08	4.36	33570	7.73	31500	7/7/09	6.4	41121	9,99	40840
8/7/06	4.09	30999	6.38	29560	8/7/07	4.51	34230	7.22	32270	7/7/08	4.16	32670	7.55	31040	8/7/09	6.4	41126	9.93	40620
9/7/06	4.09	31146	6.34	29430	9/7/07	4.32	33180	7.08	31820	8/7/08	4.01	32030	7.36	30630	9/7/09	6.4	41185	9.86	40480
10/7/06	3.96	30859	6.28	29240	10/7/07	4.09	31801	6.92	31300	9/7/08	3.96	31780	7.16	30400	10/7/09	6.42	41272	9.8	40180
11/7/06	3.64	29940	6.24	29110	11/7/07	3.83	30554	6.75	30750	10/7/08	4.02	31970	6.98	30270	11/7/09	6.4	41126	9.72	39810
12/7/06	3.44	29321	6.18	28920	12/7/07	3.57	28907	6.51	29980	11/7/08	4.1	32330	6.84	30080	12/7/09	6.35	40762	9.66	39440
13/7/06	3,36	28979	6.08	28610	13/7/07	3.28	27413	6.24	29110	12/7/08	4.15	32550	6.71	29790	13/7/09	6.27	40230	9.52	38930
14/7/06	3.19	28387	5.94	28170	14/7/07	2.99	26362	5.94	28170	13/7/08	4.09	32330	6.64	29530	14/7/09	6.18	39718	9.54	38720
15/7/06	3.02	27704	5.79	27700	15/7/07	2.77	25619	5.6	27110	14/7/08	4.07	32110	6.6	29300	15/7/09	6.11	39268	9.44	38380
16/7/06	2.89	27012	5.64	27230	16/7/07	2.63	25120	5.28	26120	15/7/08	4.06	31950	6.54	29050	16/7/09	6.01	38710	9.34	37960
17/7/06	2.78	26375	5.45	26640	17 <i> </i> 7/707	2.57	24990	5.02	25330	16/7/08	4.06	31737	6.45	28800	17/7/09	5.87	38079	9.2	37620
18/7/06	2,71	26036	5.25	26030	18/7/07	2.63	25173	4.83	24760	17/7/08	4.05	31538	6.37	28580	18/7/09	5.72	37551	9.14	37170
19/7/06	2.76	26152	5.06	25460	19/7/07	2.88	25830	4.69	24340	18/7/08	3.98	31189	6.3	28390	19/7/09	5.54	37034	9.04	36520
20/7/06	2,92	26765	4.89	24940	20/7/07	3.22	26 9 44	4.65	24220	19/7/08	3.93	30730	6.22	28110	20/7/09	5.41	36667	8.92	35970
21/7/06	3.06	27400	4.76	24550	21/7/07	3.44	27916	4.7	24370	20/7/08	3.9	30238	6.14	27730	21/7/09	5.24	36082	8.82	35360
22/7/06	3.11	27717	4,73	24460	22/7/07	3.5	28280	4,84	24790	21/7/08	3.89	30077	6.07	27480	22/7/09	5.08	35323	8.69	34840

					1					ı					1				
23/7/06	3.07	27584	4.78	24610	23/7/07	3.43	28071	5	25270	22/7/08	3.85	29876	6.01	27230	23/7/09	4.97	34675	8.5	34340
24/7/06	2.94	26929	4.84	24790	24/7/07	3.29	27301	5.1	25580	23/7/08	3.72	29336	5.92	26980	24/7/09	4.97	34041	8.34	33880
25/7/06	2.79	26036	4.86	24850	25/7/07	3.13	26390	5.16	25760	24/7/08	3.63	28756	5.8	26830	25/7/09	5.03	34266	8.16	33520
26/7/06	2.48	24568	4.83	24760	26/7/07	2.98	25467	5.13	25670	25/7/08	3.56	28382	5.72	26570	26/7/09	5.05	34109	8	33220
27/7/06	2.2	23291	4,74	24490	27/17/07	2.86	24716	5.02	25330	26/7/08	3.5	28102	5.64	26300	27/7/09	5.05	33982	7.85	32630
28/7/06	1.99	22148	4.58	24010	28/7/07	2.74	23954	4,87	24880	27/7/08	3.43	28013	5.56	26030	28/7/09	5.01	33730	7.71	32240
29/7/06	1.87	21491	4.33	29310	29/7/07	2.63	23109	4.69	24340	28/7/08	3.35	27900	5.51	25670	29/7/09	4.88	33199	7.6	31720
30/7/06	1.76	21134	4.02	22480	30/7/07	2.62	22663	4.53	23860	29/7/08	3.26	27539	5.43	25330	30/7/09	4.72	32351	7.51	30790
31/7/06	1.66	20675	3.75	21760	31/7/07	2.82	22981	4.35	23360	30/7/08	3.15	27015	5.34	24910	31/7/09	4.48	31072	7.33	29820
1/8/06	1,53	19981	3.53	21180	1/8/07	3.1	23818	4.15	22830	31/7/08	3.04	26329	5.25	24490	1/8/09	4.28	29893	7.21	28980
2/8/06	1.43	19346	3,31	20610	2/8/07	3.33	24735	4.04	22530	1/8/08	2.92	25581	5.13	23950	2/8/09	4	28465	7.05	28480
3/8/06	1.34	18990	3.11	20100	3/8/07	3.42	25157	4.05	22560	2/8/08	2.81	24962	5.02	23420	3/8/09	3.72	27270	6.76	28110
4/8/06	1.28	18804	2.89	19530	4/8/07	3.38	24730	4.12	22750	3/8/08	2.69	24263	4.88	23010	4/8/09	3.62	26998	6.46	27790
5/8/06	1.26	18696	2.72	19110	5/8/07	3.22	23849	4.2	22960	4/8/08	2.61	23914	4.74	23010	5/8/09	3.57	26984	6.2	27420
6/8/06	1.36	18929	2.57	18760	6/8/07	3.01	22800	4.25	23090	5/8/08	2.59	23765	4.56	22930	6/8/09	3.49	26926	6.04	27170
7/8/06	1.57	19722	2.44	18460	7/8/07	2.73	21631	4,19	22930	6/8/08	2.62	23822	4.37	22910	7/8/09	3.41	27117	5.92	27040
8/8/06	1.72	20567	2.4	18370	8/8/07	2.45	20492	4.04	22530	7/8/08	2.72	24020	4.22	22800	8/8/09	3.33	27026	5.82	2 698 0
9/8/06	1.76	20963	2.45	18480	9/8/07	2.16	19518	3.8	21890	8/8/08	2.78	24054	4.22	22670	9/8/09	3.25	26741	5.7	27230
10/8/06	1.7	20769	2.58	18790	10/8/07	1.91	18892	3,51	21130	9/8/08	2.79	23910	4.19	22590	10/8/09	3.28	26680	5.62	27110
11/8/06	1.6	20382	2.7	19070	11/8/07	1.71	18557	3.19	20300	10/8/08	2.81	23812	4.18	22450	11/8/09	3.42	27339	5.58	27170
12/8/06	1.52	20043	2.8	19300	12/8/07	1.56	18200	2.95	19680	11/8/08	2.82	23773	4.14	22110	12/8/09	3.57	28010	5.56	26790
13/8/06	1.41	19485	2.79	19280	13/8/07	1.43	17828	2.77	19230	12/8/08	2.76	23632	4.09	21390	13/8/09	3.63	28274	5.64	26150
14/8/06	1.34	19262	2.77	19230	14/8/07	1.32	17455	2.6	18830	13/8/08	2.61	23199	4.06	20790	14/8/09	3.55	27782	5.6	25700
15/8/06	1.32	19021	2.72	19110	15/8/07	1.24	17305	2.45	18480	14/8/08	2.41	22432	4.01	20230	15/8/09	3.37	26832	5.62	25090
16/8/06	1.37	19005	2.66	18970	16/8/07	1.26	17448	2.28	18090	15/8/08	2.21	21573	3,88	19730	16/8/09	3.14	25696	5.5	24730
17/8/06	1,46	19206	2.59	18810	17/8/07	1.47	18041	2.16	17810	16/8/08	2	20747	3.61	19160	17/8/09	2.93	24712	5.29	24610
18/8/06	1.49	19351	2.56	18740	18/8/07	1.8	19081	2.1	17670	17/8/08	1.78	19936	3.38	18720	18/8/09	2.73	23773	5.14	24610
19/8/06	1.47	19134	2.56	18740	19/8/07	1.94	19837	2.16	17810	18/8/08	1.56	19032	3.16	18250	19/8/09	2.56	23171	4.94	24730
20/8/06	1.43	18793	2.6	18830	20/8/07	1.91	19908	2.27	18060	19/8/08	1.39	18372	2.97	17600	20/8/09	2.43	22919	4.82	24730
21/8/06	1.41	18610	2.6	18830	21/8/07	1.79	19282	2.41	18390	20/8/08	1.21	17801	2.74	17290	21/8/09	2.4	22815	4.78	24730

					ı					1					1				
22/8/06	1.42	18677	2.6	18830	22/8/07	1.67	18680	251	18620	21/8/08	11	17385	2.55	17250	22/8/09	2.5	23144	4.78	25120
23/8/06	1.49	19021	2.6	18830	23/8/07	1.61	18488	253	18670	22/8/08	1.03	16937	2.35	17200	23/8/09	2.67	23679	4.82	25520
24/8/06	1.58	19136	2.6	18830	24/8/07	1.6	18694	2.47	18530	23/8/08	1.04	16927	2.07	17200	24/8/09	2.84	24161	4.82	25820
25/8/06	1.67	19332	2.64	18930	25/8/07	158	18852	2.36	18270	24/8/08	1.06	17010	1.94	17220	25/8/09	2.98	24628	4.82	26090
26/8/06	1.78	19832	2.69	19040	26/8/07	147	18351	23	18130	25/8/08	1.07	17226	1.92	17290	26/8/09	3,09	25009	4.95	26180
27/8/06	1.88	20696	2.74	19160	27/8/07	132	17635	2.28	18090	26/8/08	1.07	17214	1.9	17200	27/8/09	3.18	25183	5.08	26120
28/8/06	1.95	21399	2.87	19480	28/8/07	114	17059	2.23	17970	27/8/08	1,04	17110	1.9	17080	28/8/09	3,21	25232	5.18	25820
29/8/06	1.98	21577	2.99	19790	29/8/07	0.99	16462	21	17670	28/8/08	0.97	16823	1.91	16930	29/8/09	3.21	25306	5.27	25520
30/8/06	1.96	21376	3.15	20200	30/8/07	0.79	15704	1.92	17250	29/8/08	0.88	16466	1.94	16930	30/8/09	3.17	25484	5.3	25400
31/8/06	1.9	21006	3.24	20430	31/8/07	0.66	15119	1.75	16860	30/8/08	0,83	16360	1.9	17010	31/8/09	3.05	25085	5.28	25030
1/9/06	1.8	20494	3.28	20540	1/9/07	0.57	14764	1.6	16560	31/8/08	0.81	16480	1.85	17460	1/9/09	2.9	24201	5.18	24490
2/9/06	1.67	20028	3.28	20540	2/9/07	0.63	14798	1.46	16270	1/9/08	8.0	16858	1.78	17760	2/9/09	2.75	29240	5.08	23830
3/9/06	1.55	19764	3.18	20280	3/9/07	0.85	15586	1.25	15840	2/9/08	0.83	17404	1.78	18040	3/9/09	2.58	22494	5.04	23010
4/9/06	1.46	19352	31	20070	4/9/07	1.18	16792	1.03	15390	3/9/08	0.88	17583	1.82	18920	4/9/09	2.41	21844	4.92	22290
5/9/06	1.37	18730	3	19810	5/9/07	1.38	17793	1.07	15470	4/9/08	0.93	17481	2.01	18670	5/9/09	2.21	21102	4.74	21680
6/9/06	1.29	18260	2.78	19250	6/9/07	1.57	18830	1.31	15960	5/9/08	1.14	17818	2.14	19040	6/9/09	2.05	20390	4.52	21110
7/9/06	1.22	17830	2.61	18860	7/9/07	1.63	19503	1.45	16270	6/9/08	1.34	18437	2.26	19350	7/9/09	1.87	19506	4.22	20540
8/9/06	1.13	17451	2.44	18460	8/9/07	1.65	19735	1.88	17150	7/9/08	1.46	18918	2.38	20020	8/9/09	1.7	18777	1.5	2002)
9/9/06	1.04	17001	2.25	18020	9/9/07	1.63	19692	2.15	17780	8/9/08	1.7	19672	2.53	21080	9/9/09	1.59	18253	ın	調整
10/9/06	0.98	16697	2.09	17640	10/9/07	1.67	19808	2.35	18250	9/9/08	2.15	21135	2.69	22370	10/9/09	1.57	18054	3.5	1900)
11/9/06	0.98	16915	1.98	17390	11/9/07	1.78	20150	2.47	18530	10/9/08	2.5	22718	2.82	23440	11/9/09	1.65	18172	3.20	19600
12/9/06	1.04	17372	19	17200	12/9/07	1.87	20505	2.54	19690	11/9/08	2.69	23964	3.08	24070	12/9/09	1.79	18427	3.08	19500
13/9/06	1.08	17789	1.88	17150	13/9/07	1.85	20576	2.62	18880	12/9/08	2.78	24551	3,49	24370	13/9/09	1.76	18123	2.99	19250
14/9/06	1.1	17859	1.93	17270	14/9/07	1.74	20141	2.69	19040	13/9/08	2.84	24698	3,98	24940	14/9/09	1.63	17569	2.95	19070
15/9/06	1.13	17782	2.02	17480	15/9/07	1.6	19719	2.77	19230	14/9/08	2.87	24567	4.38	25150	15/9/09	1.48	17091	2.92	18950
16/9/06	1.15	17712	2.09	17640	16/9/07	1.48	19536	279	19280	15/9/08	2.91	24603	4.6	25330	16/9/09	1.41	16934	2.88	19020
17/9/06	1.18	17750	2.13	17740	17/9/07	1.39	19455	2.75	19180	16/9/08	2.98	24838	4.7	25400	17/9/09	1.41	17315	2.78	19400
18/9/06	1,2	17968	2.16	17810	18/9/07	1.33	19443	2.67	19000	17/9/08	3.09	25410	4,89	25300	18/9/09	1.44	17508	2.7	19810
19/9/06	1.16	18378	2.17	17830	19/9/07	1.32	19521	2.61	18860	18/9/08	3.12	25826	4.96	25030	19/9/09	1.47	17572	2.65	20330
20/9/06	1.08	18345	2.18	17850	20/9/07	1.33	19679	2.58	18790	19/9/08	3.05	2569 2	5.02	24670	20/9/09	1.56	17892	2.68	20900

