UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE CIENCIAS

"MODELO EMPÍRICO PARA PRONÓSTICO DE TEMPERATURAS MÍNIMAS EN PERIODOS DE INICIO Y FIN DE CAMPAÑA AGRÍCOLA"

Presentado por:

ANATOLIA MAGDALENA NORABUENA ESPINOZA

TESIS PARA OPTAR EL TÍTULO DE: INGENIERO METEORÓLOGO

Lima – Perú

2014

Dedicatoria

A Dios por acompañarme e iluminar mi camino.

A la memoria de mi Padre Eloy, que siempre esta guiándome desde el cielo.

A mi madre, quien con su sabiduría y perseverancia nos condujo por el camino del bien.

A mis hermanas Nelly, Esther, Laura, Charo y sobrinasHellen y Daniela; quienes son parte fundamental de mi vida.

A Feliciano, con quien unimos esfuerzas para vencer los obstáculos.

Agradecimiento

Mestre. Jerónimo García V., Patrocinador de tesis, por su constante disponibilidad de ayuda y comprensión para hacer posible esta investigación.

David C., un gran amigo, por compartir sus conocimientos y su apoyo incondicional para hacer realidad la tesis.

Esther N. por su bondad, aliento y ejemplos de perseverancia.

Feliciano, porsu apoyo y motivarme a seguir adelante.

Servicio Nacional de Meteorología e Hidrología SENAMHI, por facilitar información para hacer realidad el proyecto de tesis.

Índice General

CA	PITUL	O I: INTRODUCCIÓN	1
CA	PITULO	O II: REVISIÓN DE LITERATURA	4
2.1	DE	ESCRIPCIÓN DE LA SIERRA SUR DEL PERÚ	4
	2.1.1	Área de estudio	4
	2.1.2	Población	5
	2.1.3	Clima	6
	2.1.4	Hidrografía	7
2.2	ANTI	ECEDENTES DE LA INVESTIGACIÓN	8
2.3	DEFI	NICIÓN DE TÉRMINOS UTILIZADOS EN UN MODELO EMPÍRICO	9
	2.3.1	Temperatura mínima	10
	2.3.2	Psicrómetro y temperatura del bulbo húmedo	11
	2.3.3	Temperatura del bulbo seco	11
	2.3.4	Velocidad del viento	11
	2.3.5	Temperatura virtual	12
2.4	. Insti	RUMENTOS DE COLECTA DE DATOS METEOROLÓGICOS	12
CA	PITULO	O III: MATERIALES Y MÉTODOS	16
3.1	MAT	ERIALES	16
	3.1.1	Información Meteorológica	16
3.2	Мето	ODOLOGÍA:	16
	3.2.1	Determinación de Modelos Empíricos	18
	3.2.2	Validación de Modelos Empíricos	21
CA	PITULO	O IV: RESULTADOS Y DISCUSIONES	25
4.1	VARI	IACIÓN TEMPORAL DE LA TEMPERATURA MÍNIMA	25
	4.1.1	Análisis de Tendencias de los índices de Temperatura Mínima de Noch	es más
	Cálidas	s (TNx) y más Frías (TNn) de Inicio de Campaña Agrícola	29
	4.1.2	Análisis de Tendencias de los índices de Temperatura Mínima de Noch	es más
	Cálidas	s (TNx) y más Frías (TNn) de Final de Campaña Agrícola	34
4.2	MOD	DELOS EMPÍRICOS	40
	4.2.1	Determinación de modelos con capacidad de pronóstico de 12 horas.	40
	4.2.2	Determinación de modelos con capacidad de pronóstico de 18 horas	44
	4.2.3	Determinación de modelos con capacidad de pronóstico de 24 horas	47

4.3	VALID	ACIÓN DE LOS MODELOS	50
	4.3.1	Inicio de la campaña agrícola (Setiembre a Diciembre) de cada estación	. Periodo
	2006 a 2	011, 12 horas de anticipación	50
	4.3.2	Finales de campaña agrícola (Febrero a Mayo) de cada estación. Period	lo 2006 d
	2011, 12	horas de anticipación	57
	4.3.3	Validación de modelos de pronósticos con 18 horas de anticipación	66
	4.3.4	Validación de modelos de pronósticos con 24 horas de anticipación	68
CA	PITLO V	7: CONCLUSIONES	70
CA	PITULO	VI: RECOMENDACIONES	71
CA	PITULO	VII:REFERENCIAS BIBLIOGRÁFICAS	72
CA	PITULO	VIII: ANEXOS	75
8.1	ESTA	DÍSTICA DE MODELO DE INICIO DE CAMPAÑA, 12 HORAS DE PRONÓSTICO	75
	8.1.1	Estación Ccatca	75
	8.1.2	Estación Granja Kcayra	76
	8.1.3	Estación Lircay	77
	8.1.4	Estación Ubinas	78
	8.1.5	Estación Urubamba	79
	8.1.6	Estación Puquio	80
8.2	ESTAI	DÍSTICA DE MODELO DE FINAL DE CAMPAÑA	81
	8.2.1	Estación Ccatca	81
	8.2.2.	Estación Granja Kcayra	82
	8.2.3	Estación Lircay	83
	8.2.4	Estación Ubinas	84
	8.2.5	Estación Urubamba	85
	8.2.6	Estación Puquio	86

Índice de Tablas

TABLA 1: ESTRUCTURA SECTORIAL DE LA PEA (PORCENTAJE) DEPARTAMENTOS DE CUSCO HUANCAVELICA, AYACUCHO Y MOQUEGUA
TABLA 2: ESTACIÓN METEOROLÓGICA Y PERIODO DE TIEMPO DE REGISTRO DE DATOS
Tabla 3: Rango de variación de la temperatura mínima en las estaciones de evaluación, durante el periodo de 1990 a 2011
TABLA 4: LÍNEAS DE TENDENCIA DE ÍNDICES DE NOCHES MÁS CÁLIDAS (TNX) Y NOCHES MÁS FRÍAS (TNN)
Tabla 5: Coeficientes del modelo empírico de temperatura mínima, para inicio de campaña
Tabla 6: Coeficientes del modelo empírico de temperatura mínima, para fin de campaña
Tabla 7: Ecuaciones del modelo empírico de la temperatura mínima para inicio de campaña (periodo 1990 a 2005)
Tabla 8: Ecuaciones del modelo empírico de la temperatura mínima para final de campaña (periodo 1990 a 2005)
Tabla 9: Ecuaciones del modelo empírico de la temperatura mínima con 18 horas de pronóstico para inicio de campaña (periodo 1990 a 2005)
Tabla 10: Ecuaciones del modelo empírico de la temperatura mínima con 18 horas de pronóstico para final de campaña (periodo 1990 a 2005)
Tabla 11: Ecuaciones del modelo empírico de la temperatura mínima con 24 horas de para inicio de campaña (periodo 1990 a 2005)
Tabla 12: Ecuaciones del modelo empírico de la temperatura mínima con 24 horas Para final de campaña (periodo 1990 a 2005)
TABLA 13: PARÁMETROS ESTADÍSTICOS DE VALIDACIÓN DE LA TEMPERATURA MÍNIMA PRONOSTICADA (12 HORAS ANTES) VS OBSERVADA, PARA INICIO DE CAMPAÑA AGRÍCOLA
PERIODO 2006 A 2011
TABLA 14: PARÁMETROS ESTADÍSTICOS DE VALIDACIÓN DE LA TEMPERATURA MÍNIMA PRONOSTICADA (12 HORAS) VS OBSERVADA, PARA FIN DE CAMPAÑA AGRÍCOLA PERIODO 2006 A 2011
D 4V11

TABLA 15: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA (12 HORAS)	
TABLA 16: PARÁMETROS ESTADÍSTICOS DE LA VALIDACIÓN DE LA TEMPERATURA MÍNIMA	05
PRONOSTICADA VS OBSERVADA, PARA INICIO DE CAMPAÑA AGRÍCOLA PERIODO 2006 A 2011	. 66
TABLA 17: PARÁMETROS ESTADÍSTICOS DE VALIDACIÓN DE LA TEMPERATURA MÍNIMA	1
PRONOSTICADA VS OBSERVADA, PARA FINAL DE CAMPAÑA AGRÍCOLA PERIODO 2006 A 201	166
TABLA 18: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMAPRONOSTICADA HORAS)	(18 67
TABLA 19: ESTADÍSTICA DE LA VALIDACIÓN DE LA TEMPERATURA MÍNIMA PRONOSTICADA VS OBSERVADA, PARA INICIO DE CAMPAÑA AGRÍCOLA PERIODO 2006 A 2011	68
Tabla 20: Estadística de validación de la temperatura mínima pronosticada vs	
OBSERVADA, PARA FINAL DE CAMPAÑA AGRÍCOLA PERIODO 2006 A 2011	68
TABLA 21: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA (24 HORAS)	60
Índice de Figuras	
FIGURA 1: UBICACIÓN GEOGRÁFICA DE LAS ESTACIONES METEOROLÓGICAS (GOOGLE EARL)	4
FIGURA 2: TEMPERATURA DEL AIRE A 2.0 M DE ALTURA, RADIACIÓN NETA Y CAMBIO DE	
radiación neta utilizando datos a intervalos de 20 minutos registrados durant	
UNA NOCHE DE HELADAS, CALIFORNIA - EEUU (IMAGEN TOMADA DE SNYDER ET AL. 2010)	10
FIGURA 3: IMAGEN REFERENCIAL DE UNA CASETA DE REGISTRO DE INFORMACIÓN	
METEOROLÓGICA.	14
FIGURA 4: PSICRÓMETRO DE GARITA, PAREJA DE TERMÓMETROS SECO, IZQUIERDA, Y HÚMEDO DERECHA. EL BULBO DEL TERMÓMETRO HÚMEDO ESTÁ ENVUELTO EN UNA MUSELINA	
CONECTADA A UN DEPÓSITO CON AGUA DESTILADA.	14
FIGURA 5: TERMÓMETRO DE MÁXIMAS Y MÍNIMAS	15
FIGURA 6: ANEMÓMETRO REGISTRA VELOCIDAD Y DIRECCIÓN DEL VIENTO	15
FIGURA 7: EJEMPLO DE GRAFICO DE DISPERSIÓN AJUSTADO A UNA LÍNEA RECTA $(R=0.94)$	23