					ı						1					1				
21/9/06	0.98	17873	2	2 1	7900	21/9/07	1.36	19771	2.56	18740	20/9/08	2.93	25037	5.04	24220	21/9/09	1.68	18372	2.84	21340
22/9/06	0.91	17323	2.2	1 1	7990	22/9/07	1.36	19656	2.56	18740	21/9/08	2.88	24650	5.01	24220	22/9/09	1.79	18773	3	21680
23/9/06	0.92	17053	2.2	5 1	8020	23/9/07	1.3	19317	2.57	18760	22/9/08	2.99	25145	4.92	24220	23/9/09	1.87	19135	3.2	21950
24/9/06	0.98	17156	2.1	5 1	7810	24/9/07	1.25	18936	2.58	18790	23/9/08	3.11	26109	4.8	24250	24/9/09	1.93	19447	3.42	22160
25/9/06	1.03	17606	2.0	7 1	7600	25/9/07	1.27	18791	2.56	18740	24/9/08	3.13	26499	4.65	24310	25/9/09	2	19610	3.59	22430
26/9/06	1.08	17951	2.0	1 1	7460	26/9/07	1.29	18737	2.52	18650	25/9/08	3.02	26004	4.65	23500	26/9/09	2.08	19850	3.72	22670
27/9/06	1	17621	2.0	2 1	7480	27/9/07	1,25	18769	2.48	18550	26/9/08	2.88	25106	4,65	22910	27/9/09	2.12	20196	3.82	22960
28/9/06	0.95	17280	2.0	1	7550	28/9/07	1.17	18541	2.45	18480	27/9/08	2.75	24164	4.66	22370	28/9/09	215	20296	3.9	23360
29/9/06	0.88	16992	2.0	6 1	7570	29/9/07	1.19	18512	2.42	18410	28/9/08	2.61	23064	4,68	21950	29/9/09	2.29	20629	4	23890
30/9/06	0.9	17389	2.0	2 1	7480	30/9/07	1.44	19221	2.42	18410	29/9/08	2.46	22114	4.4	21520	30/9/09	2.54	21534	4.09	24370
1/10/06	1.29	19016	1.9	3 1	7270	1/10/07	1.78	20393	2.43	18440	30/9/08	2.34	21354	4.18	21440	1/10/09	2.72	22324	42	24550
2/10/06	1.54	20414	1.9	1 1	7220	2/10/07	1.95	21233	2.5	18600	1/10/08	2.28	20931	3.98	20920	2/10/09	2.78	22742	4.35	24490
3/10/06	1.97	21778	2.0	5 1	7570	3/10/07	1.96	21221	2.66	18970	2/10/08	2.2	20547	3.82	20510	3/10/09	2.71	22713	4.54	24310
4/10/06	2.16	22287	2	1 1	8370	4/10/07	1.9	20739	2.88	19500	3/10/08	2.1	20154	3.7	20070	4/10/09	2.58	22357	4.7	24010
5/10/06	2.22	22130	2.7	15	9280	5/10/07	1.84	20403	3.04	19920	4/10/08	2	19698	3.69	19970	5/10/09	245	21888	4.76	23980
6/10/06	2.25	21885	3.1	2 20	0120	6/10/07	1.77	19996	3.08	20020	5/10/08	2.01	19457	3.43	20020	6/10/09	2.38	21578	4.74	24430
7/10/06	2.22	21731	3.3	2 20	0640	7/10/07	1.71	19549	3,08	20020	6/10/08	2.16	20016	3.27	20480	7/10/09	2.26	21090	4.68	25090
8/10/06	2.21	21864	3,	1 2	0850	8/10/07	1.6	18990	3.04	19920	7/10/08	2.46	21060	3.1	21920	8/10/09	2.27	21091	4.58	25640
9/10/06	2.27	22190	3.4	2	0950	9/10/07	1.44	18205	2.97	19730	8/10/08	2.88	22677	3.06	23150	9/10/09	241	21642	4.57	25940
10/10/06	2.37	22388	3.4	5 2	0980	10/10/07	1.29	17593	2.81	19320	9/10/08	3.26	24148	3.08	23950	10/10/09	253	21773	4.72	25000
11/10/06	2.52	22701	3.4	3 2	1050	11/10/07	1.05	16710	2.64	18930	10/10/08	3.47	25225	3.26	24490	11/10/09	2.52	21420	4,94	25700
12/10/06	2.71	29111	3.5	5 2:	1230	12/10/07	0.84	16019	2,46	18510	11/10/08	3.54	25522	3.81	24790	12/10/09	2.42	20680	5.12	25360
13/10/06	2,8	23957	3.6	5 2	1490	13/10/07	0,79	15706	2.28	18090	12/10/08	3.52	25364	4.27	24730	13/10/09	2.36	20141	5.22	25060
14/10/06	2.82	23678	3.7	8 2	1840	14/10/07	0.93	15173	2.06	17570	13/10/08	3.47	25038	4.56	24450	14/10/09	2.37	19985	5.24	24940
15/10/06	2.79	29852	3.9	2 2	2210	15/10/07	1.15	17180	1.83	17040	14/10/08	3.42	24 69 3	4.74	24190	15/10/09	244	20359	5.14	24940
16/10/06	2.8	24095	4.0	1 2	2530	16/10/07	1.35	18324	1.81	16990	15/10/08	3.27	24148	4.84	23830	16/10/09	2,48	20755	5.03	24910
17/10/06	2.87	24652	4,1	1 2	2800	17/10/07	1.41	18767	1.88	17150	15/10/08	3.09	23578	4.82	23630	17/10/09	25	20884	4.93	24850
18/10/06	2.97	25061	4.	2 2	2960	18/10/07	141	18729	2.07	17500	17/10/08	2,92	23035	4.73	23630	18/10/09	2.54	20847	4.89	24910
19/10/06	3	25220	4.2	5 2	3090	19/10/07	1.43	18621	2.3	18130	18/10/08	2.75	22614	4.64	23710	19/10/09	2.62	21134	4.89	25150
20/10/06	2.97	25139	4.	3 2:	3230	20/10/07	1.48	18703	2.57	18760	19/10/08	2.65	22539	4.52	23980	20/10/09	2.67	21439	4.88	25460

					1	ì					- 1						1						
21/10/06	2.87	24564	4.	34	23340	21/10/07	1.68	19502	2	76	19210	20/10/08	2.72	22800	4.4	24250	21/10/09	2.9	1	22378	4.86	2582	10
22/10/06	2.75	23902	4.	34	23340	22/10/07	2.03	20650	2	96 :	19710	21/10/08	2.77	22903	4.4	24730	22/10/09	3.0	9	29631	4.88	2618	10
29/10/06	2.67	23388	4.	32	23280	23/10/07	2.63	22673	3	18	20280	22/10/08	2.93	23451	4.4	25030	23/10/09	3.2	2	24700	4.96	2636	0
24/10/06	2.56	22727	4.	26	23120	24/10/07	3.19	24508	3	49	21080	23/10/08	3.13	24131	4.5	25330	24/10/09	3	4	25708	5.08	2654	10
25/10/06	254	22336	4.	18	22910	25/10/07	3.64	25960		3.9	22160	24/10/08	3.29	24670	4.6	25520	25/10/09	3.4	6	19760	5.18	2642	0
26/10/06	2.58	22187	4	1.1	22690	26/10/07	3.96	27278	4	36	23390	25/10/08	3.37	25104	4.8	25730	26/10/09	3.4	4	25506	5.3	2606	iO
27/10/06	2.65	22223	4.	06	22590	27/10/07	4.22	28541	4	78 :	24610	26/10/08	3.44	25344	4.9	26060	27/10/09	3.5	5	24923	5.36	2576	0
28/10/06	2.72	22373	4,	06	22590	28/10/07	4.41	29487	5.	14 1	25700	27/10/08	3.59	25710	5.0	26390	28/10/09	3.7	4	24164	5.42	2503	Ю
29/10/06	2.8	22609	4,	08	22640	29/10/07	4.55	30119	5	52 2	26860	28/10/08	3.81	26343	5.0	27510	29/10/09	3.1	2	23554	5.38	2434	0
30/10/06	2.87	22681	4,	09	22670	30/10/07	4.63	30289	5.	91 :	28080	29/10/08	4.05	27081	5.1	28640	30/10/09	2.9	9	22796	5.26	2374	10
31/10/06	2.95	22642	4,	09	22670	31/10/07	4.68	30512		i.2 :	28980	30/10/08	4.33	28412	5.2	29370	31/10/09	2.8	4	21999	5.16	2312	10
1/11/06	3	22626	4.	08	22640	1/11/07	4.78	30877	6	39 7	29590	31/10/08	454	29583	5.3	30010	1/11/09	2.6	7	21189	4.92	2259	0
2/11/06	3.05	22784	4,	09	22670	2/11/07	4.88	31036	6	49 1	29920	1/11/08	4.74	30367	5.7	30400	2/11/09	2.4	8	20226	4.69	2205	0
3/11/06	3.1	22993	4.	11	22720	3/11/07	4.92	30908	6	56	30140	2/11/08	494	30945	6.0	30980	3/11/09	2	3	19518	4.49	2155	0
4/11/06	3.17	23106	4.	11	22720	4/11/07	4.91	30925	6	66	30460	3/11/08	5.15	31774	6.3	31460	4/11/09	2.1	4	18907	4.26	2116	iO
5/11/06	3.25	23182	4.	14	22800	5/11/07	4.83	30576	6.	72	30660	4/11/08	5.31	32744	6.5	31750	5/11/09	2.0	3	18518	4.06	2087	0
6/11/06	3.35	23630	4.	17	22880	6/11/07	4.81	30342	6.	74	30720	5/11/08	5.47	33762	6.6	31950	6/11/09	1.9	5	18570	3.86	2072	10
7/11/06	3.46	24148	4.	18	22910	7/11/07	4.78	30037	6	72	30660	6/11/08	S.51	33965	6.8	31880	7/11/09	1.9	8	19072	3.67	2061	0
8/11/06	3.63	24954	4.	24	23070	8/11/07	4.82	30123	6	72	30660	7/11/08	5.45	33521	6.9	31690	8/11/09	2.0	9	19354	3.52	2079	0
9/11/06	3.81	25910	4	1.4	23500	9/11/07	4.83	30142	1	5.7	30590	8/11/08	5.32	32810	7.0	31500	9/11/09	2	1	19501	3,41	2111	0
10/11/06	3.97	26658	4	1.6	24070	10/11/07	4.85	30445	6.	69	30560	9/11/08	5.15	31893	7.12	31110	10/11/09	2.2	5	19830	3.35	2187	0
11/11/06	4.17	27668	4,	86	24850	11/11/07	5.01	31235	6	68	30530	10/11/08	4.96	30953	7.	30590	11/11/09	2.4	7	20475	3.31	2224	0
12/11/06	4.4	29005	5,	05	25430	12/11/07	5.06	31504	6	67	30500	11/11/08	4.8	30334	7.0	30050	12/11/09	2.7	4	21352	3.38	2269	10
13/11/06	4.65	30107	5.	26	26060	13/11/07	5.18	32244	6	68	30530	12/11/08	4.61	29624	6.9	29590	13/11/09	3,0	2	22110	3.5	2328	10
14/11/06	4.86	31028		3.5	26790	14/11/07	5.28	32538	6	73	30690	13/11/08	4.52	29254	6.8	291 70	14/11/09	3.1	4	22333	3.79	2355	0
15/11/06	5.04	31772	5.	76	27610	15/11/07	5.34	32565	6.	82 3	30980	14/11/08	4.49	28992	6.	28980	15/11/09	3.1	3	22102	3.93	2389	10
16/11/06	5.23	32584	6.	04	28480	16/11/07	5.37	32464	6	98	31500	15/11/08	4.49	28587	6.5	28920	16/11/09	3.1	3	22062	4.1	2425	0
17/11/06	5.42	33510	(13	29300	17/11/07	5,37	32265	7.	28	32460	16/11/08	4,48	28586	6.3	29050	17/11/09	3.1	2	22389	4.32	2491	0
18/11/06	5.59	34579	6.	\$4	30080	18/11/07	5.39	32173		15 3	33190	17/11/08	4.49	28945	6,2	29400	18/11/09	3.2	5	23277	4.42	2533	10
19/11/06	5.73	35521	6,	76	30790	19/11/07	5.45	32308	7.	57	33420	18/11/08	4.56	29591	6.	29790	19/11/09	3.4	9	24184	4.54	2657	0

						l					I					1				
20/11	/06	5.83	36061	6.99	31530	20/11/07	5.61	33206	7.6	33520	19/11/08	4.63	30022	6.18	30210	20/11/09	3.64	24594	4.66	27580
21/11	/06	5.88	36242	7.23	32300	21/11/07	5.81	34380	7.64	33650	20/11/08	4,65	30289	6.22	30560	21/11/09	3.7	24886	4.88	28450
22/11	/06	5.87	36146	7.46	33060	22/11/07	6.07	36202	7.72	33910	21/11/08	4.61	30388	6.33	30920	22/11/09	3.78	25443	5.02	29430
23/11	/06	5.89	36018	7.6	33520	23/11/07	6.3	38169	7.85	34340	22/11/08	4.58	30543	6.45	31560	23/11/09	4.02	26852	5.43	30400
24/11	/ 06	5.91	35930	7.62	33580	24/11/07	6.45	39349	8.04	34970	23/11/08	4.64	30840	6.58	32210	24/11/09	4.29	28453	5.75	31500
25/11	/06	5.92	35924	7.64	33650	25/11/07	6.57	40209	8.24	35630	24/11/08	4,72	31298	6.69	32850	25/11/09	4.53	29485	6,03	32500
26/11	/06	5.99	35952	7.66	33720	26/11/07	6.67	40686	8.47	36410	25/11/08	4.85	32040	6.8	33490	26/11/09	4.78	30599	6.34	33910
27/11	/06	5.92	36061	7.68	33780	27/11/07	6.72	40800	8.64	37000	26/11/08	5	32854	7	33980	27/11/09	5.14	32492	6.64	34900
28/11	/06	5.88	35921	7.68	33780	28/11/07	6.74	40744	8.78	37480	27/11/08	5.12	33700	7.2	34410	28/11/09	5.5	34409	6.98	36240
29/11	/06	5.84	35565	7.69	33810	29/11/07	6.76	40625	8.91	37930	28/11/08	5.17	34176	7.4	34740	29/11/09	5.88	36073	7.29	37070
30/11	/06	5.82	35322	7.68	33780	30/11/07	5.76	40519	9.02	38310	29/11/08	5.2	34337	7.59	35000	30/11/09	6.21	37353	7.72	37620
1/12/	/06	5.81	35248	7.69	33810	1/12/07	6.79	40615	9.1	38580	30/11/08	5.26	34595	7.74	35100	1/12/09	6.41	37947	8.02	38100
2/12/	/06	5.82	3528 0	7.69	33810	2/12/07	6.8	40686	9.16	38790	1/12/08	5.37	34972	7.87	35100	2/12/09	6.52	38059	8.42	38240
3/12/	/06	5.83	35442	7.69	33810	3/12/07	6.8	40562	9.18	38860	2/12/08	5.36	34852	7.97	34900	3/12/09	6.56	38037	8.66	38380
4/12/	/06	5.84	3575 7	7.7	33850	4/12/07	6.81	40251	9.2	38930	3/12/08	5.28	34345	8.05	34770	4/12/09	6.58	38095	8.82	38550
5/12/	/06	5,89	35847	7.71	33880	5/12/07	6.83	39866	9.19	38890	4/12/08	5.22	33743	8.08	34700	5/12/09	6.6	38253	8.96	38890
6/12	/06	5,99	36124	1.17	34080	6/12/07	6,8	39351	9.16	38790	5/12/08	5.21	33346	8.08	34840	6/12/09	6.63	38658	9	39220
7/12	/06	6.08	36661	7.92	34570	7/12/07	6.76	38893	9.1	38580	6/12/08	5.23	33139	8.02	34900	7/12/09	6.68	39229	9.04	39520
8/12/	/06	6.14	36980	8,08	35100	8/12/07	6.73	38525	9.04	38380	7/12/08	5.29	33248	7.98	34970	8/12/09	6.7	39336	9.09	40070
9/12/	/06	6.16	36935	8.22	35560	9/12/07	6.64	37908	8.98	38170	8/12/08	5.36	33559	7.96	34770	9/12/09	6.72	39382	9,19	40550
10/12	/06	6.17	36935	8.32	35900	10/12/07	6,53	37104	8.88	37830	9/12/08	5.4	33508	8	34180	10/12/09	6.8	39776	9.28	40840
11/12	/06	6.25	37378	8.41	36210	11/12/07	6.35	35908	8,8	37550	10/12/08	5.32	32724	8.02	33390	11/12/09	6.95	40610	9.36	41290
12/12	/06	6.37	38335	8.49	36480	12/12/07	6.18	34703	8.7	37210	11/12/08	5.14	31677	8.04	32690	12/12/09	7.05	41336	9.51	41950
13/12	/06	6.5	39115	8.58	36790	13/12/07	5.95	33366	8.61	36900	12/12/08	4.97	30517	7.98	32040	13/12/09	7.1	41821	9,64	42210
14/12	/06	6.61	39546	8,69	37170	14/12/07	5,67	31756	8.51	36550	13/12/08	4,72	29238	7.8	31140	14/12/09	7.17	42082	9.72	42510
15/12	/06	6.67	39686	8.81	37580	15/12/07	5.39	30434	8.3	35830	14/12/08	4.51	28440	7.56	30460	15/12/09	7.21	42226	9.84	42770
16/12	/06	6.71	39752	8.9	37890	16/12/07	5.14	29373	8.06	35030	15/12/08	4.31	27751	7,35	29880	16/12/09	7.24	42330	10.02	42960
17/12	/06	6.75	39973	8.98	38170	17/12/07	5,09	29091	7.86	34370	16/12/08	4.12	26882	7.15	29560	17/12/09	7. 2 8	42646	10.09	43220
18/12	/06	6.81	40755	9.05	38410	18/12/07	5.06	29015	7.64	33650	17/12/08	3.97	25016	5.87	29300	18/12/09	7.35	43512	10.17	43400
19/12	/06	6.92	41533	9.1	38580	19/12/07	5.13	29525	7.46	33060	18/12/08	3.9	25647	6,66	29300	19/12/09	7.46	44509	10.24	43630

					I				- 1										
20/12/06	7.01	42036	9.16	38790	20/12/07	5.28	30423	7.34 3	32660	19/12/08	4.02	26358	6.48	29240	20/12/09	7.51	44908	10.29	43740
21/12/06	7.07	42491	9.25	39110	21/12/07	5.52	31674	7.3 3	32530	20/12/08	4.2	27282	6.38	29170	21/12/09	7.58	45215	10.36	43850
22/12/06	7.1	42768	9.34	39440	22/12/07	5.66	32575	7.36 3	32730	21/12/08	4.3	27417	6.3	28800	22/12/09	7.61	45011	10.41	43890
23/12/06	7.12	42757	9.44	39810	23/12/07	5.81	33806	7.47 3	33090	22/12/08	4.34	27220	6.3	28330	23/12/09	7.64	44671	10.47	43970
24/12/06	7.14	42688	9.54	40180	24/12/07	5.95	34972	7.62	33580	23/12/08	4.3	26744	6.28	27790	24/12/09	7.66	44386	10.5	44040
25/12/06	7.17	42871	9.64	40550	25/12/07	6.08	35985	7.8 3	34180	24/12/08	4.19	26075	6.26	27080	25/12/09	7.57	44274	10.53	44040
26/12/06	7.23	43056	9.71	40810	26/12/07	6.21	37010	7.95 3	34670	25/12/08	4.04	25031	6.14	25480	26/12/09	7.68	44204	10.54	44040
27/12/06	7.29	43313	9.8	41140	27/12/07	6.31	37934	8.17 3	35400	26/12/08	3.88	24165	5.99	25240	27/12/09	7.7	44252	10.56	43970
28/12/06	7.34	43612	9.88	41430	28/12/07	6.4	38719	8.47 3	36410	27/12/08	3.81	23743	5.82	26090	28/12/09	7.68	43970	10.58	43890
29/12/06	7.4	44043	9.93	41620	29/12/07	6.47	39466	8.85 5	37720	28/12/08	3.81	23525	5.59	26360	29/12/09	7.64	43296	10.58	43780
30/12/06	7.45	44109	9.98	41810	30/12/07	6.55	40143	8.96	38100	29/12/08	3.89	23819	5.4	25950	30/12/09	7.59	42665	10.58	43480
31/12/06	7.51	44350	10.04	42030	31/12/07	6.67	40919	9,04 3	38380	30/12/08	4.01	24540	5.32	27580	31/12/09	7.52	41685	10.56	43180
										31/12/08	4.18	25502	5.25	28170					

Tamshiyacu (Amazonas) + Bellavista Tabatinga (Napo)

Fecha				
	Profundidad de agua (m)	Caudal (m3/s)	Profundidad de agua (m)	Caudal (m3/s)
1/1/10	7,4	40541	10.54	42850
2/1/10	7.3	39640	10.51	42360
3/1/10	7.08	38074	10.43	41840
4/1/10	6.83	36672	10.35	41070
5/1/10	6.58	35370	10.26	40290
6/1/10	6.36	34211	10.13	39590
7/1/10	6.16	33251	9.99	38790
8/1/10	5.97	32302	9.78	38450
9/1/10	5.76	31271	9.57	37620
10/1/10	5.54	30291	9.38	36760
11/1/10	5.33	29417	9.16	36210
12/1/10	5.17	28808	9.06	35760
13/1/10	5.04	28191	8.82	35400
14/1/10	4.96	27781	8.57	35170
15/1/10	4.92	27607	8.41	34670
16/1/10	4.99	27866	8.28	34670
17/1/10	4.98	27952	8.17	34670
18/1/10	4,98	28105	8.1	34770
19/1/10	5,03	28450	7.95	34770
20/1/10	5.07	28682	7.95	34900
21/1/10	5.15	28934	7.95	34970
22/1/10	5.19	29020	7.98	35030

29148

7.98

35000

5.24

23/1/10

24/1/10	5.33	29477	8.02	35200
25/1/10	5.44	30011	8.04	35430
26/1/10	5.62	30862	8.06	35830
27/1/10	5.7	31286	8.05	36170
28/1/10	5.71	31552	8.11	37000
29/1/10	5.72	31959	8.18	37760
30/1/10	5.74	32240	8.3	38170
31/1/10	5.89	32830	8.4	38480
1/2/10	6.1	33681	8.64	38860
2/2/10	6.29	34745	8.86	39300
3/2/10	6,43	36002	8,98	39740
4/2/10	6.6	37225	9.07	40140
5/2/10	6.79	38345	9.18	40550
6/2/10	6.98	38980	9.3	40770
7/2/10	7.17	39934	9.42	40960
8/2/10	7.27	40385	9.53	41140
9/2/10	7.3	40310	9.64	41210
10/2/10	7.31	40083	9.7	41210
11/2/10	7,32	39947	9,75	41140
12/2/10	7.32	39724	9,8	40990
13/2/10	7.32	39469	9.82	40920
14/2/10	7.27	39051	9.82	40770
15/2/10	7.23	38751	9.8	40700
16/2/10	7.2	38555	9.76	40700
17/2/10	7.15	38283	9.74	40620
18/2/10	7.13	38169	9.7	40510
19/2/10	7.1	38086	9.68	40440

Tabla 2 Información de caudales medios diarios Estaciones Francisco de Orellana, Nuevo RocaFuerte y Bellavista - Río Napo

	Estaciones hidrométricas				Estaci	ones hidrome	étricas		Estaci	ones hidromé	etricas		Estac hidrom	
Fecha	Fco Orellana	Nuevo Roca Fuerte	Bellavista Mazan	Fecha	Fco Orellana	Nuevo Roca Fuerte	Bellavista Mazan	Fecha	Fco Orellana	Nuevo Roca Fuerte	Bellavista Mazan	Fecha	Fco Orellana	Nuevo Roca Fuerte
06-01-01	559.7	1504	5766	01-01-02	1576	2972	8572	01-01-03	595.8	1604	5938	01-01-04	1907	2649
07-01-01	600.9	1471	5589	02-01-02	1416	2669	8476	02-01-03	560.4	1496	6011	02-01-04	1007	3178
08-01-01	526	1401	5555	03-01-02	1519	3209	8256	03-01-03	551.5	1390	6162	03-01-04	931.2	2761
09-01-01	530.7	1420	5486	04-01-02	1345	2985	8015	04-01-03	547.3	1300	6157	04-01-04	1276	2242
10-01-01	626.7	1340	5274	05-01-02	1225	2504	7807	05-01-03	532.3	1240	5945	05-01-04	1637	2142
11-01-01	661.8	1349	5049	06-01-02	1112	2185	7601	06-01-03	647	1218	5624	06-01-04	1209	2440
12-01-01	678.8	1471	4706	07-01-02	999.2	1948	7365	07-01-03	999.7	1208	5260	07-01-04	1690	2636
13-01-01	688.1	1530	4340	08-01-02	958.7	1781	7149	08-01-03	662.8	1328	4934	08-01-04	2050	2543
14-01-01	634.2	1558	4020	09-01-02	1068	1951	6744	09-01-03	593.1	1594	4614	09-01-04	1160	3289
15-01-01	575.8	1564	3708	10-01-02	955.5	1905	6112	10-01-03	675.3	1522	4411	10-01-04	944.4	3048
16-01-01	630.8	1496	3545	11-01-02	1068	1966	5552	11-01-03	902.1	1421	4230	11-01-04	851.4	2493
17-01-01	921.1	1428	3439	12-01-02	1122	2150	5052	12-01-03	670	1432	4133	12-01-04	774	2212
18-01-01	821.8	1525	3414	13-01-02	1104	2907	4562	13-01-03	636.9	1567	4149	13-01-04	722.7	2030
19-01-01	753	1822	3485	14-01-02	981.7	2668	4100	14-01-03	630.6	1480	4328	14-01-04	667.4	1878
20-01-01	732.8	1770	3576	15-01-02	815.6	2094	3756	15-01-03	745.4	1382	4387	15-01-04	644.4	1772
21-01-01	730	1682	3696	16-01-02	736.3	1878	3677	16-01-03	809.2	1358	4291	16-01-04	598.3	1668
22-01-01	733.6	1680	3809	17-01-02	730	1790	3704	17-01-03	717.4	1418	4321	17-01-04	592.7	1585
23-01-01	773.6	1850	4011	18-01-02	727.3	1651	3744	18-01-03	638.3	1465	4378	18-01-04	672	1512
24-01-01	829.6	1945	4357	19-01-02	718.7	1566	3644	19-01-03	546.4	1423	4226	19-01-04	713.4	1442
25-01-01	978.1	2077	4772	20-01-02	730.2	1572	3369	20-01-03	516.1	1302	3991	20-01-04	756	1373
26-01-01	1019	2119	5169	21-01-02	773.6	1476	2989	21-01-03	606.6	1205	3753	21-01-04	703.1	1305
27-01-01	1008	2114	5454	22-01-02	833.9	1443	2701	22-01-03	646.8	1144	3546	22-01-04	668.1	1252
28-01-01	977.7	2056	5566	23-01-02	871.3	1526	2542	23-01-03	528.2	1160	3359	23-01-04	657.9	1252
29-01-01	950.1	1999	5473	24-01-02	1003	1774	2541	24-01-03	513	1203	3105	24-01-04	672	1379
30-01-01	924.9	1942	5353	25-01-02	1148	1687	2769	25-01-03	570.1	1152	2886	25-01-04	649.8	1382
31-01-01	886.2	1879	5324	26-01-02	1171	2063	3162	26-01-03	511.6	1110	2824	26-01-04	621.6	1456
01-02-01	844.8	1820	5340	27-01-02	1187	2506	3412	27-01-03	513.2	1121	2721	27-01-04	607.6	1547
02-02-01	824.1	1778	5355	28-01-02	1153	2381	3548	28-01-03	511.8	1095	2493	28-01-04	596.7	1381