FIGURA 8: VARIACIÓN TEMPORAL DE LA TEMPERATURA MÍNIMA DURANTE EL PERIODO DE ENEI	RO
DE 1990 A DICIEMBRE DEL 2011. A) URUBAMBA, B) UBINAS, C) PUQUIO, D) LIRCAY, E) GRAI	
KCAYRA Y F) CCATCA	27
FIGURA 9: REPRESENTACIÓN MEDIANTE HISTOGRAMA DE LA TEMPERATURA MÍNIMA DURANTE	EL
PERIODO DE ENERO DE 1990 A DICIEMBRE DEL 2011. A) URUBAMBA, B) UBINAS, C) PUQUIO,	D)
LIRCAY, E) GRANJA KCAYRA Y F) CCATCA	28
FIGURA 10: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), INICIO DE CAMPAÑA ESTACIÓN CCATCA	31
FIGURA 11: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), INICIO DE CAMPAÑA ESTACIÓN GRANJA KCAYRA	31
FIGURA 12: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), INICIO DE CAMPAÑA ESTACIÓN LIRCAY	32
FIGURA 13: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), INICIO DE CAMPAÑA ESTACIÓN PUQUIO.	32
FIGURA 14: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), INICIO DE CAMPAÑA ESTACIÓN UBINAS	33
FIGURA 15: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), INICIO DE CAMPAÑA ESTACIÓN URUBAMBA	33
FIGURA 16: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), FIN DE CAMPAÑA ESTACIÓN CCATCA	36
FIGURA 17: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR)	Y
NOCHES MÁS FRÍAS (PARTE INFERIOR), FIN DE CAMPAÑA ESTACIÓN 36	
FIGURA 18: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), FIN DE CAMPAÑA ESTACIÓN LIRCAY	37
FIGURA 19: LÍNEAS DE TENDENCIAS DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), FIN DE CAMPAÑA ESTACIÓN PUQUIO	37
FIGURA 20: LÍNEAS DE TENDENCIA DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), FIN DE CAMPAÑA ESTACIÓN UBINAS	38
FIGURA 21: LÍNEAS DE TENDENCIA DE ÍNDICE DE NOCHES MÁS CÁLIDAS (PARTE SUPERIOR) Y	
NOCHES MÁS FRÍAS (PARTE INFERIOR), FIN DE CAMPAÑA ESTACIÓN URUBAMBA	38

FIGURA 22: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO, PARA INICIO DE CAMPAÑA, ESTACI	IÓN
CCATCA	51
FIGURA 23: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	S
LA OBSERVADA, CASOS QUE SUPERAN ± 2 =13%, ESTACIÓN CCATCA	51
FIGURA 24: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN GRANJA KCAYRA	.52
FIGURA 25: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	LA
OBSERVADA, CASOS QUE SUPERAN ± 2 =11%, ESTACIÓN GRANJA KCAYRA	52
FIGURA 26: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN LIRCAY	53
FIGURA 27: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	LA
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 3\%$, ESTACIÓN LIRCAY.	53
FIGURA 28: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN PUQUIO	54
FIGURA 29: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	LA
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 3\%$, ESTACIÓN PUQUIO	54
FIGURA 30: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO, ESTACIÓN UBINAS	55
FIGURA 31: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	LA
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 7\%$, ESTACIÓN UBINAS	55
FIGURA 32: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN URUBAMBA	56
FIGURA 33: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	LA
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 1\%$, ESTACIÓN URUBAMBA	56
FIGURA 34: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN CCATCA	58
FIGURA 35: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 5\%$, ESTACIÓN CCATCA	58

FIGURA 36: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO ES LA ESTACIÓN GRANJA KCAYRA	A 59
FIGURA 37: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	S LA
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 4\%$, ESTACIÓN GRANJA KCAYRA	59
FIGURA 38: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN LIRCAY	60
FIGURA 39: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA VS LA OBSERVAD	οA,
CASOS QUE SUPERAN $\pm 2 = 3\%$, ESTACIÓN LIRCAY	60
FIGURA 40: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA	
PRONOSTICADA POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN PUQUIO.	61
FIGURA 41: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA V	S LA
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 1\%$, ESTACIÓN PUQUIO	61
FIGURA 42: COMPARACIÓN DE LAS SERIES DE TIEMPO DE TEMPERATURA MÍNIMA PRONOSTICADO	
POR EL MODELO EMPÍRICO Y OBSERVADO EN LA ESTACIÓN UBINAS	62
FIGURA 43: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA VS	
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 3\%$, ESTACIÓN UBINAS	62
FIGURA 44: COMPARACIÓN DE LAS SERIES DE TIEMPO DE LA TEMPERATURA MÍNIMA PRONOSTIC	
POR EL MODELO Y OBSERVADO EN LA ESTACIÓN URUBAMBA	63
FIGURA 45: VALIDACIÓN DEL MODELO EMPÍRICO DE TEMPERATURA MÍNIMA PRONOSTICADA V	
OBSERVADA, CASOS QUE SUPERAN $\pm 2 = 1\%$, ESTACIÓN URUBAMBA.	63

RESUMEN

Se realizó un estudio utilizando la información diaria de la temperatura mínima, temperaturas del bulbo seco y bulbo húmedo a las 07, 13 y 19 horas, y velocidad del viento a las 19 horas, registrada en las estaciones meteorológicas convencionales (Ccatca, Granja Kayra, Lircay, Puquio, Ubinas y Urubamba) de la zona sur del Perú, para inicio y final de la campaña agrícola (setiembre-diciembre y febrero - mayo) del periodo de 1990-2011, siendo el objetivo principal establecer un modelo empírico, capaz de predecir la ocurrencia de temperaturas mínimas, con la finalidad de prevenir y buscar medidas de mitigación que permitan proteger a los cultivos en la zona sur del Perú. A través del análisis de la información temporal de las temperaturas mínimas y la determinación de modelos de predicción de temperaturas mínimas. Los resultados muestran tendencias positivas de noches más cálidas y más frías en las estaciones de Ccatca y Lircay, tanto para inicio y final de campaña agrícola. Los modelos empíricos determinados para pronosticar temperaturas mínimas con 12 horas de anticipación se ajustan a una ecuación de regresión lineal múltiple con estimadores estadísticos confiables para ambas campañas agrícolas. Por último, los modelos de pronósticos con 12 horas de anticipación pasaron la etapa de validación y pueden ser aplicados como modelos operativos.

CAPITULO I

INTRODUCCIÓN

En los últimos años la producción agrícola está siendo afectada por las heladas tardías, en este contexto surge la necesidad de predecir cuándo desciende la temperatura hasta un valor crítico para poner en marcha los métodos de protección, y evitar pérdidas en los cultivos agrícolas.

Las heladas, son fenómenos meteorológicos que se producen con frecuencia en invierno, pero ocurren también en otoño y primavera, conociéndose a las otoñales como heladas tempranas y a las primaverales como heladas tardías. En estas dos estaciones las plantas tienen una gran sensibilidad a los descensos bruscos de temperatura, y este fenómeno puede ser representado numéricamente como un proceso no lineal, dependiente de un número de variables, principalmente meteorológicas, (Garay y Cícero 2001), siendo posible desarrollar modelos matemáticos teóricos para la predicción de las heladas meteorológicas a partir de soluciones analíticas de las ecuaciones de transferencia del calor y balance de energía.

Se han desarrollado múltiples estudios sobre la predicción de temperaturas mínimas desde diversos puntos de vista y metodologías, todos ellos enfocados a realizar una agricultura sostenible y sustentable, protegiendo los cultivos agrícolas de las heladas meteorológicas. Las condiciones meteorológicas, específicamente las temperaturas extremas frías o valores cercanos a cero pueden provocar daños y pérdidas en el rendimiento y/o calidad en la producciónagrícola, en tal sentido surge la necesidad de desarrollar e implementar

métodos de predicción meteorológica, que permitan brindar información para una mejor toma de decisión ante situaciones de temperaturas mínimas extremas y heladas.