03-02-01	833.6	1770	5273	29-01-02	1104	2146	3706	29-01-03	540.5	1064	2302	29-01-04	597.6	1231
04-02-01	849.9	1791	5194	30-01-02	1182	2213	3938	30-01-03	543.4	1058	2034	30-01-04	584.8	1157
05-02-01	857.7	1810	5073	31-01-02	1484	2132	4334	31-01-03	820.9	1060	1839	31-01-04	567.2	1114
06-02-01	863.9	1850	4886	01-02-02	1876	2236	4650	01-02-03	1147	1106	1601	01-02-04	555.1	1086
07-02-01	940.8	1976	4774	02-02-02	1688	2794	4790	02-02-03	1107	1220	1513	02-02-04	551.4	1064
08-02-01	1000	2088	4659	03-02-02	1326	3980	4798	03-02-03	915.7	1526	1524	03-02-04	594,3	1046
09-02-01	1024	2154	4466	04-02-02	1075	3405	4737	04-02-03	903.2	1702	1536	04-02-04	662.4	1043
10-02-01	1016	2158	4384	05-02-02	1077	2861	4681	05-02-03	816.2	1601	1540	05-02-04	648,2	1039
11-02-01	999.8	2128	4352	06-02-02	1068	2129	4943	06-02-03	843.3	1557	1556	06-02-04	602.8	1028
12-02-01	981.9	2126	4348	07-02-02	1068	2381	5697	07-02-03	1017	1550	1651	07-02-04	545.2	1112
13-02-01	963.3	2139	4372	08-02-02	1008	2332	6091	08-02-03	1164	1555	2003	08-02-04	417.6	1163
14-02-01	964.7	2133	4589	09-02-02	958.7	2051	6238	09-02-03	1237	1735	2530	09-02-04	381.1	1077
15-02-01	963.4	2117	5100	10-02-02	941.7	1990	6170	10-02-03	1250	1920	3018	10-02-04	409.3	1022
16-02-01	951.5	2087	5630	11-02-02	936.1	1974	6344	11-02-03	1024	2060	3422	11-02-04	436.3	1013
17-02-01	948.4	2025	5993	12-02-02	932.2	2025	6809	12-02-03	1011	2090	3775	12-02-04	422.8	1028
18-02-01	915.4	1958	5910	13-02-02	930.5	2013	7034	13-02-03	834.5	1985	4090	13-02-04	416.5	1069
19-02-01	767.5	1830	5580	14-02-02	911.4	2016	6992	14-02-03	727.5	1926	4426	14-02-04	417.4	1023
20-02-01	772.4	1818	5271	15-02-02	833.6	1971	6755	15-02-03	688.5	1783	4825	15-02-04	441.1	978.9
21-02-01	584.2	1832	5172	16-02-02	810.7	1890	6393	16-02-03	722.5	1631	5146	16-02-04	449.3	970.3
22-02-01	659.8	1834	5018	17-02-02	856.6	1781	6241	17-02-03	661.4	1526	5383	17-02-04	455.6	976.3
23-02-01	771.9	1633	4721	18-02-02	937.9	1719	5910	18-02-03	592.2	1470	5353	18-02-04	427.9	973.6
24-02-01	864.4	1737	4310	19-02-02	973.8	2003	5441	19-02-03	557.7	1377	5144	19-02-04	454.7	998.7
25-02-01	923.8	1926	4048	20-02-02	947.5	2167	4830	20-02-03	889.4	1267	4800	20-02-04	632.8	1012
26-02-01	831.4	2066	3872	21-02-02	903.6	2209	4587	21-02-03	1168	1207	4569	21-02-04	616.5	977.5
27-02-01	879	2080	3764	22-02-02	886.8	2135	4211	22-02-03	990.3	1316	4224	22-02-04	582.8	958.9
28-02-01	940.6	2014	3699	23-02-02	927.9	1981	3996	23-02-03	719.9	1630	3889	23-02-04	524.7	953.6
01-03-01	1127	2080	3876	24-02-02	981.3	1987	4137	24-02-03	1530	1608	3537	24-02-04	449.2	971.6
02-03-01	1058	2418	4295	25-02-02	1021	2105	4407	25-02-03	1313	1518	3236	25-02-04	431.3	1080
03-03-01	1213	2494	4322	26-02-02	1012	2157	4529	26-02-03	867.1	1914	2949	26-02-04	555.4	1201
04-03-01	1410	2670	4125	27-02-02	950.3	2167	4450	27-02-03	827.5	1912	2956	27-02-04	665.3	1134
05-03-01	1419	2733	3954	28-02-02	814.9	2189	4366	28-02-03	1328	1634	3146	28-02-04	715.3	1088
06-03-01	983.4	2640	3991	01-03-02	793.8	2183	4366	01-03-03	1945	1653	3308	29-02-04	690.7	1169
07-03-01	892.4	2584	4263	02-03-02	779.8	2304	4749	02-03-03	1147	2189	3615	01-03-04	812.8	1287
08-03-01	797.2	2257	4642	03-03-02	787.1	2364	5046	03-03-03	980.1	2499	4093	02-03-04	905.5	1328
														

09-03-01	807.8	1916	5037	04-03-02	768.6	2376	5287	04-03-03	1105	2207	4390	03-03-04	1227	1259
10-03-01	775.9	1720	5488	05-03-02	760.8	2409	5520	05-03-03	1404	2058	4480	04-03-04	1410	1495
11-03-01	772	1668	6151	06-03-02	752.4	2428	5725	06-03-03	1468	2209	4878	05-03-04	1542	1973
12-03-01	810.6	1613	6395	07-03-02	744	2425	5964	07-03-03	1034	2503	5516	06-03-04	1414	1888
13-03-01	842	1597	6316	08-03-02	736.7	2319	6128	08-03-03	856.2	2476	5896	07-03-04	914.5	2253
14-03-01	798.9	1728	6204	09-03-02	717.1	2339	6152	09-03-03	854.5	2156	6033	08-03-04	752.9	2280
15-03-01	782.6	1889	6022	10-03-02	701.1	2371	6170	10-03-03	805.2	1952	5945	09-03-04	900.1	1877
16-03-01	796.1	1676	6015	11-03-02	699.4	2391	6222	11-03-03	750.2	1881	6257	10-03-04	2005	1723
17-03-01	834.1	1647	6069	12-03-02	723.1	2352	6384	12-03-03	1077	1789	6586	11-03-04	2970	2157
18-03-01	884	1667	6050	13-03-02	761.7	2324	6566	13-03-03	990.4	1716	6589	12-03-04	2319	3471
19-03-01	966.9	1787	5848	14-03-02	755.2	2317	6730	14-03-03	966	1869	6366	13-03-04	1419	4234
20-03-01	1146	1918	5587	15-03-02	755.8	2578	6699	15-03-03	1150	1901	6124	14-03-04	1169	3585
21-03-01	1100	2146	5378	16-03-02	755.8	2629	6598	16-03-03	1192	1905	5947	15-03-04	1023	3029
22-03-01	891.5	2199	5243	17-03-02	864	2542	6571	17-03-03	1075	2053	5830	16-03-04	1832	2722
23-03-01	849.1	2034	5260	18-03-02	1476	2690	6501	18-03-03	1029	2137	5802	17-03-04	1415	2721
24-03-01	1003	1915	5248	19-03-02	1910	2705	6514	19-03-03	969.7	2064	5892	18-03-04	944.6	3078
25-03-01	1127	1773	5211	20-03-02	1982	2732	6778	20-03-03	859.3	2006	6013	19-03-04	836.8	2719
26-03-01	1176	1993	5281	21-03-02	2011	2866	7064	21-03-03	900.1	1895	6083	20-03-04	1087	2416
27-03-01	1180	2135	5685	22-03-02	2074	2919	7313	22-03-03	781.4	1820	6254	21-03-04	769.6	2270
28-03-01	1186	2250	6319	23-03-02	1744	2974	7534	23-03-03	706	1763	6294	22-03-04	792.1	2309
29-03-01	1130	2298	6618	24-03-02	1617	2994	7835	24-03-03	810.9	1682	6200	23-03-04	703.6	2113
30-03-01	961.4	2410	6341	25-03-02	1332	3023	8111	25-03-03	804.4	1574	6056	24-03-04	1046	2036
31-03-01	820.9	2484	6081	26-03-02	1239	2972	8398	26-03-03	904.8	1590	5903	25-03-04	1143	1971
01-04-01	711.4	2342	6062	27-03-02	1243	2976	8712	27-03-03	1001	1666	5838	26-03-04	909	2108
02-04-01	705.8	2218	6105	28-03-02	1272	3056	8924	28-03-03	1588	1772	5791	27-03-04	1069	2156
03-04-01	770.5	2247	6200	29-03-02	1291	3096	8995	29-03-03	1608	2023	5684	28-03-04	813.1	2003
04-04-01	814	2312	6276	30-03-02	1257	3105	9013	30-03-03	916.6	2506	5567	29-03-04	768.8	2034
05-04-01	819.6	2350	6341	31-03-02	1251	3177	8988	31-03-03	806.1	2440	5406	30-03-04	685	1924
06-04-01	814	2332	6373	01-04-02	1250	3133	8890	01-04-03	722.7	2043	5355	31-03-04	745.8	1793
07-04-01	797.2	2340	6449	02-04-02	1244	3184	8802	02-04-03	689.5	1821	5450	01-04-04	710.6	1732
08-04-01	913.8	2369	6625	03-04-02	1216	3280	8879	03-04-03	740.3	1707	5740	02-04-04	718.2	1726
09-04-01	1040	2420	6922	04-04-02	1145	3274	9218	04-04-03	760.5	1621	6125	03-04-04	908.6	1660
10-04-01	923.8	2547	7005	05-04-02	1179	3154	9477	05-04-03	1059	1613	6044	04-04-04	919.3	1668
11-04-01	765.9	2427	7034	06-04-02	1194	3182	9623	06-04-03	1134	1671	5781	05-04-04	724.2	1780
				1										

12-04-01	720.1	2068	7353	07-04-02	1225	3237	9714	07-04-03	1364	1901	5479	06-04-04	814.9	1769
13-04-01	738	1550	8066	08-04-02	1176	3148	9935	08-04-03	1334	2077	5222	07-04-04	961.5	1620
14-04-01	785.5	1482	8450	09-04-02	1108	3196	10030	09-04-03	1217	2234	5142	08-04-04	948.2	1578
15-04-01	848.7	1534	8482	10-04-02	1019	3110	10120	10-04-03	1283	2266	5338	09-04-04	1424	1640
16-04-01	930,4	1648	8244	11-04-02	999.9	3090	10140	11-04-03	1022	2236	5671	10-04-04	1142	1629
17-04-01	1026	1811	8068	12-04-02	958	2968	10090	12-04-03	1112	2196	5965	11-04-04	1008	2083.7
18-04-01	1053	1994	7887	13-04-02	954	2915	10090	13-04-03	2222	2106	6279			
19-04-01	961.7	2203	7868	14-04-02	987.6	2828	10050	14-04-03	2108	2417	6510			
20-04-01	933.8	2318	7896	15-04-02	1114	2840	9961	15-04-03	1275	3018	6719			
21-04-01	840.9	1944	7765	16-04-02	1104	2783	9869	16-04-03	974.6	2900	6872			
22-04-01	811.2	1938	7705	17-04-02	1030	2731	9729	17-04-03	1270	2393	6938			
23-04-01	826.3	2009	7805	18-04-02	1042	2791	9515	18-04-03	1267	2114	7090			
24-04-01	873.6	1663	7907	19-04-02	1007	2836	9236	19-04-03	897	2289	7403			
25-04-01	985.5	1656	7857	20-04-02	1191	2834	9068	20-04-03	1084	2223	7748		_	
26-04-01	990.4	1713	7567	21-04-02	1301	2849	9006	21-04-03	1140	1982	7718			
27-04-01	973.2	1767	7226	22-04-02	1333	2912	8988	22-04-03	1246	2048	7430			
28-04-01	1034	1833	6974	23-04-02	1366	3008	8899	23-04-03	978.5	2131	7174			
29-04-01	963.3	1944	6830	24-04-02	1328	2952	8750	24-04-03	1040	2163	7205			
30-04-01	1127	2094	6825	25-04-02	1326	2993	8643	25-04-03	1400	2041	7178			
01-05-01	1025	2376	7086	26-04-02	1312	2933	8664	26-04-03	1138	2111	7360			
02-05-01	982.6	2420	7270	27-04-02	1294	2821	8754	27-04-03	1137	2320	7581			
03-05-01	1112	2440	7370	28-04-02	1309	2728	8899	28-04-03	1496	2224	7626			
04-05-01	1206	2307	7564	29-04-02	1344	2740	8985	29-04-03	1106	2276	7545	-		
05-05-01	1424	2151	7940	30-04-02	1372	2813	8965	30-04-03	1497	2474	7518			
06-05-01	1638	2299	8308	01-05-02	1429	2966	8832	01-05-03	1692	2358	7594			
07-05-01	1796	2288	8532	02-05-02	1431	2924	8667	02-05-03	1956	2846	7606			
08-05-01	2040	2427	8485	03-05-02	1440	2856	8551	03-05-03	1486	3084	7599			
09-05-01	2951	3194	8370	04-05-02	1512	2927	8404	04-05-03	1293	3063	7653			
10-05-01	2879	3960	8319	05-05-02	1537	2982	8229	05-05-03	966	2855	7759			
11-05-01	2203	3641	8261	06-05-02	1596	3172	8084	06-05-03	2532	2653	7831			
12-05-01	1059	3769	8318	07-05-02	1555	3134	8018	07-05-03	2896	2824	8046			
13-05-01	1370	3574	8473	08-05-02	1507	3043	8097	08-05-03	3609	3957	8310			
14-05-01	1217	2968	8729	09-05-02	1533	3050	8122	09-05-03	1819	4341	8567			
15-05-01	1206	2417	9009	10-05-02	1573	3067	8132	10-05-03	1254	4184	8678			
***************************************				· · · · · · · · · · · · · · · · · · ·										