En el 2007, El Ministerio de Agricultura, declaró el estado de emergencia en cuatro departamentos afectados por heladas en la sierra peruana: Huancavelica, Huánuco, Junín y Cerro de Pasco [AgenciaPerú 2007].En Huancavelica hubo 43,720 familias afectadas y más de 65 653, 000 nuevos soles en pérdidas económicas. Se informó también que de un total de 67, 999 hectáreas de cultivos en la zona, se perdieron 26, 977 hectáreas y quedaron gravemente perjudicadas un aproximado de 10, 185 hectáreas [AgenciaPerú 2007].En Junín, se reportaron pérdidas cercanas a los 14 millones de soles, siendo más afectados los cultivos de choclo, maíz amiláceo, papa, olluco y alverja. En total fueron 6,487 las hectáreas afectadas y otras 13 hectáreas se perdieron completamente [Agencia Perú 2007]. En el Valle del Mantaro, las temperaturas también descendieron, pero no alcanzaron niveles mayores. Siendo la primera vez que en el Valle del Mantaro se registraron heladas meteorológicas o temperaturas bajo cero grados en el mes de febrero [Agencia Perú 2007].

En el Cusco, se informó que en la provincia de Chumbivilcas los cultivos y el ganado sufrieron las consecuencias de las bajas temperaturas [Agencia Perú 2007].

En general los agricultores indican que todos los años, se ven afectados los cultivos de papa, por las cada vez más frecuente heladas agro meteorológicas y granizadas, (MINAM, 2009), y que a su vez, producen efectos sobre la salud y la agricultura, siendo más evidentes los daños causados por las heladas del año 2002 y 2007, por su intensidad, impactos y declaración de estados de emergencia en los departamentos afectados.

En los últimos años se ha incrementado las emergencias causadas como consecuencia de Eventos Fríos, principalmente en la estación de invierno, siendo los años 2002 y 2004, los que presentaron un mayor impacto en el sector agropecuario (INDECI, 2006).

El objetivo es establecer un modelo empírico, capaz de predecir la ocurrencia de temperaturas mínimas, a partir de datos de las temperaturas del bulbo seco, bulbo húmedo y velocidad del viento en periodos de inicio y fin de campaña agrícola, con la finalidad de prevenir y buscar medidas de mitigación que permitan proteger a los cultivos en la zona sur del Perú, llegando a determinar el comportamiento temporal de las temperaturas mínimas y determinar modelos de predicción de temperaturas mínimas.

CAPITULO II

REVISIÓN DE LITERATURA

2.1 DESCRIPCIÓN DE LA SIERRA SUR DEL PERÚ

2.1.1 ÁREA DE ESTUDIO

El área de estudio del presente trabajo, involucra a la zona sur de la Sierra del Perú, (Figura 1). Las estaciones elegidas son: Ccatca, Granja Kcayra y Urubamba que están ubicados en el departamento de Cusco; la estación de Lircay ubicado en el departamento de Huancavelica; la estación Puquio que se ubica en el departamento de Ayacucho; la estación de Ubinas que se encuentra en el departamento de Moquegua.

Figura 1: Ubicación geográfica de las estaciones meteorológicas (googleearl)

2.1.2 POBLACIÓN

Según el último censo 2007, la Región Cusco tiene una población de 1171403 habitantes; Huancavelica tiene una población de 454797 habitantes; el departamento de Ayacucho 612489 habitantes y el departamento de Moquegua con una población de 161,533 habitantes. (INEI-Censo Nacional de Población y Vivienda, 1940, 1961, 1972, 1981, 1993 y 2007).

Tabla 1: Estructura sectorial de la PEA (porcentaje) Departamentos de Cusco Huancavelica, Ayacucho y Moquegua.

ACTIVIDAD	POBLACI	IÓN ECONÓMICA AC	TIVA (100 %)	
ECONÓMICA	Cuzco	HUANCAVELICA	Ауасисно	MOQUEGUA
Agricultura	42.7	67.8	51.7	22.6
Comercio	15.0	9.1	13.7	12.0
Transporte y	6.0	1.6	3.4	6.3
Comunicaciones	0.0	1.0	3.4	0.3
Industrias Manufactureras	7.0	3.0	5.4	10.0
Enseñanza	3.5	3.1	5.8	5.7
Construcción	4.1	1.7	5.1	5.8
Hoteles y Restaurantes	5.5	2.3	4.5	5.2
Inmobiliaria y Alquileres	1.9	0.4	1.4	4.2
Administración Pública y	7.7	4.0	2.4	17.5
Defensa	7.7	4.0	3.4	17.5
Pesca	0.0	0.1	0.0	1.9
Explotación de Minas	0.9	2.6	0.8	2.3
Otras Actividades y	~ .	4.0	~ o	
Servicios	5.4	4.3	5.0	6.7

FUENTE: INEI. Encuesta Nacional de Hogares (ENAHO), Anual 2001-2010. Perú: Evolución de los Indicadores de Empleo e Ingresos por Departamentos, 2001-2010

2.1.3 CLIMA

Cusco, el clima presenta dos temporadas bien marcadas: una lluviosa, entre noviembre y marzo, con temperaturas que fluctúan entre 4.8°C y 23.9°C; y otra es la temporada seca entre Abril y Octubre, con noches frías, días soleados y temperaturas que fluctúan entre - 0.7 °C y 22.7°C, variables de un año a otro; sin embargo, las temperaturas mínimas siguen considerándose como causantes de las enfermedades respiratorias que se presentan con mayor frecuencia en temporadas de frío.

Huancavelica, tiene un clima variado desde cálido, templado y frío, su relieve geográficoinfluye en el clima, la temperatura promedio anual máxima de 16°C y la mínima de 2°C; la temporada seca comprende los meses de (Mayo-Octubre) y la temporada Húmeda lluviosa los meses de (Noviembre-Abril), según la información consultada en la página web de la Municipalidad provincial de Huancavelica (2014).

Ayacucho, es templado y seco, con época lluviosa de (Diciembre a Marzo) la temperatura diurna promedio es de 15 °C, en los valles interandinos el clima es frio boreal seco, mientras que en la zona selvática tropical, la cordillera de los andes es el factor determinante de las características climáticas, según la información consultada en la página web de la Municipalidad provincial de Huamanga (2014).

Moquegua, presenta un clima templado en las costa y se caracteriza por su uniformidad durante el año, variando la temperatura promedio entre 14°C (agosto) y 25°C (febrero); la de la costa cercana a la cordillera presenta un clima desértico y seco que se prolonga hasta la región andina. En la zona de sierra el clima es templado en los valles interandinos, frío glacial en las punas llegando a varios grados bajo cero durante las noches. Lluvias escasas en la costa y en las partes bajas de la región andina; mientras que en las partes altas las precipitaciones no pasan de los 500mm.anuales (Bellido 2004).

2.1.4 HIDROGRAFÍA

En la Región de Cusco existen cuatro cuencas hidrográficas las mismas que son: Apurímac, Urubamba, Pilcopata y Marcapata. Estas cuencas están formadas por 25 ríos importantes que albergan a una biodiversidad de especies acuáticas, constituyéndose en una gran fuente de producción en la región, siendo además generadores de energía y otros múltiples usos, de acuerdo a los estudios realizados por el Instituto Nacional de Estadística e Informática Dirección Regional del Cusco.

En la región de Huancavelica, la principal cuenca hidrográfica, la constituye el rio Mantaro, que penetra y atraviesa Huancavelica a través de estrechas gargantas y formando la península de Tayacaja. Otro río que modela el relieva huancavelicano es el de la cuenca del río Pampas, que nace en las lagunas de las altas sierras de Choclocpocha y Orccococha en Huancavelica. Las principales lagunas son: Huarmicocha ubicada en el distrito de Acobambilla, en la provincia de Huancavelica, situada a 4582m., confluye sus aguas a la vertiente del pacífico.

En la región de Ayacucho, los principales ríos que drenan el territorio de dicha región forman parte del sistema hidrográfico de la amazona y pertenecen a las cuencas de los ríos Apurímac, Pampas y Mantaro. En la vertiente atlántica destacan el Huancarma, el Pampas, el Caracha y el Torobamba. Los ríos Mantaro y Apurímac se localizan en la frontera de la región. En la vertiente del pacífico son importantes los ríos Lampalla, Acarí, Huanca y Llauta.

En la Región de Moquegua, cuenta con dos cuencas hídricas, la cuenca del río Moquegua cuyos afluentes son los ríos Tumilaca, Torata, Moquegua e Iloy la cuenca del Rio Tambo que desemboca en el Océano Pacífico en la parte correspondiente al departamento de Arequipa, siendo sus principales afluentes Carumas, Coralaque, Ichuña, Paltiture, Ubinas, Omate, Puquina.

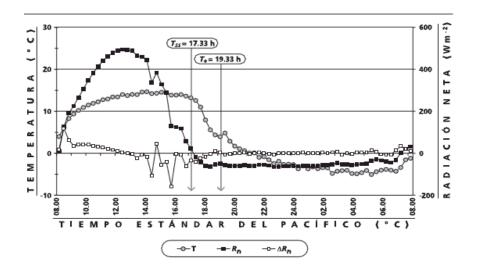
2.2 ANTECEDENTES DE LA INVESTIGACIÓN

En la actualidad, en el Perú existen pocos estudios de modelados empíricos para pronóstico de temperaturas mínimas para las campañas agrícolas.Como antecedentes se tiene los siguientes trabajos de investigación:

Ovando et al. (2005), Desarrollaron modelos basados en redes neuronales del tipo "backpropagation", para predecir la ocurrencia de heladas, a partir de un número reducido de datos meteorológicos de temperaturas a nivel del abrigo de las 14:00 h y 20:00, humedad relativa, temperatura del punto de rocío, nubosidad, dirección y velocidad del viento, para la zona de Río Cuarto, Córdoba, Argentina, llegando a determinar que el número de neuronas de las capas ocultas y el número de iteraciones de entrenamiento no son determinantes en el porcentaje de error de las predicciones.

Kalma et al. (1992) discuten los modelos unidimensionales de predicción de la temperatura de Sutherland (1980) y Cellier (1982, 1993). El modelo de Sutherland utiliza la ecuación del balance de energía de superficie, basado en un modelo de flujo de calor al suelo y un modelo de flujo de calor sensible para los 9,0 m inferiores de la atmósfera. Las variables que utiliza el modelo son la temperatura a 0; 1,5; 3,0 y 9,0 m, la temperatura del suelo a 0,1 y 0,5 m de profundidad, la velocidad del viento a 10 m y la radiación neta. Llegando a la conclusión de que "las temperaturas del aire no puede predecirse con satisfacción a partir únicamente del balance de energía en la superficie, incluso estableciendo con precisión las diferencias entre las temperaturas de la superficie y del aire".

Allen (1957), utilizó registros históricos de la temperatura del aire y del punto de roció a las dos horas después de la puesta del sol y la temperatura mínima observada para desarrollar los coeficientes de regresión necesarios para predecir la temperatura mínima durante un periodo en particular del año. En conclusión desarrolló una metodología para la predicción de heladas que tiene la ventaja, de no hacer referencia a las tablas de valores de punto de rocío y humedad relativa y/o a las tablas de constantes. La temperatura mínima se


puede calcular mentalmente y rápidamente con el conocimiento de las temperaturas de bulbo seco y húmedo.

Brunt (1941), desarrolló una solución analítica basada en el balance de radiación nocturna, a partir de la cual obtuvo resultados buenos, principalmente bajo condiciones de viento en calma y cielo despejado.

2.3 DEFINICIÓN DE TÉRMINOS UTILIZADOS EN UN MODELO EMPÍRICO

El modelo empírico de predicción se basa en el método de Allen (1957) y utiliza registros históricos de la temperatura del aire y del punto de rocío a las dos horas después de la puesta de Sol y la temperatura mínima observada durante la noche para desarrollar los coeficientes de regresión necesarios para predecir la temperatura mínima durante un periodo en particular del año. Dos horas después de la puesta de Sol es el tiempo de partida (t₀) para el modelo, este tiempo corresponde al momento en que la radiación neta ha alcanzado el valor más negativo del día (Figura 2). En una noche con cobertura intermitente por nubes o por niebla o con una velocidad del viento variable, el modelo puede predecir una temperatura que es más baja que la observada.

El modelo puede predecir una temperatura mínima demasiado alta si pasa un frente frío o si hay drenaje de aire frío.

Figura 2: Temperatura del aire a 2.0 m de altura, radiación neta y cambio de radiación neta utilizando datos a intervalos de 20 minutos registrados durante una noche de heladas, California - EEUU (imagen tomada de Snyder et al. 2010)

2.3.1 TEMPERATURA MÍNIMA

Es la temperatura más baja registrada en un día, mes o año, este valor puede ser negativo si su registro se da por debajo de cero. Es uno de las variables críticas que impulsa todos los sistemas biológicos.

Temperatura del punto de rocío, es la temperatura a la que el aire húmedo alcanza la saturación, manteniendo la presión, y la razón de mezcla, (W) constantes. El rocío es el agua condensada sobre cualquier superficie, se forma durante las noches por efecto del enfriamiento radiactivo, que hace que la temperatura del aire baje hasta el punto de rocío y se condense el vapor. En caso de que esta temperatura este por encima de los 0°C, y se formara hielo entonces se dice que alcanza el punto de congelamiento (o helada). Nótese que cuando el aire se encuentra saturado, la temperatura del punto de rocío coincide con la temperatura del aire, aunque en general será menor.

2.3.2 PSICRÓMETRO Y TEMPERATURA DEL BULBO HÚMEDO

Es la medida indirecta de la humedad atmosférica, mediante el psicrómetro, que consiste de dos termómetros ordinarios, uno de ellos se encuentra descubierto (bulbo seco), mientras que el otro se cubre con una muselina, que se mantiene permanentemente mojado (bulbo húmedo). Cuando el psicrómetro es ventilado, el termómetro del bulbo recubierto por una muselina húmeda de agua destilada se evapora, reduciendo la temperatura hasta que se alcanza la saturación del micro ambiente. Conociendo las temperaturas de ambos termómetros (bulbo seco y húmedo), la humedad relativa puede fácilmente determinarse mediante cartas psicrométricas. Si el aire está saturado, no podrá haber evaporación ni enfriamiento, por lo que en este caso coinciden la temperatura del aire, la temperatura del punto de rocío y la temperatura del bulbo húmedo. Si el aire no está saturado, se tendrá evaporación y enfriamiento del bulbo húmedo, por lo que en general, la temperatura del bulbo húmedo es diferente a la temperatura de rocío.

2.3.3 TEMPERATURA DEL BULBO SECO

La temperatura de bulbo seco, es la medida realizada con un termómetro convencional de mercurio o similar cuyo bulbo se encuentra seco. Esta temperatura junto a la temperatura de bulbo húmedo es utilizada en la valoración del confort higrotérmico, en la determinación de la humedad relativa, en la determinación del punto de rocío, en psicrometría para el estudio y determinación del comportamiento de mezclas de aire.

2.3.4 VELOCIDAD DEL VIENTO

En meteorología se suelen denominar los vientos según su velocidad y la dirección desde la que soplan. Los aumentos repentinos de la velocidad del viento durante un tiempo corto reciben el nombre de ráfagas. El viento en la zona sur de la sierra del Perú, varía en diversas escalas: desde flujos tormentosos que duran decenas de minutos hasta brisas locales generadas por el distinto calentamiento de la superficie terrestre y que duran varias horas, que son el fruto de la diferencia de absorción de energía solar entre las distintas zonas. En las áreas costeras, el ciclo brisa marina/brisa terrestre puede definir los vientos locales, mientras que en las zonas con relieve variado las brisas de valle y montaña pueden dominar los vientos locales.

Los vientos pueden dar forma al relieve a través de una serie de procesos eólicos como la formación de suelos fértiles o la erosión. El viento afecta la extensión de los incendios forestales. También dispersa las semillas de determinadas plantas, y hace posible la supervivencia y dispersión de estas especies vegetales, así como las poblaciones de insectos voladores.

2.3.5 TEMPERATURA VIRTUAL

Es definida como el valor de la temperatura que tendría una parcela de aire seco que fuese elevada hasta tener la misma densidad que el aire húmedo a la misma presión. Una masa de aire con vapor de agua, siempre tendrá una densidad menor que el aire seco, a la misma temperatura y presión, y por lo tanto la masa de aire húmedo será siempre menos pesada y tenderá a elevarse con respecto a una masa de aire seco, bajo las mismas condiciones de presión y temperatura.

2.4 INSTRUMENTOS DE COLECTADE DATOSMETEOROLÓGICOS

La caseta meteorológica: lugar donde se encuentran los instrumentos de medición básica tales como el termómetro de máxima y mínima, el psicrómetro y el termohigrógrafo. Estos instrumentos deben estar protegidos de las radiaciones solares y de las inclemencias del tiempo para que no altere la información que registran, el aire debe circular al interior de la caseta, se ubica a una altura de 120 centímetros del suelo como mínimo, las paredes

en forma de persiana y la puerta debe estar orientada al Sur, el techo superpuestas de madera o zinc, de forma que no entra el agua de lluvia al interior.

Termómetros de máxima y mínima: miden el valor máximo y el valor mínimo de la temperatura durante un periodo considerado. El termómetro de máxima tiene como elemento sensor el mercurio, mientras que el termómetro de Mínima contiene una solución de alcohol y glicerina en donde se halla inmerso un índice que es el que registra la temperatura más baja.

Psicrómetro: está diseñado para medir la temperatura, la humedad relativa del aire con los termómetros del bulbo seco y bulbo húmedo, dispone además de un aspirador de muelles para la ventilación del termómetro húmedo.