16-05-01	1081	2368	9220	11-05-02	1590	3107	8285	11-05-03	1184	3433	8690	
17-05-01	995.6	2456	9313	12-05-02	1586	3169	8514	12-05-03	1480	2983	8704	
18-05-01	1228	2185	9288	13-05-02	1570	3170	8694	13-05-03	1593	2887	8810	
19-05-01	1175	1958	9136	14-05-02	1501	3075	8865	14-05-03	1450	3011	9006	
20-05-01	1322	2303	9038	15-05-02	1456	3152	8890	15-05-03	1633	3067	9252	
21-05-01	1322	2626	9072	16-05-02	1395	3103	8888	16-05-03	1812	3045	9499	
22-05-01	1127	2683	9113	17-05-02	1338	2987	8883	17-05-03	2265	3052	9778	
23-05-01	936.3	2592	9086	18-05-02	1331	3001	8972	18-05-03	2273	3408	9989	
24-05-01	898	2428	9125	19-05-02	1337	3019	9218	19-05-03	2319	3275	10140	
25-05-01	819.6	2182	9154	20-05-02	1333	2928	9377	20-05-03	1647	3237	10240	
26-05-01	790.7	2066	9127	21-05-02	1323	2897	9486	21-05-03	1431	3170	10290	
27-05-01	1120	2133	9102	22-05-02	1294	2912	9568	22-05-03	1312	2922	10360	
26-05-01	1443	2162	9140	23-05-02	1248	2898	9669	23-05-03	1304	2744	10440	
29-05-01	1580	2579	9154	24-05-02	1196	2781	9761	24-05-03	1378	2535	10480	
30-05-01	1663	3542	9095	25-05-02	1196	2652	9772	25-05-03	1486	2564	10560	
31-05-01	1610	3562	8945	26-05-02	1249	2636	9664	26-05-03	1332	2747	10720	
01-06-01	1483	3717	8804	27-05-02	1302	2685	9506	27-05-03	1466	2814	10800	
02-06-01	1368	3435	8824	28-05-02	1378	2881	9334	28-05-03	1431	2589	10840	
03-06-01	1277	3144	9018	29-05-02	1367	2906	9198	29-05-03	1311	2897	10880	
04-06-01	1215	3021	9222	30-05-02	1339	2915	9063	30-05-03	1285	2821	10900	
05-06-01	1181	2822	9325	31-05-02	1327	2927	8999	31-05-03	1290	2573	10880	
06-06-01	1141	2640	9261	01-06-02	1327	2932	9061	01-06-03	1191	2564	10860	
07-06-01	1123	2568	8991	02-06-02	1706	2891	9179	02-06-03	1184	2610	10840	
08-06-01	1132	2476	8629	03-06-02	2774	2849	9291	03-06-03	1164	2376	10840	
09-06-01	1193	2451	8240	04-06-02	1891	2958	9384	04-06-03	1176	2367	10820	
10-06-01	1400	2486	8163	05-06-02	1256	3406	9377	05-06-03	1425	2327	10820	
11-06-01	1842	2610	8342	06-06-02	1135	3028	9332	06-06-03	1540	2373	10840	
12-06-01	2125	3046	8454	07-06-02	1304	2691	9311	07-06-03	1662	2936	10810	
13-06-01	2308	4220	8516	08-06-02	1231	2526	9309	08-06-03	1539	3180	10760	
14-06-01	1520	3871	8538	09-06-02	1241	2500	9309	09-06-03	1338	3491	10760	-
15-06-01	1107	3544	8650	10-06-02	1252	2514	9307	10-06-03	1260	3222	10720	
16-06-01	1032	3274	8843	11-06-02	1269	2564	9284	11-06-03	1227	2778	10630	
17-06-01	1126	3186	9086	12-06-02	1299	2604	9211	12-06-03	1219	2587	10570	
18-06-01	1240	3118	9302	13-06-02	1372	2610	9086	13-06-03	1206	2519	10540	

19-06-01	1492	3162	9466	14-06-02	1621	2610	6927	14-06-03	1262	2516	10560	
20-06-01	2274	3350	9588	15-06-02	1713	2610	8770	15-06-03	1340	2464	10590	
21-06-01	1396	3472	9725	16-06-02	1968	2610	8670	16-06-03	1518	2578	10650	
22-06-01	1119	3380	9787	17-06-02	1974	2610	6675	17-06-03	1807	2693	10710	
23-06-01	958.7	2858	9811	18-06-02	1914	2610	8786	18-06-03	1636	2951	10740	
24-06-01	830.8	2523	9757	19-06-02	1933	2611	8838	19-06-03	1503	3154	10730	
25-06-01	780.4	2381	9703	20-06-02	1901	2625	8870	20-06-03	1857	3302	10690	
26-06-01	797.2	2282	9654	21-06-02	1898	2662	8779	21-06-03	1881	3571	10630	
27-06-01	1158	2245	9608	22-06-02	1880	2682	8664	22-06-03	1779	3841	10560	
28-06-01	2483	2267	9502	23-06-02	1811	2717	8594	23-06-03	1639	3707	10470	
29-06-01	2283	2372	9316	24-06-02	1813	2726	8538	24-06-03	1533	3447	10440	
30-06-01	1630	2529	8946	25-06-02	1857	2754	8398	25-06-03	1451	3153	10460	
01-07-01	1261	2624	8583	26-06-02	1895	2825	8385	26-06-03	1480	2950	10500	
02-07-01	1053	2703	8389	27-06-02	1898	2876	8454	27-06-03	1356	2855	10500	
03-07-01	876.5	2658	8371	28-06-02	1898	2978	8499	28-06-03	1263	2876	10540	
04-07-01	1230	2555	8720	29-06-02	1898	3086	8472	29-06-03	1344	2710	10560	
05-07-01	1331	2520	8976	30-06-02	1898	3091	8329	30-06-03	1572	2636	10610	
06-07-01	1449	2496	9145	01-07-02	1910	3010	8188	01-07-03	1438	2619	10640	
07-07-01	1061	2468	9081	02-07-02	2039	2953	8036	02-07-03	1292	2724	10640	
08-07-01	1794	2454	8927	03-07-02	2535	3223	7947	03-07-03	1352	2798	10590	·
09-07-01	1553	2439	8762	04-07-02	3458	3570	7891	04-07-03	1520	2596	10500	
10-07-01	1032	2387	8578	05-07-02	3792	3042	7860	05-07-03	1330	2737	10410	
11-07-01	968.2	2312	8333	06-07-02	2710	3164	8049	06-07-03	1166	2923	10310	
12-07-01	1061	2279	8142	07-07-02	1667	3343	8308	07-07-03	1117	2541	10240	
13-07-01	1104	2275	8055	08-07-02	1338	3481	8571	08-07-03	1244	2272	10150	
14-07-01	1000	2209	7958	09-07-02	1489	3603	8803	09-07-03	1218	2211	10060	
15-07-01	836.8	2074	7836	10-07-02	1348	3574	8938	10-07-03	1041	2515	10010	
16-07-01	829.7	2055	7687	11-07-02	1760	3265	9016	11-07-03	1416	2489	9948	
17-07-01	886.8	1862	7554	12-07-02	2642	3352	9070	12-07-03	1759	2295	9901	
18-07-01	883.3	1790	7329	13-07-02	2088	3142	9120	13-07-03	1448	2532	9789	
19-07-01	1155	1740	7165	14-07-02	1722	3238	9232	14-07-03	1169	2672	9583	
20-07-01	1019	1748	7160	15-07-02	1401	3298	9327	15-07-03	882.7	2478	9464	
21-07-01	1016	1819	7210	16-07-02	1201	3327	9416	16-07-03	790.6	2191	9314	
22-07-01	1095	1904	7358	17-07-02	1350	3167	9506	17-07-03	935.6	1953	9188	

23-07-01	1445	1974	7522	18-07-02	1654	3066	9685	18-07-03	1452	1814	9111	
24-07-01	1423	2015	7651	19-07-02	1892	3004	9866	19-07-03	1221	1897	9054	
25-07-01	1024	2095	8028	20-07-02	1387	3085	9994	20-07-03	962.3	2113	8981	
26-07-01	1484	2197	8442	21-07-02	1172	3231	10100	21-07-03	972.3	1993	8798	
27-07-01	2123	2323	8743	22-07-02	930.2	3063	10200	22-07-03	1053	1797	8566	
28-07-01	3399	2518	8890	23-07-02	842.8	2984	10290	23-07-03	1226	1744	8200	
29-07-01	3559	2830	8890	24-07-02	867.6	2968	10370	24-07-03	953.1	1802	7879	
30-07-01	1244	3074	8745	25-07-02	1559	2883	10440	25-07-03	1050	1893	7666	
31-07-01	974.3	3184	8475	26-07-02	2270	2726	10540	26-07-03	2174	1809	7367	
01-08-01	905.1	3059	8213	27-07-02	1407	3309	10670	27-07-03	1647	2083	8928	
02-08-01	821.1	2740	8113	28-07-02	1044	3874	10790	28-07-03	1164	2752	6614	
03-08-01	946.3	2500	8262	29-07-02	1471	3172	10920	29-07-03	1147	2536	6416	
04-08-01	828.9	2314	8449	30-07-02	2753	2955	11020	30-07-03	1170	2218	8314	
05-08-01	1209	2263	8468	31-07-02	2728	3614	11120	31-07-03	1005	2108	8285	
06-08-01	1396	2342	8319	01-08-02	1631	4029	11200	01-08-03	1001	2128	8560	
07-08-01	983.4	2390	8117	02-08-02	1341	3376	11250	02-08-03	1140	2771	7010	
08-08-01	910.3	2365	7953	03-08-02	1362	2874	11310	03-08-03	879.7	2642	7126	
09-08-01	903.6	2310	7792	04-08-02	1312	2880	11290	04-08-03	1029	2194	7077	
10-08-01	823.5	2299	7851	05-08-02	1255	2915	11290	05-08-03	1035	1985	6886	
11-08-01	807.3	2351	7874	06-08-02	933.8	3002	11260	06-08-03	871.9	2008	6908	
12-08-01	810	2245	7745	07-08-02	1019	3037	11210	07-08-03	835.8	1991	7138	
13-08-01	810.6	2122	7462	08-08-02	1468	3045	11150	08-08-03	880.5	1876	7061	
14-08-01	800.5	2055	7280	09-08-02	1154	2979	11060	09-08-03	1105	1849	6877	
15-08-01	762.5	1997	7286	10-08-02	901.6	2729	10980	10-08-03	2108	1975	6622	
16-08-01	875.6	1927	7216	11-08-02	881.7	2615	10870	11-08-03	1193	2435	6393	
17-08-01	883.3	1878	7016	12-08-02	821.3	2495	10680	12-08-03	1161	2880	6242	
18-08-01	1135	1876	6611	13-08-02	931.1	2368	10440	13-08-03	881.1	2524	6229	
19-08-01	924.7	1859	6224	14-08-02	1025	2294	10140	14-08-03	773.6	2360	6285	
20-08-01	1146	1856	5777	15-08-02	1209	2246	9776	15-08-03	1136	2150	6434	
21-08-01	1476	2045	5499	16-08-02	1589	2325	9328	16-08-03	1613	2084	6820	
22-08-01	4295	2380	5380	17-08-02	1388	2430	8885	17-08-03	1042	2425	7432	
23-08-01	2815	2751	5256	18-08-02	1160	2597	8530	18-08-03	1079	2663	7754	
24-08-01	1080	2790	5258	19-08-02	1073	2482	8227	19-08-03	914.3	2226	7813	
25-08-01	972.9	2368	5329	20-08-02	1025	2250	7961	20-08-03	831.6	1999	7774	