El Anemómetro: instrumento que mide y registra la velocidad y dirección del viento, posee dos sensores, la veleta que determina la dirección desde donde proviene el viento, y otro consistente en tres semiesferas de material muy liviano y que al girar permiten obtener la velocidad del viento.

Figura 3: Imagen referencial de una caseta de registro de información meteorológica.

Figura 4: Psicrómetro de garita, pareja de termómetros seco, izquierda, y húmedo derecha. El bulbo del termómetro húmedo está envuelto en una muselina conectada a un depósito con agua destilada.

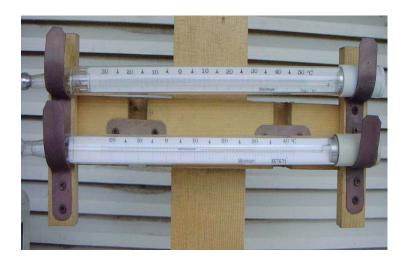


Figura 5: Termómetro de máximas y mínimas

.

Figura 6: Anemómetro registra velocidad y dirección del viento

CAPITULO III

MATERIALES Y MÉTODOS

3.1 MATERIALES

3.1.1 INFORMACIÓN METEOROLÓGICA

Se utilizó la información diaria de la temperatura mínima, temperaturas del bulbo seco y bulbo húmedo a las 07, 13 y 19 horas, y velocidad del viento a las 19 horas, registrada en las estaciones convencionales de la zona sur del Perú, al inicio y fin de campaña agrícola (setiembre-diciembre y febrero-mayo) periodo 1990-2011 de estaciones. Tabla 2.

3.2 METODOLOGÍA:

Para determinar el comportamiento temporal de las temperaturas mínimas se han analizado los indicadores de noches frías y cálidas en periodos de inicio y fin de campaña agrícola por estar relacionados con las actividades fisiológicas de las plantas.

Definición de los índices de temperaturas mínimas (Zhang et al 2011)

$$TNx_{kj} = max(Tn_{kj})$$

$$TNn_{kj} = min(Tn_{kj})$$

K: representa al mes y j: representa al año.

TNx: representa a la temperatura mínima de la noche más cálida en un determinado mes del año. TNn: representa a la temperatura mínima de la noche más fría en un determinado mes del año.

Tabla 2: Estación meteorológica y periodo de tiempo de registro de datos

ÍTEM	ESTACIÓN	DEPARTAMENTO	P. MODELADO	P. MODELADO P. VALIDACIÓN	LONGITUD	LATITUD	ALTITUD (M)
1	ССАТСА	Cuzco	1990 - 2005	2006 - 2011	71°33'37''	13°36'36''	3693
7	GRANJAKCAYRA	Cuzco	1990 - 2005	2006 - 2011	71°52'31''	13°33'25'	3219
ю	LIRCAY	HUANCAVELICA	1990 - 2005	2006 - 2011	74°43'43''	12°58'57''	3513
4	Puquio	АУАСИСНО	1997 - 2005	2006 - 2011	74°08'08''	14°42°42°	2977
w	UBINAS	Moquegua	1990 - 2005	2006 - 2011	70°51'24''	16°22'57''	3491
9	URUBAMBA	CUZCO	1990 - 2005	2006 - 2011	72°07'26''	13°18'38''	3071

3.2.1 DETERMINACIÓN DE MODELOS EMPÍRICOS

3.2.1.1 Determinación de los Coeficientes de la Ecuación de los Modelos Empíricos de Pronóstico de las Temperaturas Mínimas

Se utiliza la metodología desarrollada por García & Villegas (1993) y García & Sanabria (2007), que consiste en hacer modelo de regresión lineal múltiple de las temperaturas del bulbo seco, bulbo húmedo y velocidad del viento, basado en los factores controladores del balance de radiación y el efecto invernadero de la atmósfera sobre el proceso de enfriamiento nocturno. El modelo utiliza como variables predictoras la temperatura mínima del día anterior al que se va a pronosticar (Tmin-1) como aquella que va indicar la energía base o energía inicial disponible en el ambiente (García & Villegas, 1993), las temperaturas del bulbo seco (Ts) de las 07, 13 y 19 horas, la temperatura del bulbo húmedo (Th) de las 07, 13 y 19 horas y la velocidad del viento medido a las 19 horas. Este modelo pronostica la temperatura mínima del aire al nivel de caseta meteorológica.

Los coeficientes del modelo empírico de la temperatura mínima son calculados mediante el ajuste de los datos a un modelo de regresión lineal múltiple.

Para el periodo de inicio de campaña, se considera la información de los meses de setiembre a diciembre de cada año y queda expresada de la siguiente manera:

$$T_{min_IC} = b_1 + b_2 * T_{min-1} + b_3 * T_{bs07} + b_4 * T_{bs13} + b_5 * T_{bs19} + b_6 * T_{bh07} + b_7 * T_{bh13} + b_8 * T_{bh19} + b_9 * VV_{19}$$

Para el periodo de final de campaña, se considera la información de los meses de Febrero a Mayo de cada año y queda expresada de la siguiente manera:

$$\begin{split} &T_{min_FC^{=}}\,b_{1}\,+\,b_{\,2}\,*\,T_{min\text{-}1}\ \ \, +\,b_{\,3}\,*\,T_{bs07}\,+\,b_{\,4}\,*\,T_{bs13}\,+\,b_{\,5}\,*\,T_{bs19}\,+\,b_{\,6}\,*\,T_{bh07}\,+\,b_{\,7}\,*\,T_{bh13}\,+\,b_{\,8}\,*\,T_{bh19}\,+\,b_{\,9}\,*\,VV_{19} \end{split}$$

T_{min IC:} Temperatura mínima de inicio de campaña.

T_{min_FC:} Temperatura mínima de fin de campaña.

Tmín-1: Temperatura mínima del aire, medida el día anterior al pronóstico.

Tbs: Temperatura del bulbo seco, medido a las 07, 13 y 19 horas

Tbh: Temperatura del bulbo húmedo, medido a las 07, 13 y 19 horas.

VV: Velocidad del viento, medido a las 19 horas.

b_n: Son las constantes determinadas como factor de aporte de cada una de las variables
 en cada una de las estaciones meteorológica.

3.2.1.2 Prueba Estadística F del Modelo Empírico

Se prueba la hipótesis de que las desviaciones estándar de dos poblaciones normalmente distribuidas son iguales, lo cual se cumple.

En muchos casos, la prueba F puede resolverse mediante un proceso directo. Se requieren dos modelos de regresión, uno de los cuales restringe uno o más de los coeficientes de regresión conforme a la hipótesis nula (Fisher 1954). El test entonces se basa en un cociente modificado de la suma de cuadrados de residuos de los modelos como sigue:

Dadas n observaciones, donde el modelo 1 (información simulada) tiene k coeficientes no restringidos, y el modelo 0 (información observada) restringe m coeficientes, el test F puede calcularse como

$$F = \frac{\left(\frac{RSS_0 - RSS_1}{m}\right)}{\left(\frac{RSS_0}{n-k}\right)}$$

F = resultado de la prueba estadística de Fisher

RSSo = coeficiente de determinación del modelo sin restringir (R^2)

RSS1 = coeficiente de determinación del modelo restringido (R^2)

m = número de restricciones impuestas a los coeficientes estimados (coeficientes restringidos).

n = número de observaciones del modelo

k = número de coeficientes estimados en el modelo sin restricciones.

La prueba estadística de Fisher se utiliza principalmente para probar la igualdad entre dos varianzas y por lo tanto permite determinar cambios importantes en el comportamiento de la variable en estudio.

La distribución F se utilizó para demostrar la hipótesis nula

$$H_0: b_1 = b_2 = b_3 = b_4 = b_5 = b_6 = b_7 = b_8 = b_9 = 0$$

En caso contrario la hipótesis planteada será diferente de cero.

$$H_a: b_1 \neq b_2 \neq b_3 \neq b_4 \neq b_5 \neq b_6 \neq b_7 \neq b_8 \neq b_9 \neq 0$$

Como parte de la prueba de hipótesis se calcula el Fc (F calculado) y Ft (F tabular), con un nivel de significancia de α = 0.05; si Fc> Ft, se rechaza la hipótesis planteada y se acepta la hipótesis alternante, con lo cual se concluye que las ecuaciones obtenidas son correctas. El estadístico F_c se calculó con:

$$F_c = \frac{R^2(N-1-P)}{P\left(1-R^2\right)}$$

$$Ft = F [(1-\alpha); P, (N-1-P)]$$

Dónde:

R²= coeficiente de determinación

N = es el número de datos (tamaño de la muestra)

P = número de parámetros

3.2.2 VALIDACIÓN DE MODELOS EMPÍRICOS

Para el proceso de validación de los modelos empíricos, se comparó las temperaturas mínimas pronosticadas por el modelo versus las temperaturas mínimas observadas, a través de una serie de indicadores estadísticos (error cuadrático medio, bias, coeficiente de correlación, coeficiente de determinación y el error relativo), los mismos que permitirán determinar si un modelo es válido, siempre y cuando los indicadores de error (RMSE, Bías, Er) sean bajos y los coeficientes sean altos (Coeficientes de correlación y determinación).

3.2.2.1 Error cuadrático medio (RMSE)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (S_i - O_i)^2}$$

Dónde:

 $S_i = Valor simulado de temperatura mínima$

 $O_i = Valor observado de temperatura mínima$

N = N**ú**mero de datos

Responde a la pregunta:

¿Cuál es la magnitud media de los errores de pronóstico?

Características:

El RMSE es una medida de aproximación entre valores observados y simulados, pone una mayor influencia sobre los errores grandes más que los pequeños errores, pero también puede alentar a previsiones conservadoras. La desventaja es que no indica la dirección de las desviaciones. Ejemplo: RMSE=3,2°C.

3.2.2.2 BIAS

$$Bias = \frac{1}{N} \sum_{i=1}^{N} (S_i - O_i)$$

El Bias, mide la diferencia media de los valores simulados respecto los valores observados.

Dónde:

 $S_i = Valor \ simulado \ de \ temperatura \ m$ inima

 $O_i = Valor observado de temperatura mínima$

N = N**ú**mero de datos

3.2.2.3 Coeficiente de correlación

$$r = \frac{\sum (S_i - \overline{S})(O_i - \overline{O})}{\sqrt{\sum (S_i - \overline{S})^2} \sqrt{\sum (O_i - \overline{O})^2}}$$

Dónde:

 $S_i = Valor \ simulado \ de \ temperatura \ m$ inima

 $O_i = Valor observado de temperatura mínima$

 $\overline{S} y \overline{O} = Valores promedios$

Responde a la pregunta:

¿Qué tan bien los valores de la simulación corresponden a los valores observados o referencia?

Características:

Es una buena medida de asociación lineal. Visualmente, la correlación mide la proximidad de los puntos de un gráfico de dispersión a una línea recta. La desventaja, es que es sensible a los valores atípicos y no permite medir la relación de causa efecto entre ellas (Figura 7). Varía en un rango de -1 a 1.

Si r= 1, existe una correlación positiva perfecta e indica una dependencia total entre las dos variables, denominada relación directa, cuando una de ellas aumenta, la otra también lo hace en proporción constante.

Si 0 < r < 1, existe una correlación positiva.

Si r = 0, no existe relación lineal. Pero esto no necesariamente implica que las variables sonindependientes: pueden existir todavía relaciones no lineales entre las dos variables.

Si -1 < r < 0, existe una correlación negativa.

Si r = -1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante.

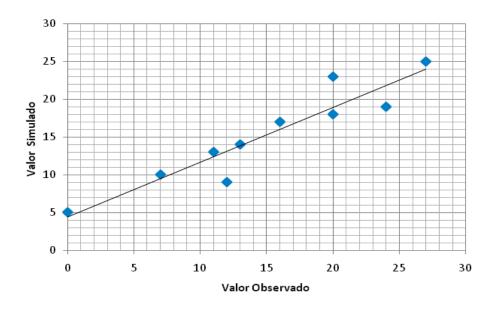


Figura 7: Ejemplo de grafico de dispersión ajustado a una línea recta (r = 0.94)

3.2.2.4 Coeficiente de determinación

El coeficiente de determinación (R²) es una medida que nos dice qué tan bien se ajusta la recta de regresión muestral a los datos, es decir, es una medida de bondad de ajuste, es útil porque da la proporción de la varianza (variación) de una variable que es predecible a partir de la otra variable.

Es una medida que nos permite determinar cómo se puede estar seguro de hacer predicciones a partir de un determinado modelo / gráfico. El R² es equivalente al cuadrado del coeficiente de correlación (r)

El coeficiente de determinación varía entre $0 < R^2 < 1$, y denota la fuerza de la asociación lineal entre $S_i = Valor simulado$ $vel 0_i = Valor observado$

Por ejemplo, si r = 0.922, entonces $R^2 = 0.850$, lo que significa que el 85% de la variación total en los valores simulados pueden explicarse por la relación lineal que existe entre los valores observados y los simulados. El otro 15% de la variación total en los valores simulados, permanece sin explicación.

3.2.2.5 Error Relativo (Er)

Donde las diferencias entre la temperatura estimada por el modelo y la temperatura mínima observada no deben ser mayor a \pm 2 °C; si la diferencia o errores son mayores a este valor, no deben constituir más del 25% del tamaño de la muestra para ser aceptable la validación del modelo.

$$Er = \frac{Cantidad\ de\ datos\ \{-2^{\circ}C\ \leq (S_n - O_n) \leq 2^{\circ}C\}}{n} \times 100\%$$

n = total del número de datos

 S_n = valores simulados

 O_n = valores observados.

CAPITULO IV

RESULTADOS Y DISCUSIONES

4.1 VARIACIÓN TEMPORAL DE LA TEMPERATURA MÍNIMA

Los resultados se muestran en la Tabla 3 y 4 y en las figuras 8 al 21.

Las temperaturas más bajas se registran entre los meses de junio y julio, llegando a valores cercanos de -5°C en las estaciones de Urubamba, Ubinas y Puquio, y aproximadamente a -9°C en las estaciones de Granja Kcayra y Ccatca, la estación de Lircay registra la temperatura más baja, igual a -12.4°C, también se muestran los valores más frecuentes de temperatura mínima de cada estación (Tabla 3).

En la Figura 8, se muestra la variación temporal de las series de la temperatura mínima en cada una de las estaciones, en su mayoría, presentan oscilaciones sobre los 5°C a diferencia de la estación de Ccatca que presenta oscilaciones sobre un nivel más bajo. Por otro lado, la Figura 9, muestra la distribución de frecuencia de las temperaturas mínimas por cada estación, en donde se observa los valores más frecuentes de temperaturas mínimas en intervalos de dos grados centígrados y cada una de ellas tiene una distribución diferente, con valores de TNx y TNn variables.

Tabla 3: Rango de variación de la temperatura mínima en las estaciones de evaluación, durante el periodo de 1990 a 2011.

	Te	mperatura Mínim	na (°C)	
	Valor más bajo			Altitud (m)
Urubamba	-4.2	12.6	[8.0 - 10.0]	3 071
Ubinas	-3.8	10.7	[4.0 - 6.0]	3 491
Puquio	-4.8	11.2	[4.0 - 6.0]	2 977
Lircay	-12.4	10.4	[4.0 - 6.0]	3 513
Granja Kcayra	-8.8	11.2	[7.0 - 9.0]	39219
Ccatca	-9.5	8.6	[1.0 - 3.0]	3 693

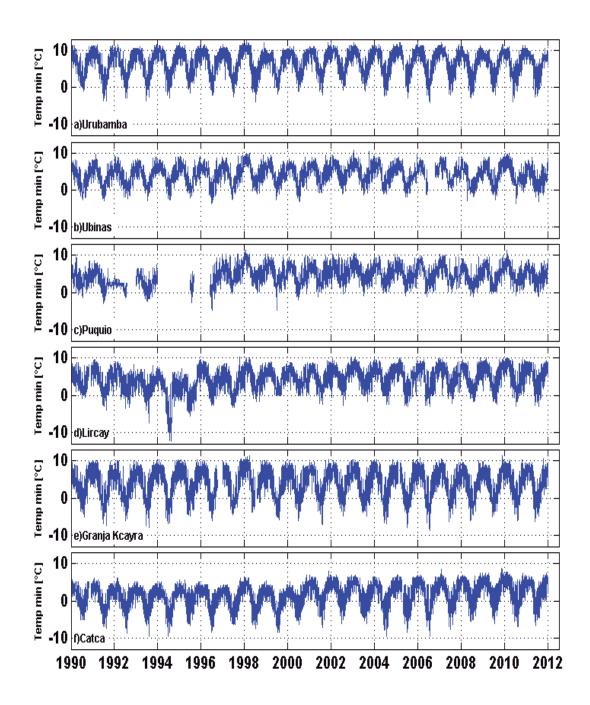


Figura 8: Variación temporal de la temperatura mínima durante el periodo de enero de 1990 a diciembre del 2011. a) Urubamba, b) Ubinas, c) Puquio, d)
Lircay, e) Granja Kcayra y f) Ccatca

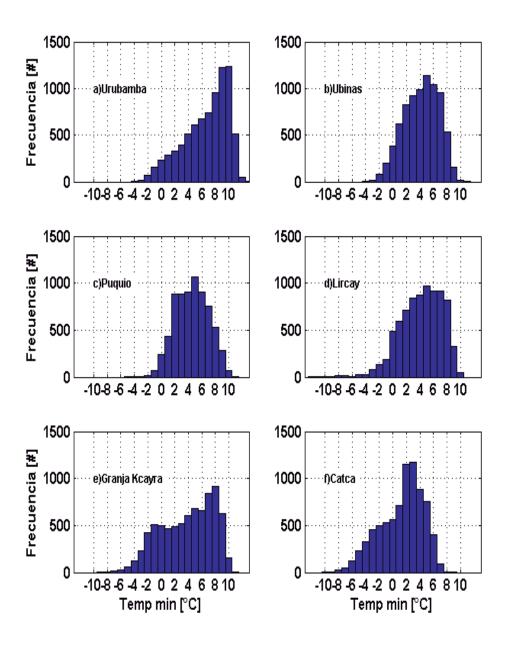


Figura 9: Representación mediante histograma de la temperatura mínima más frecuentes durante el periodo de Enero de 1990 a Diciembre del 2011 en las estaciones de. a) Urubamba, b) Ubinas, c) Puquio, d) Lircay, e) Granja Kcayra y f) Ccatca

4.1.1 ANÁLISIS DE TENDENCIAS DE LOS ÍNDICES DE TEMPERATURA MÍNIMA DE NOCHES MÁS CÁLIDAS (TNx) Y MÁS FRÍAS (TNn) DE INICIO DE CAMPAÑAAGRÍCOLA.