26-08-01	1157	2122	5532	21-08-02	1070	2116	7834	21-08-03	774	1878	7780	
27-08-01	929.7	1983	6156	22-08-02	1128	2081	7888	22-08-03	741.3	1762	7959	
28-08-01	983.9	1928	6647	23-08-02	1121	2107	7911	23-08-03	709.5	1680	8140	
29-08-01	921,4	1900	6892	24-08-02	1016	2154	7729	24-08-03	8.008	1633	8196	
30-08-01	744.9	1843	6704	25-08-02	943.3	2138	7486	25-08-03	794.7	1552	8149	
31-08-01	729	1777	6390	26-08-02	986.6	2029	7293	26-08-03	1062	1509	8015	
01-09-01	795.9	1735	5920	27-08-02	1001	1915	7262	27-08-03	1521	1589	7802	
02-09-01	842	1731	5626	28-08-02	1111	1808	7237	28-08-03	997.5	1940	7563	
03-09-01	778.7	1786	5424	29-08-02	856.6	1762	7241	29-08-03	1346	2062	7376	
04-09-01	925.1	1860	5134	30-08-02	753.8	1801	7198	30-08-03	1097	1943	7212	
05-09-01	1412	1886	4850	31-08-02	716.3	1809	7075	31-08-03	891.3	2049	7059	
06-09-01	1210	2070	4743	01-09-02	807.5	1807	6964	01-09-03	772.7	2093	6958	
07-09-01	1029	2799	4788	02-09-02	1023	1798	6776	02-09-03	953.8	1970	6884	
08-09-01	991.9	2371	4918	03-09-02	1525	1830	6535	03-09-03	887.8	1694	6985	
09-09-01	871.5	2172	4922	04-09-02	1305	1900	6227	04-09-03	716.8	1644	7039	_
10-09-01	791.6	2058	4889	05-09-02	1019	1997	5964	05-09-03	688.1	1579	7007	
11-09-01	802.8	2023	5380	06-09-02	828.4	2060	5873	06-09-03	711.4	1605	6892	
12-09-01	769.2	2021	6118	07-09-02	1005	1979	5987	07-09-03	781.2	1585	6584	
13-09-01	926.7	1986	6321	08-09-02	1787	1883	6504	08-09-03	689.2	1576	6270	
14-09-01	978.3	1928	6075	09-09-02	1077	1934	6996	09-09-03	685.4	1412	6023	
15-09-01	1088	1891	5869	10-09-02	1000	2311	7133	10-09-03	672.6	1403	5746	
16-09-01	1044	1881	5770	11-09-02	970.1	2073	7061	11-09-03	1857	1416	5381	
17-09-01	884.2	1882	5703	12-09-02	1015	1992	6928	12-09-03	2078	1634	5254	
18-09-01	859.4	1858	5636	13-09-02	800.2	1961	6827	13-09-03	1577	2473	5170	
19-09-01	901.9	1857	5423	14-09-02	751.9	1875	6807	14-09-03	1175	2763	4993	
20-09-01	913.1	1842	5314	15-09-02	818.5	1799	6845	15-09-03	921.1	2285	4745	
21-09-01	974.1	1861	5376	16-09-02	882.9	1676	6832	16-09-03	784.7	1855	4538	
22-09-01	1188	1886	5374	17-09-02	849.3	1615	6670	17-09-03	825.4	1681	4587	
23-09-01	1102	1910	5280	18-09-02	1315	1596	6342	18-09-03	1171	1845	5202	
24-09-01	846.7	1960	5241	19-09-02	1140	1569	5860	19-09-03	1956	1664	5757	
25-09-01	755.8	1992	5250	20-09-02	921.8	1841	5417	20-09-03	1162	1803	5875	
26-09-01	839.8	1927	5258	21-09-02	804	1738	5166	21-09-03	1076	2080	5638	
27-09-01	907	1852	5312	22-09-02	1006	1633	5028	22-09-03	990.1	2040	5317	
28-09-01	947.3	1734	5437	23-09-02	835.8	1541	4878	23-09-03	1415	1832	5082	

	943.9	1682	5621	24-09-02	670.9	1468	4866	24-09-03	1052	1811	4985	
30-09-01	934.1	1673	5643	25-09-02	736	1396	4909	25-09-03	821.9	1900	5190	
01-10-01	959.9	1800	5499	26-09-02	858.3	1383	4770	26-09-03	711.3	1786	5443	
02-10-01	959.7	1649	5266	27-09-02	933.1	1409	4517	27-09-03	751.9	1532	5463	
03-10-01	926.7	1501	5022	28-09-02	1125	1487	4464	28-09-03	804.8	1431	5204	
04-10-01	749.5	1421	4919	29-09-02	849.7	1568	4346	29-09-03	1094	1422	5134	
05-10-01	679	1378	4999	30-09-02	766.2	1687	4133	30-09-03	1059	1456	5186	
06-10-01	713	1482	4950	01-10-02	705.3	1574	4094	01-10-03	1427	1712	5138	
07-10-01	679	1558	4651	02-10-02	638.6	1498	4216	02-10-03	1203	2256	4905	
08-10-01	785.2	1603	4284	03-10-02	599.9	1416	4360	03-10-03	931.4	2377	4642	<u>.</u>
09-10-01	1104	1582	4017	04-10-02	605	1240	4561	04-10-03	888.3	2106	4409	
10-10-01	742.8	1664	3837	05-10-02	639	1172	4636	05-10-03	1164	1899	4376	
11-10-01	732.7	1641	3740	06-10-02	660.3	1174	4462	06-10-03	1235	1931	4573	
12-10-01	814	1522	3819	07-10-02	687.9	1200	4250	07-10-03	982.8	1982	4941	
13-10-01	858.8	1493	4068	08-10-02	868.3	1194	4044	08-10-03	843.1	1965	5157	
14-10-01	847.6	1493	4358	09-10-02	1259	1261	3872	09-10-03	956	1848	5286	
15-10-01	738.3	1512	4315	10-10-02	1346	1386	3778	10-10-03	968.2	1704	5374	
16-10-01	679	1582	4121	11-10-02	1100	1554	3783	11-10-03	860.1	1655	5286	
17-10-01	749.5	1639	3926	12-10-02	1145	1754	3803	12-10-03	714.7	1709	5286	
16-10-01	930.3	1639	3837	13-10-02	979.9	2034	3764	13-10-03	1129	1804	5391	
19-10-01	991.2	1665	3833	14-10-02	892.5	1971	3736	14-10-03	1143	2047	5404	
20-10-01	1044	1688	3975	15-10-02	887.2	1796	3890	15-10-03	1056	2746	5295	-
21-10-01	1066	1851	4194	16-10-02	1031	1643	4416	16-10-03	986.2	3305	5226	
22-10-01	938.7	1618	4184	17-10-02	1069	1573	4892	17-10-03	1031	3023	5228	
23-10-01	826.9	1598	4147	18-10-02	1023	1642	5149	18-10-03	1159	2541	5320	
24-10-01	854.3	1611	4271	19-10-02	965.6	1776	5120	19-10-03	1230	2274	5608	
25-10-01	814.6	1603	4395	20-10-02	905	1896	4784	20-10-03	1321	2233	6389	
26-10-01	804.9	1640	4208	21-10-02	820.7	2066	4474	21-10-03	1387	2282	7118	
27-10-01	1132	1596	3928	22-10-02	764.8	1974	4305	22-10-03	1296	2468	7464	
28-10-01	923.6	1626	3782	23-10-02	895.7	1886	4534	23-10-03	1193	3008	7604	
29-10-01	857.7	1746	3880	24-10-02	1226	1998	5103	24-10-03	1115	2877	7480	
30-10-01	840.3	1715	4103	25-10-02	1488	2154	5385	25-10-03	1041	2432	7293	
31-10-01	788.2	1673	4214	26-10-02	1577	2426	5295	26-10-03	1071	2153	7084	
01-11-01	759.7	1664	4186	27-10-02	1249	2629	5241	27-10-03	1021	2022	7106	

	7383
	7622
04-11-01 1228 1776 4252 30-10-02 1491 2200 5939 30-10-03 1295 2592	
05-11-01 1423 1809 4350 31-10-02 1257 2285 6279 31-10-03 1437 2673	
06-11-01 1612 1860 4263 01-11-02 1007 2380 6501 01-11-03 1330 2475	
07-11-01 1964 1997 4145 02-11-02 984.7 2405 6542 02-11-03 1217 2244	
08-11-01 2054 2088 4185 03-11-02 976.2 2375 6556 03-11-03 1131 2079	
09-11-01 1446 2180 4350 04-11-02 966.1 2307 6735 04-11-03 1087 1978	
10-11-01 1268 2179 4542 05-11-02 1005 2247 6993 05-11-03 1029 2030	
11-11-01 1336 2081 4730 06-11-02 1085 2210 7514 06-11-03 978.5 2045	
12-11-01 1347 2010 4978 07-11-02 1011 2231 7788 07-11-03 1006 1880	
13-11-01 1310 1963 5388 08-11-02 959.3 2353 7678 08-11-03 1037 1724	
14-11-01 1191 1934 5866 09-11-02 1005 2421 7394 09-11-03 931.9 1808	
15-11-01 1072 1937 5985 10-11-02 1093 2296 7138 10-11-03 813.7 2078	
16-11-01 932.1 2059 5802 11-11-02 1138 2245 7122 11-11-03 783.2 2026	
17-11-01 742.8 2100 5576 12-11-02 1046 2386 7349 12-11-03 1501 1779	
18-11-01 719.8 2058 5359 13-11-02 1114 2519 7536 13-11-03 935.1 1766	
19-11-01 726.2 2070 5269 14-11-02 1079 2563 7493 14-11-03 1056 2128	
20-11-01 740.8 2069 5232 15-11-02 1048 2527 7406 15-11-03 1523 1926	
21-11-01 808.4 2033 5370 16-11-02 1196 2514 7507 16-11-03 1024 1987	
22-11-01 791.4 1976 5417 17-11-02 1288 2479 7694 17-11-03 778.5 2272	
23-11-01 634.1 1949 5432 18-11-02 1225 2478 7958 18-11-03 702.1 2030	
24-11-01 682.4 1958 5583 19-11-02 1117 2604 8111 19-11-03 638.4 1787	
25-11-01 716.4 1944 5643 20-11-02 1025 2640 8142 20-11-03 715.6 1685	
26-11-01 701.4 1875 5452 21-11-02 959.2 2569 8080 21-11-03 721.5 1637	
27-11-01 855.9 1786 5202 22-11-02 967.1 2512 8144 22-11-03 1549 1664	
28-11-01 763.6 1721 5052 23-11-02 1049 2488 8322 23-11-03 1599 1806	
29-11-01 802.8 1497 4909 24-11-02 1035 2486 8387 24-11-03 896.7 2482	
30-11-01 797.2 1458 4682 25-11-02 896.8 2541 8300 25-11-03 788 2512	
01-12-01 905.1 1487 4391 26-11-02 878 2583 8159 26-11-03 1451 2136	
02-12-01 963.2 1366 4157 27-11-02 1062 2525 8136 27-11-03 1857 2005	
03-12-01 879.5 1283 3965 28-11-02 1326 2428 8300 28-11-03 1343 2474	
04-12-01 1550 1261 3809 29-11-02 1163 2444 8514 29-11-03 1221 2752	
05-12-01 1727 1918 3655 30-11-02 1005 2548 8555 30-11-03 1008 2491	

06-12-01	1546	2790	3617	01-12-02	908.6	2300	8452	01-12-03	2270	2371			
07-12-01	2405	2357	3616	02-12-02	1017	2036	8315	02-12-03	2024	2498			
08-12-01	2810	2961	3779	03-12-02	1323	2052	8320	03-12-03	1272	3262			
09-12-01	1490	3142	3937	04-12-02	880.3	2164	8426	04-12-03	1512	2953			
10-12-01	1322	2496	4561	05-12-02	817.5	2280	8547	05-12-03	1503	2601			
11-12-01	1232	2452	5404	06-12-02	744.8	2024	8586	06-12-03	1165	2704			
12-12-01	1082	2595	5959	07-12-02	767.3	1858	8495	07-12-03	983.6	2610			
13-12-01	1047	2393	6427	08-12-02	774,7	1753	8414	08-12-03	831.9	2351			
14-12-01	1225	2203	6578	09-12-02	749.8	1682	8354	09-12-03	689.6	2156			
15-12-01	1373	2242	6472	10-12-02	945.1	1615	8138	10-12-03	651.1	1992			
16-12-01	1628	2636	6521	11-12-02	1226	1564	7715	11-12-03	634.7	1851			
17-12-01	1727	2790	6548	12-12-02	785.5	1674	7450	12-12-03	707.2	1766			
18-12-01	1379	3403	6488	13-12-02	672.6	1800	7138	13-12-03	723.1	1742			
19-12-01	1321	2939	6517	14-12-02	701.1	1587	6802	14-12-03	748.3	1746	·		
20-12-01	2126	2733	6719	15-12-02	857.4	1443	6539	15-12-03	781.2	1736			
21-12-01	1266	3224	7023	16-12-02	942.7	1426	6564	16-12-03	782.2	1710			
22-12-01	949	3176	7376	17-12-02	1205	1531	6604	17-12-03	868.6	1707			
23-12-01	1097	2621	7666	18-12-02	1219	1642	6388	18-12-03	1021	1729			
24-12-01	1871	2761	8041	19-12-02	924.2	1913	5746	19-12-03	3082	1907		-	
25-12-01	2761	3749	8215	20-12-02	766.5	2005	5156	20-12-03	2445	2574			:
26-12-01	1687	4360	8269	21-12-02	768.8	1882	4827	21-12-03	1293	3663			
27-12-01	1449	3701	8173	22-12-02	701.7	1755	4710	22-12-03	1254	3442			
28-12-01	1818	3110	8064	23-12-02	639.3	1670	4934	23-12-03	995.9	2889			
29-12-01	1348	2772	8107	24-12-02	788.7	1576	5270	24-12-03	976.2	2586			
30-12-01	1355	2903	8333	25-12-02	1054	1496	5516	25-12-03	1094	2358			
31-12-01	1504	2793	8451	26-12-02	819.5	1553	5688	26-12-03	1585	2325			
	-			27-12-02	1030	1722	5875	27-12-03	1581	2445			
				28-12-02	1286	1730	5963	28-12-03	1010	2853			
				29-12-02	828.6	1897	5862	29-12-03	1078	2658			
				30-12-02	703.9	2037	5716	30-12-03	1359	2361			
				31-12-02	651.5	1799	5781	31-12-03	2194	2403			

ANEXO 2 (Información de la geometría del río Amazonas y río Napo e Información de altimetría radar)

Tabla 1 Geometría del río Amazonas usada en el modelo hidrodinámico.