Noches máscálidas (TNx). Son índices que representan la temperatura mínima más alta del mes en estudio (Zhang et al 2011), la actividad fisiologica del cultivopuede ser afectado si alcanza valores de temperastura críticas, especialmente la fotosíntesis neta. La tabla 4 y las Figura 10 al 15 muestran los resultados de las lineas de tendencias, para las estaciones de Ccatca y Lircay (tendencia positivas); Puquio y Ubinas presentan tendencias negativas; en Granja Kcayra las tendencias no muestran cambiosen octubre y diciembre, sin embargo se observa tendencias negativa en setiembre y positiva en noviembre; Urubamba presenta cambios negativos en octubre y diciembre; puquio y ubinas presentan cambios negativos, esto podria representar un aumento en la frecuencia e intensidad de fenómenos de heladas, que son uno de los principales problemas que afronta la agricultura. La máxima disminución alcanza los -0.12°C/año en la estación Puquio a 2977 m. y el cambio más alto es de 0.16°C/año en la estación Ccatca a una altitud de 3693 m.

Noches más Frías (TNn). Representan temperaturas más bajas del mes en estudio (Zhang et al 2011), según su intensidad puede llegar a constituir heladas y ocasionar la muerte total de la planta. Generalmente en cultivos en secano, el efecto de las heladas se da principalmente en las fases fenológicas iníciales, reduciendo y retardando su desarrollo. La tabla 4 y las Figura 10al 15 muestran los resultados de las tendencias; positivas en las estaciones de Ccatca, Lircayy Urubamba; Granja Kcayra presenta tendencias negativas en los meses de setiembre y noviembre, al igual que la estación Puquio en octubre y diciembre; Ubinas muestra cambios negativos en diciembre. Se observa pocos cambios negativos, estos resultados indican que las temperaturas de noches más frías están

disminuyendo su intensidad, en consecuencia estos índices muestran procesos de calentamiento lo que significa que las temperaturas mínimas más bajas del mes se están incrementando a través de los años. La tendencia negativa más baja es de -0.08°C/año en la estación Puquio a 2977 m. y el cambio mayor de 0.13°C/año se da en la estación Lircay ubicado a 3513 m.

Las estaciones de Ccatca y Lircay muestran tendencias positivas de las noches más cálidas y noches más frías; cabe destacar que estas tendencias positivas de noches más frías indican que las temperaturas de noches más frías están disminuyendo su intensidad, en consecuencia estos índices muestran procesos de calentamiento, lo que significa que las temperaturas mínimas más bajas del mes se están incrementando a través de los años. En el informe técnico (SENAMHI 2012) "Caracterización agroclimática de la región Cusco" desarrollado en el marco del Programa de Adaptación al Cambio Climático (PACC-Perú), se indican efectos perjudiciales en el cultivo de maíz blanco Urubamba; así mismo el jefe de la Agencia Agraria del distrito de Calca, Dr. Luis Vargas, afirma que las mazorcas de maíz blanco, están reduciendo su tamaño, con granos desiguales, deshidratados y con textura rugosa, lo cual sería causada por una plaga denominada "seca-seca", y ésta a su vez estaría relacionado a climas más cálidos, esta plaga ataca los cultivos de maíz gigante y trunca el desarrollo de los granos.

El IPCC (2007) menciona un aumento promedio de la temperatura mínima de 0.20°C por década y a nivel global el calentamiento de las noches es casi el doble del calentamiento de los días, donde el aumento promedio de las temperaturas de los días fue mayor al promedio de disminución de las temperaturas de las noches, implicando un aumento en las temperaturas medias.

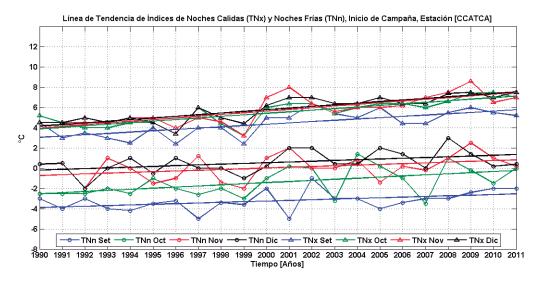


Figura 10: Líneas de tendencias de índice de noches más cálidas (partesuperior) y noches más frías (parte inferior), inicio de campaña estación Ccatca

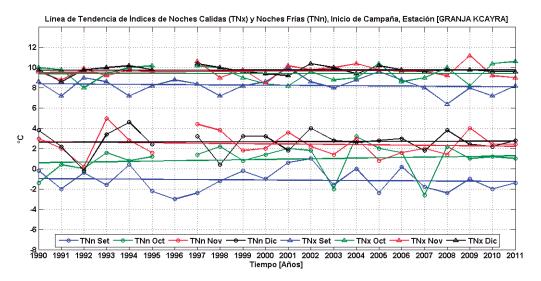


Figura 11: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), inicio de campaña estación Granja Kcayra

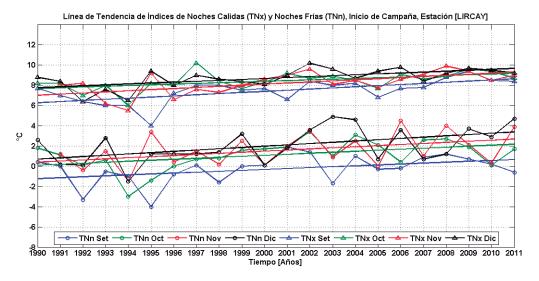


Figura 12: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), inicio de campaña estación Lircay

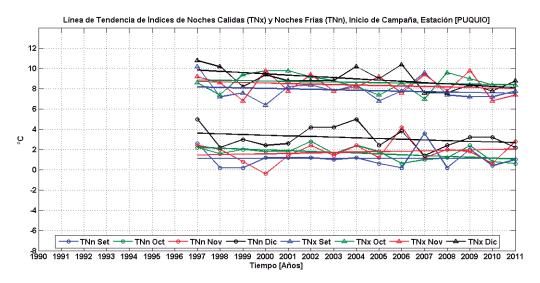


Figura 13: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), inicio de campaña estación Puquio.

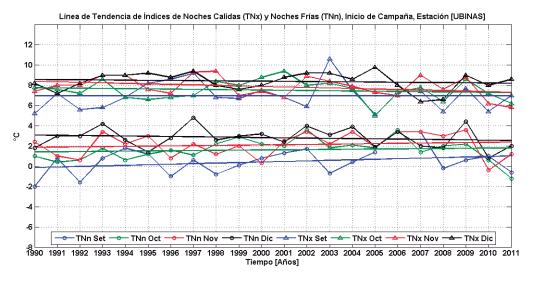


Figura 14: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), inicio de campaña estación Ubinas

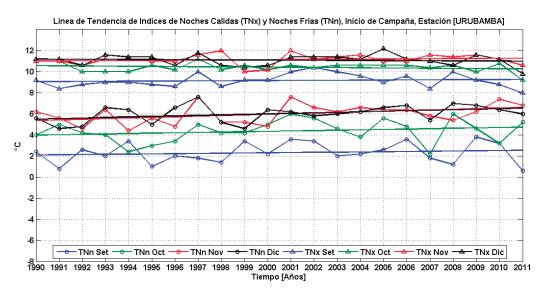


Figura 15: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), inicio de campaña estación Urubamba

4.1.2 ANÁLISIS DE TENDENCIAS DE LOS ÍNDICES DE TEMPERATURA MÍNIMA DE NOCHES MÁS CÁLIDAS (TNx) Y MÁS FRÍAS (TNn) DE FINAL DE CAMPAÑA AGRÍCOLA.

Noches más cálidas (TNx).en la parte superior delasfiguras 16 a la 21 y en laTabla 4, se muestranlineas de tendencias positivas en lasestaciones de Ccatca y Lircay; tendencias negativas en Puquio y Urubamba, esta disninución podría representar un aumento en la frecuencia e intensidad de fenomenos de heladas, que son uno de los problemas que afronta la agricultura; Granja Kcayra predomina tendencia positivas excepto en el mes de Marzo; Ubinas presenta tendencias positivas a diferencia del mes de Mayo con tendencia negativa. Los cambios más altos son de 0.16°C/año en la estación Ccatca a 3693 m. de altitud y de -0.12°C/año en la estación Puquio a 2977 m. de altitud.