Nodos (52)	Longitud hacia aguas abajo (m)	Ancho (m)	Elevación (m)	Nodos (52)	Longitud hacia aguas abajo (m)	Ancho (m)	Elevación (m)
Francisco de Orellana Station	13035.2	342.3	88	Isla 9 Right side	3948.4	182.7	71
Isla 17 Lado izquierdo	21309.1	223	87.6	PT8	17309.1	807.6	70.9
Isla 17 Lado derecho	21309.1	290.1	87.6	Isla 8 Lado izquierdo	12375.9	326.6	70.8
PT16	10830.8	474.3	86.6	Isla 8 Lado derecho	12375.9	79.3	70.8
Isla 16 Lado izquierdo	7577.1	224.8	86	PT7	11252	296.8	70.4
Isla 16 Lado derecho	7577.1	203.8	86	PT6	12375.9	203.2	70.1
PT15	12664.9	366.9	85.6	Isla 7 Lado izquierdo	10764.7	243.7	69.7
Isla 15 Lado izquierdo	30320.2	491.4	85.4	Isla 7 Lado derecho	10764.7	139.1	69.7
Isla 15 Lado derecho	30320.2	218.2	85.4	PT5	7593.6	283.4	69
PT14	5411.5	398.2	84.5	Isla 6 Lado izquierdo	7601.1	538.1	68.2
Isla 14 Lado izquierdo	4921.5	122.2	82.7	Isla 6 Lado derecho	7601.1	142.8	68.2
Isla 14 Lado derecho	4921.5	150.8	82.7	PT4	11790.1	305.4	67.5
PT13	29529	438.4	82.1	Isla 5 Lado izquierdo	9653.9	123.5	66.8
Isla 13 Lado izquierdo	8991.4	139.5	79.8	Isla 5 Lado derecho	9653.9	344.9	66.8
Isla 13 Lado derecho	8991.4	225.1	79.8	PT3	10080	495.1	66.1
PT12	10925.7	320.5	76.5	Isla 4 Lado izquierdo	10661.4	285.9	65.8
Isla 12 Lado izquierdo	12639.7	206.7	75.9	Isla 4 Lado derecho	9919.4	339.6	65.8
Isla 12 Lado derecho	12639.7	167.7	75.9	PT2	9919.4	240.5	65
PT11	12086.7	246.7	74.1	Isla 3 Lado izquierdo	11024.1	136.8	64.6
Isla 11 Lado izquierdo	15349	231.2	73.5	Isla 3 Lado derecho	11024.1	278.5	64.6
Isla 11 Right side	15349	138.5	73.5	PT1	11152	261.6	64.4
PT10	2913.4	292.9	71.5	Isla 2 Lado izquierdo	14167.9	360.3	64

Isla 10 Lado izquierdo	4733.5	158.4	71.3	Isla 2 Lado derecho	14167.9	309.5	64
Isla 10 Lado derecho	4733.5	195.7	71.3	PT0	7415.8	314	63.4
PT9	5780.1	912.2	71.2	Isla 1 Lado izquierdo	7415.8	237.6	63
Tala O I ada imenianda	2040.4	542.0	71	Isla 1 Lado derecho	7415.8	267.7	63
Isla 9 Lado izquierdo	3948.4 543.8	343.8	71	Estación Tabatinga	0	485.6	62.5

Tabla 2 Información de altimetría radar ENVISAT en el ámbito del río Amazonas (geoide EGM2008) (a).

Día	Elevación (m.s.n.m)	Día	Elevación (m.s.n.m)	Día	Elevación (m.s.n.m)	Día	Elevación (m.s.n.m)
02 Diciembre 2002	82.10	11 Mayo 2004	82.49	30 Enero 2006	82.03	13 Agosto 2007	76.10
06 Enero 2003	82.55	15 Junio 2004	82.33	06 Marzo 2006	82.46	17 Septiembre 2007	76.51
10 Febrero 2003	81.62	20 Julio 2004	81.48	10 Abril 2008	84.46	22 Octubre 2007	76.06
21 Abril 2003	83.44	24 Agosto 2004	77.06	24 Julio 2006	82.00	26 Noviembre 2007	81.84
26 Mayo 2003	84.81	02 Noviembre 2004	79.83	28 Agosto 2008	76.80	31 Diciembre 2007	82.00
30 Junio 2003	83.48	07 Diciembre 2004	82.16	02 Octubre 2006	75.95	04 Febrero 2006	82.43
04 Agosto 2003	78.09	10 Enero 2005	81.44	06 Noviembre 2006	77.55	11 Marzo 2008	83.52
08 Septiembre 2003	77.32	14 Febrero 2005	81.19	11 Diciembre 2006	81.97	15 Abril 2008	83.59
13 Octubre 2003	78.27	21 Marzo 2005	82.43	15 Enero 2007	83.24	20 Mayo 2008	82.80
17 Noviembre 2003	80.24	25 Abril 2005	83.75	19 Febrero 2007	82.33	24 Junio 2008	81.06
22 Diciembre 2003	82.12	30 Mayo 2005	80.67	26 Marzo 2007	82.80	29 Julio 2008	79.38
26 Enero 2004	81.39	17 Octubre 2005	75.52	20 Abril 2007	83.94	02 Septiembre 2008	80.29
02 Marzo 2004	80.21	21 Noviembre 2005	79.78	04 Junio 2007	82.64	07 Octubre 2008	80.07
06 Abril 2004	82.41	26 Diciembre 2005	79.72	09 Julio 2007	79.92		

⁽a) Fuente: Joecila Santos da Silva, CESTU, Universidade do Estado do Amazonas, UEA - Brasil.

Tabla 3 Geometría del río Napo usada en el modelo hidrodinámico.

Nodos (32)	Longitud hacia aguas abajo (m)	Ancho (m)	Elevación (m)	Nodos (32)	Longitud hacia aguas abajo (m)	Ancho (m)	Elevación (m)
Estación Cabo Pantoja	3501.4	1156.3	165.5	Isla 4 Lado izquierdo	1440.7	496.2	162
Isla 9 Lado izquierdo	3629	321	165	Isla 4 Lado derecho	1440.7	324.3	162
Isla 9 Lado derecho	3629	562.6	165	PT3	2113.6	980	161.5
PT8	5233.5	1000	164.5	Isla 3 Lado izquierdo	4871.4	551.8	161
Isla 8 Lado izquierdo	4138.1	590	164	Isla 3 Lado derecho	4871.4	415.4	161
Isla 8 Lado derecho	4138.1	657,7	164	PT2	3233.8	730	160.5
PT7	1471.1	800	163.7	Isla 2 Lado izquierdo	2727.8	592.9	160
Isla 7 Lado izquierdo	2565.3	506.3	163.5	Isla 2 Lado derecho	2727.8	460	160
Isla 7 Lado derecho	2565.3	450	163.5	PT1	1986.4	500	159.5
PT6	1884.9	840	163.4	Isla 1 Lado izquierdo	1055.9	390.7	159
Isla 6 Lado izquierdo	2432.4	600	163.3	Isla 1 Lado derecho	1055.9	500	159
Isla 6 Lado derecho	2432.4	609.3	163.3	PT0	3564.3	750	158
PT5	1992.1	1300	163.1	Isla Tempestad Lado izquierdo	3564.3	344.2	157
Isla 5 Lado izquierdo	1115.1	626.9	163	Isla Tempestad Lado derecho	3564.3	403.2	157
Isla 5 Lado derecho	1115.1	300	163	Localidad Tempestad	3564.3	1000	156.5
PT4	2172.8	1220.7	162.5				

Tabla 4 Información de altimetría radar ENVISAT en el ámbito del río Napo (geoide EGM2008) (a).

Día	Elevación (m.s.n.m.)	Día	Elevación (m.s.n.m.)	Día	Elevación (m.s.n.m.)	Día	Elevación (m.s.n.m.)
02 Diciembre 2002	82.10	11 Mayo 2004	82.49	30 Enero 2006	82.03	13 Ágosto 2007	76.10
06 Enero 2003	82.55	15 Junio 2004	82.33	06 Marzo 2006	82.46	17 Septiembre 2007	76.51
10 Febrero 2003	81.62	20 Julio 2004	81.48	10 Abril 2006	84.46	22 Octubre 2007	76.06
21 Abril 2003	83.44	24 Agosto 2004	77.06	24 Julio 2006	82.00	26 Noviembre 2007	81.84
26 Mayo 2003	84.81	02 Noviembre 2004	79.83	28 Agosto 2006	76.80	31 Diciembre 2007	82.00
30 Junio 2003	83.48	07 Diciembre 2004	82.16	02 Octubre 2006	75.95	04 Febrero 2008	82.43
04 Agosto 2003	78.09	10 Enero 2005	81.44	06 Noviembre 2006	77.55	11 Marzo 2008	83.52
08 Septiembre 2003	77.32	14 Febrero 2005	81.19	11 Diciembre 2006	81.97	15 Abril 2008	83,59
13 Octubre 2003	78.27	21 Marzo 2005	82.43	15 Enero 2007	83.24	20 Mayo 2008	82.80
7 Noviembre 2003	80.24	25 Abril 2005	83.75	19 Febrero 2007	82.33	24 Junio 2008	81.06
22 Diciembre 2003	82.12	30 Mayo 2005	80.67	26 Marzo 2007	82.80	29 Julio 2008	79.38
26 Enero 2004	81,39	17 Octubre 2005	75.52	20 Abril 2007	83.94	02 Septiembre 2008	80.29
02 Marzo 2004	80.21	21 Noviembre 2005	79.78	04 Junio 2007	82.64	07 Octubre 2008	80,07
06 Abril 2004	82.41	26 Diciembre 2005	79.72	09 Julio 2007	79.92		

⁽a) Source: Joecila Santos da Silva, CESTU, Universidade do Estado do Amazonas, UEA - Brasil.

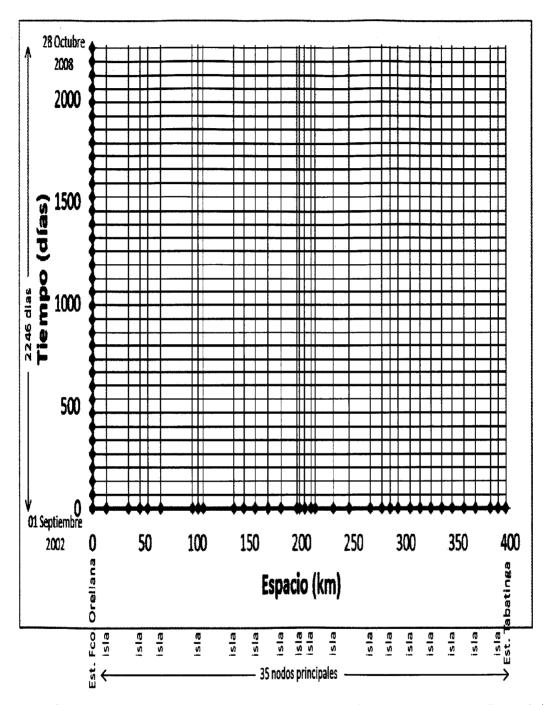


Figura 1 Dominio computación de la simulación hidrodinámica del río Amazonas entre las estaciones Francisco de Orellana y Tabatinga

Figura 2 Dominio computación de la simulación hidrodinámica del río Napo entre las estaciones Nuevo RocaFuerte y Tempestad.

ANEXO 3 (Base de datos del modelo hidrodinámico 1D)

Tablas que conforman la base de datos: Runoff_bd1

Tabla: d			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Formato Registros		
	debit_abaj_post	debit_abaj	debit_post	debit	an	mois mois	jour	station
	489	494	1471	1504	1	1	6	3
	482	489	1401	1471	1	1	7	3
	472	482	1420	1401	1	1	8	3
Campos:	458	472	1340	1420	1	1	9	3
	438	458	1349	1340	1	1	10	3
•station: Estacion	420	438	1471	1349	1	1	11	3
Station, Estacion	411	420	1530	1471	1	1	12	3
1 D!	421	411	1558	1530	1	1	13	3
•jour: Dia	413	421	1564	1558	1	1	14	3
	406	413	1496	1564	1	1	15	3
•mois: Mes	413	406	1428	1496	1	1	16	3
	429	413	1525	1428	1	1	17	3
•an: Ano	447	429	1822	1525	1_	1	18	3
un. / mo	458	447	1770	1822	1	1	19	3
alabiti Caudal da iu	475	458	1682	1770	1	1	20	3
•debit: Caudal de in	485	475	1680	1682	1	1	21	3
t=j	494	485	1850	1680	1	and the second	22	3
. 1	501	494	1945	1850	1	1	23	3
adobit nost: Caudal	498	501	2077	1945	1	1	24	3
<pre>•debit_post: Caudal</pre>	496	498	2119	2077	1	1	25	3
para t=j+1	497	496	2114	2119	1	1	26	3
	494	497	2056	2114	1	Ŋ	27	3
·debit_abaj: Caudal	498	494	1999	2056	1	1	28	3
	499	496	1942	1999	1	1	29	3
para t=j	508	499	1879	1942	1	1	30	3
	504	506	1820	1879	1	1	31	3
•debit_abaj_post:: 0	510	504	1778	1820	1	2	1	3
	485	510	1770	1778	1	2	2	3
salida para t=j+1	454	485	1791	1770	1	2	3	3
	435	454	1810	1791	1	2	4	3
	420	435	1850	1810	1	2	5	3
	411	420	1976	1850	1	2	8.	3
	389	411	2068	1976	1	2	7	3
	374	369	2154	2088	1	2	8	3
	382	374	2158	2154	1	2	9	3
	380	7(7)	217A	2158	1	7	10	3
						* de 6987	1 1 1	pistro: [1] 1

eso para

ingreso

salida

ıdal de

Tabla: etages

Campos:

- •etage: Tramo
- •station: Estacion
- •nom: Nombre de tramo

Tabla: stations

Campos:

- *station: Estacion
- •nom: Nombre de la Estacion

Microsoft Access | Igeometric? | Jabla Estabalità pequita grativo Edicini gir jacontur Fermato Bagistros Harramiantes Vergiana 2 V-III MAZZIK ASIMBIH HISAVIA PENDAHA dage Pointe Printerhalt | Prin 320 0.045 3730 805 975 183.8 13% 0.045 184 15 3120 320 975 1305 184.15 1838 0.045 728.8 975 848,1 320 18681 184.15 0.045 805 7288 848.1 721.3 975 189.47 18651 0.045 728.8 721.3 594.4 848.1 189 47 0.045 192.14 728.8 994.4 820 721.3 194.6 19214 nois 594.4 197.46 0.045 2150 10 620 825 594.4 0.045 197 46 194.8 11 825 731.5 197.46 0.045 315 197.78 0.045 12 484 7315 638 825 1981 197.78 636 544.5 0.045 13 484 544.5 0.045 14 12 151 838 198.77 198.41 ñ 16 13 454 451 215 \$45 198.72 0.045 17 18 2170 900 985 651 199.35 199.04 0065 17 2470 215 199.35 199.04 0.045 19 16 15 2180 985 410 265 199.63 199.35 0.045 303 20 a820 750 675 201.4 199 63 0.065 20 3190 410 675 201.4 199.63 0.045 20 22 anan 875 SKI 791 202 9 201.4 0065 23 4740 1225 2029 0.045 28 470 875 22 23 20 4810 980 1225 875 203.78 202.9 2000 25 204.76 0.045 20 11100 575 1245 17% 0.065 23 209.02 201.76 20 10300 780 1245 1225 204.76 0.045 1383.3 1049.2 200.29 0.045 27 1245 780 525 200 02 25 28 1383.3 1049.2 853.3 1245 209.29 0.045 30 853.3 575 1049.2 209.56 0.045 27 1383.3 209 82 4390 740 1320 853.3 21009 209.82 0.045 3950 1320 853,3 210,09 209.62 0.045 28 575 32 10 506.3 1320 11258 575 740 210.38 210.09 0.045 33 32 31 \$08,3 1125.6 931.3 1320 210.67 210.30 Ô 0.045 32 5063 931.3 7369 1125.5 210.97 210.87 0.045 0.045 506.3 736.9 465 931.3 211.28 210,97 35 37 0.045 3 1550 1990 620 736.9 211.55 211.26 37 34 0.045 2100 1550 738.0 211.55 211.28 1343 21237 211.55 0.045 36 35 627 1600 艦 ACA 212.37 0.045 1136 38 827 1136 929 1343 214 21318 0.045 3 627 722 1136 214.81 0.045 78 A D P1 P8 de 119

🚆 Tabla: geometrie2

Campos:

etage: Tramo

Pointe: Nodo

PointeHaut1: Nodo aguas arriba 1

•PointeHaut2: Nodo aguas arriba 2

•PointeDessous1: Nodo aguas abajo 1

+PointeDessous2: Nodo aguas abajo 2

•LonguerEtage: Distancia al nodo(s) aguas abajo (m)

·LargeEtage:Ancho del nodo (m)

 LargeEtageUp1: Ancho del nodo aguas arriba 1 (m)

•LargeEtageUp2: Ancho del nodo aguas arriba 2 (m)

 LargeEtageDown1: Ancho del nodo aguas abajo 1 (m)

•LargeEtageDown2: Ancho del nodo aguas abajo 2 (m)

•CoteHaut: Altura fondo del cauce en el nodo (m)

•CoteDessous: Altura del fondo del cauce en el nodo(s) aguas abajo (m)

•LateralFlux: Numero de aportes de caudal lateral en el nodo

•Nmanning: Coeficiente de rugosidad de Manning en el nodo.

•cn: Numero de curva de las subcuencas adyacentes al nodo

Microsoft Access - [Lafflux Tabla] Artimo Editio Ver houter french Bagistres Verendentas Vegtare 2 Exchange 2-日刊 | A 7 | A 5 A 1 0 | 8 | 4 日 4 7 | A 2 A 1 0 A 1 | 8 | A 1 | A 1 etage bassin are Pointe pluie1 pluie2 pluie3 pluie4 pluie5 pluie6 pluie7 pluie8 pluie9 pluie10 pluie11 pluie12 HURIMA 2006 209.8 2603 2726 2523 224.5 2388 2226 2072 2223 306.2 13 219.7 226 290.9 256.1 1111 1208.5 271,1 293 2 7367 2218 208.4 227.9 1899 195.3 1 SUCUSANI 502.5 214.3 238.1 262 311.1 250.3 203.9 204.4 170 195.7 236.4 275 286.2 1 MAZAN 7661.7 2128 2198 267 A 285.7 2418 246.4 2738 273.2 219.6 2024 199 6 206.3 2 yasuni 3339.3 10 182.8 226 284.6 283.4 238.8 216.3 238 196.2 137.7 149.3 246.4 13039.8 129 355.4 3429 259.3 2 aguarico 275.4 287.7 366 1 323.2 270.8 302.2 3003 3258 2 ANAYACU 129 191.6 298.4 341.9 266.9 161.3 245 221.2 319.1 241.3 217.A 251 189.2 144.8 157.4 2 SANTAMARIA 1416.4 90 188.7 2248 293.9 331.5 321.3 265.8 240.5 217 246.8 191.4 1425 2 TARAPOTO 8035 85 199.7 216.8 2686 289 6 267.9 237.3 231.3 214 R 214.4 184.5 2095 264.6 2 YANAYACU 3050.4 187.9 225 292.6 328.3 321.9 285.4 240.2 216.9 265 1921 1418 156.2 659.2 9 302.4 2019 251.1 191.4 230 2 CMD 196.8 220.5 276 234.3 213.2 190.2 2 DEUX 423.7 199 1 218.8 271.5 2949 273.4 242 233.4 213.1 186.3 204.2 251 2 CURARAY 26324.4 35 2116 2582 319 1 331.7 3319 279 8 240.9 2483 267 3 260 191 6 186.7 2 TAMBORYACU GI13 267.8 287.4 237.0 214.8 185.2 207.8 2619 16 198,8 217.1 305 2 QUATRE 561 16 201.4 211.2 260.5 274.5 252.1 223.5 737 219.9 2066 173.1 775 2 TROIS 298,1 206.5 258.3 268.4 2552 2252 244.7 209.5 158.2 214.6 315.6 197 2292 3 COCA 1004 173 5449.3 119 189.9 232.4 277.6 26 280.6 254.4 223.6 218.5 188.8 189.7 277 3 PAYAMINO 2138.7 119 294.2 314 36.1 379.1 3364 322.5 276.6 320.5 319 354.1 288.2 3 HUIT 190.7 77 309.8 262.1 364.8 338.6 309.2 288 234.1 295.3 315 347.8 200 6 2628 3 SX 293 77 309 4 245.2 357.4 325.6 295 2726 215.1 281.5 3113 341.4 275 2569 3 SOMOA 391.7 72 263.1 235.6 366.4 319.8 306.2 264.1 220.1 268.4 3024 3367 252.4 2433 753.5 304.2 270.8 377.3 345.2 320.3 292.1 338.4 271.8 2548 3 gueirno 8 288.3 239.7 351 3 sept 294.2 278.3 403.1 292.1 207.9 3321 261.4 245.4 373 51 838 4 337 4 3029 410.4 373.4 3/31 323.9 2727 3335 3951 316.8 3045 3 noul 363 3 dia 369 182.4 226 284.1 308.3 326 283.2 238.7 216.2 237.4 196.4 137.5 23 136 146.2 3 anze 1658 180 5 226 4 201.2 301.4 307 4 2825 2381 216 2317 1979 258 3 TPUTIN 4339.7 263 287.3 383.6 356.3 3125 259.3 367 314.2 348.5 2725 4 ansupi 819.1 63 209.7 290.5 375.4 375.4 360.4 284.2 296.6 260.3 262.8 284.6 191.7 172.8 4 mulato 3213.3 63 146.5 197.6 262.6 267.2 206 203.9 189.9 194.4 150.5 134.6 2588 231.3 4 jondashi 1685.6 62 218.4 3301 236.6 428.8 391.5 301.4 333.5 297.1 329.7 253.5 207.8 184.2 162.5 4 douze 882 55 183 3 270 2 773.7 3423 3/37 2707 9000 7587 2445 205.7 4 QUATORZE 162.8 55 387.8 397.9 392.4 400.8 360.5 220 222.3 210.5 4 SUYUNO 18822 16 337.1 317.4 3063 2211 263.8 265 296.2 216 273 7 278.7 178 205.2 234.6 276.8 137.6 187.8 239.7 280.3 209.6 211.5 4 troize 231.6 193.9 179.6 5 COCA 5449.3 142.4 173 254 189.9 232.4 277.6 265 280.6 254.4 2236 218.5 188.8 1887 7179 7 1 1 1 1 1 4 do 61 Registro: 14 4 Vista Hoia de datos

Tabla: Latflux

Campos:

·etage: Tramo

·bassin: Cuenca

•Are: Area (km2)

•Pointe: Nodo receptor del caudal lateral

•Plue1...Plue12: Lamina precipitada mensual (mm) de enero a diciembre.

ANEXO 4 (Archivos de resultados del modelo hidrodinámico 1D)

1. Archivo de Resultados (Información General de la Simulación)

```
init:
Deleting: C:\MOD T TAM TAB c isla\HydrodynamicModel\build\builtjar.propertie:
deps-jar:
Updating property file: C:\MOD_T_TAM_TAB_c_isla\Hydrodynamic
Model\build\built-jar.properties
Deleting: C:\MOD T TAM TAB c isla\Hydrodynamic Model\null1286779874
Compiling 1 source file to C:\MOD T TAM TAB c isla\Hydrodynamic
Model\build\classes
compile-single:
run-single:
jdbc:odbc:driver={Microsoft Access Driver (*.mdb,
*.accdb)};DBQ=C:\TAM_TAB\runoff_bd_T1.accdb
Intervalos tiempo por dia = 9
Longitud total (m) = 420503.0
Celeridad fisica (m/s) = 2.08
delta_longitud (metros) = 12014.4
delta_tiempo referencial (horas) = 2.68
delta_tiempo referencial (min) = 160.51
```

2. Archivo de Resultados (Ejemplo de Información por nodo para el segundo paso de tiempo)

Nodo	Tiempo Nodo Ingreso (días)	Tiempo por nodo (días)	Profundidad de Agua (m)	Caudal (m3/s)	Base (m)	Velocidad (m/s)
52	0.22	0.22	15.74	22955.78	815.33	1.789
51	0.22	0.344	12.84	11500.04	728.08	1.23
50	0.22	0.344	12.82	11455.74	733.12	1.219
49	0.22	0.542	24.37	22955.78	821.95	1.146
48	0.22	0.642	12.77	11331.09	746.96	1.188
47	0.22	0.642	12.89	11624.69	747.41	1.207
46	0.22	0.712	24.37	22955.78	820.84	1.148
45	0.22	0.83	12.22	10068.95	740.18	1.113
44	0.22	0.83	13.39	12886.83	752.25	1.279
43	0.22	1.111	24.37	22955.78	819.74	1.149
42	0.22	1.161	12.65	11046.77	745.55	1.172
41	0.22	1.161	13.01	11909.01	746.63	1.226
40	0.22	1.207	24.37	22955.78	818.65	1,151
39	0.22	1.481	12.66	11068.38	745.67	1.173
38	0.22	1.481	13	11887.4	745.43	1.227
37	0.22	1.564	24.37	22955.78	817.56	1.152
36	0.22	1.666	12.58	10900.85	744.82	1.163
35	0.22	1.666	13.06	12054.92	745.21	1.238
34	0.22	1.783	24.37	22955.78	816.49	1.154
33	0.22	1.895	12.53	10779.89	744.19	1.156
32	0.22	1.895	13.11	12175.88	744.77	1.247
31	0.22	2.038	24.37	22955.78	815.42	1.155
30	0.22	2.065	12.52	10751.54	744.05	1.154
29	0.22	2.065	13.12	12204.24	743.85	1.25

28	0.22	2.109	24.37	22955.78	814.36	1.157
27	0.22	2.162	11.84	9252.94	735.14	1.063
26	0.22	2.162	13.7	13702.83	750.31	1.333
25	0.22	2.199	24.37	22955.78	813.31	1.158
24	0.22	2.359	12.46	10602.69	743.28	1.145
23	0.22	2.359	13.18	12353.09	742.53	1.262
22	0.22	2.503	24.37	22955.78	812.26	1.16
21	0.22	2.693	12.33	10312.56	741.68	1.128
20	0.22	2.693	13.3	12643.22	743.08	1.279
19	0.22	2.793	24.37	22955.78	811.23	1.161
18	0.22	2.864	11.76	9078.54	733.99	1.052
17	0.22	2.864	13.77	13877.24	748.46	1.347
16	0.22	2.934	24.37	22955.78	810.2	1.163
15	0.22	3.044	12.5	10714.33	743.92	1.152
14	0.22	3.044	13.14	12241.44	738.64	1.261
13	0.22	3.133	24.37	22955.78	809.18	1.164
12	0.22	3.227	12.36	10395.05	742.18	1.133
11	0.22	3.227	13.27	12560.73	739.49	1.28
10	0.22	3.326	24.37	22955.78	808.16	1.166
9	0.22	3.418	12.34	10343.95	741.91	1.13
8	0.22	3.418	13.29	12611.83	738.74	1.285
7	0.22	3.52	24.37	22955.78	807.16	1.167
6	0.22	3.623	12.08	9765.71	738.52	1.095
5	0.22	3.623	13.51	13190.07	741.15	1.317
4	0.22	3.755	24.37	22955.78	806.16	1.169
3	0.22	3.824	12.19	10011.98	740.02	1.11
2	0.22	3.824	13.41	12943.79	738.7	1.306
1	0.22	3.892	24.37	22955.78	867.96	1.085