Estos resultados muestran tendencias positivas de las noches más cálidas en las estaciones de Ccatca y Lircay lo cual puede incidir negativamente, acelerando el metabolismo de las plantas, incrementando la tasa de respiración y ocasionando pérdidas en la calidad y productividad de diferentes cultivos (Alpi y Tognoni, 1991), e incide positivamente, evitando las heladas.

Noches más Frías (TNn).en la parte inferior dela Figura 16 a la Figura 21y en la Tabla 4, se muestran predominancia de tendencias positivas en la estación Ccatca y Lircay; Granja Kcayra, Ubinas y Urubamba; y predominan tendencias negativas en Puquio acompañada de cambio positivo en el mes de febrero. Así mismo se observa máxima disminución de TNnigual a -0.09°C/año en la estación Puquio y Urubamba, y mayor aumento de TNnigual a 0.21°C/año en la estaciónCcatca ubicada a 3513 m. de altitud.

Para finales de la campaña agrícola, se observan tendencias positivas de TNx y TNn en las estaciones de Ccatca y Lircay, tendencias negativas de TNx en Puquio y Urubamba,

resultados que coinciden en los estudios sobre tendencias actuales de los indicadores extremos de cambio climático en la cuenca del río Mantaro realizados por el SENAMHI (2009), donde se analizó el porcentaje de días noches cálidas y frías en cinco estaciones (Marcapomacocha, Huayao, Pilchaca, Acobamba y Lircay) y se determinó que las noches frías (TNn) en la estación Lircay, están disminuyendo, y que sería una consecuencia del efecto del cambio climático en esa región.

Estos índices de temperaturas extremas muestran que las noches frías están tendiendo a ser más calientes o menos frías. En el cuarto informe del IPCC se constata la reducción de las incertidumbres en el conocimiento del clima y la confirmación de su atribución a la actividad humana y que no pueden explicarse por causa natural: menciona la reducción del número de noches muy frías, es decir con un 10% de la temperatura media, hasta un 76% entre 1951 y 2003, mientras las noches muy cálidas han aumentado un 72 por ciento.

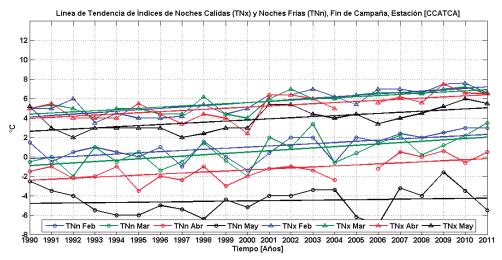


Figura 16: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), fin de campaña estación

Ccatca

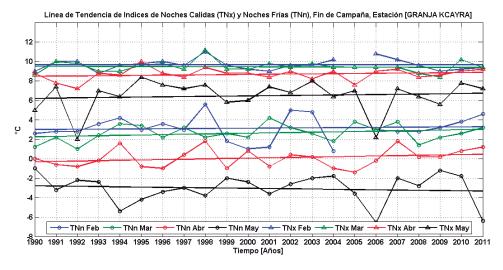


Figura 17: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), fin de campaña estación Granja Kcayra

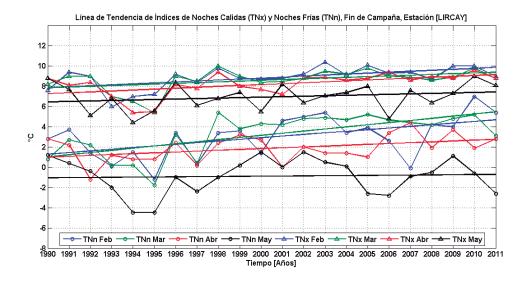


Figura 18: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), fin de campaña estación Lircay

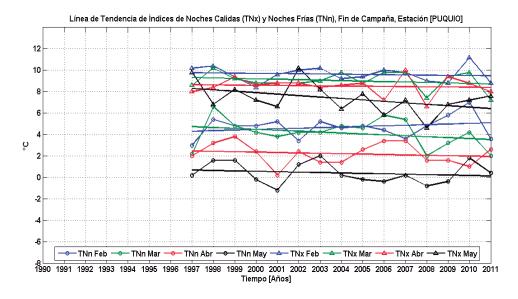


Figura 19: Líneas de tendencias de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), fin de campaña estación Puquio

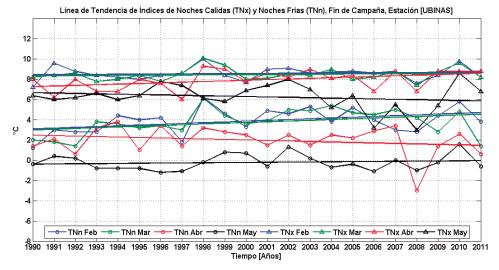


Figura 20: Líneas de tendencia de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), fin de campaña estación Ubinas

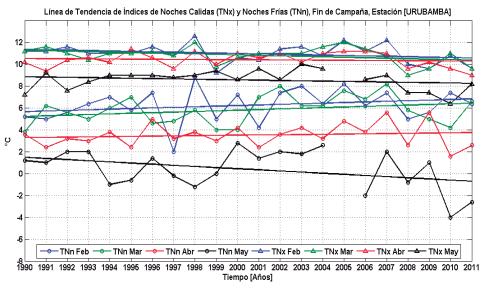


Figura 21: Líneas de tendencia de índice de noches más cálidas (parte superior) y noches más frías (parte inferior), fin de campaña estación Urubamba

Tabla 4: Líneas de Tendencia de Índices de Noches Más Cálidas (TNx) y Noches Más Frías (TNn)

	Estaciones		Inicio	Inicio de Campaña			Final de Campaña	Sampaña	
		Setiembre	Octubre	Noviembre	Diciembre	Febrero	Marzo	Abril	Mayo
sep	Ccatca	T = 0.13t + 3.05	T = 0.15t + 3.88	T = 0.16t + 4.06	T = 0.16t + 4.17	T = 0.15t + 4.11	T = 0.12t + 4.40	T = 0.11t + 3.96	T = 0.12t + 2.65
ás cáli (x)	Granja Kcayra	T = -0.01t + 8.40	T = 0.00t + 9.49	T = 0.01t + 9.52	T = 0.00t + 9.75	T = 0.00t + 9.67	T = -0.01t + 9.52	T = 0.02t + 8.48	T = 0.02t + 6.21
NL) SM S		T = 0.11t + 6.28	T = 0.07t + 7.68	T = 0.11t + 7.13	T = 0.09t + 7.77	T = 0.10t + 7.86	T = 0.07t + 7.86	T = 0.09t + 7.27	T = 0.05t + 6.47
эцэо _.	Puquio	T = -0.05t + 8.19	T = -0.03t + 8.87	T = -0.05t + 8.72	T = -0.12t + 9.86	T = -0.02t + 9.77	T = -0.04t + 9.33	T = -0.02t + 8.64	T = -0.14t + 8.31
N	Ubinas	T = -0.01t + 7.01	T = -0.02t + 7.76	T = -0.05t + 8.40	T =-0.02t + 8.58	T = 0.01t + 8.46	T = 0.01t + 8.34	T = 0.06t + 7.28	T = -0.04t + 6.68
	Urubamba	T = 0.01t + 9.07	T = -0.01t + 10.6	T = 0.01t + 11.0	T = -0.01t + 11.2	T = -0.04t + 11.4	T = -0.04t + 11.3	T = -0.01t + 10.5	T = -0.02t + 8.86
	2	DO C +300	E 0 110 - E	03 0 +30 0 - E	0 0 0 0 10 0 10 0 10 0 10 0 10 0 10 0	0 C C C C C C C C C C C C C C C C C C C	4 t 0	E	H 0 03+
:	Ccatca	1 = 0.001 - 3.89	1 = 0.111 - 2.53	I = 0.061 - 0.30	1 = 0.0 / 1 - 0.19	1 = 0.121 - 0.18	1 = 0.14t - 0.90	1 = 0.10t - 2.40	1 = 0.031 - 4.81
sriri :	Granja Kcavra	T = -0.01t - 0.97	T = 0.03t + 0.63	T = -0.02t + 2.59	T = 0.01t + 2.59	T = 0.00t + 3.02	T = 0.04t + 2.26	T = 0.04t - 0.31	Y =-0.03t - 2.79
sķm (nV)	Lircay	T = 0.09t - 1.22	T = 0.10t + 0.09	T = 0.11t + 0.51	T = 0.13t + 0.69	T = 0.16t + 1.29	T = 0.21t + 1.03	T = 0.08t + 1.00	T = 0.02t - 1.04
L) səyəc	Puquio	T = 0.00t + 1.13	T = -0.08t + 2.22	T = 0.04t + 1.45	T = -0.07t + 3.62	T = 0.06t + 4.30	T = -0.09t + 4.74	T = -0.04t + 2.46	T = -0.04t + 0.68
N	Ubinas	T = 0.06t - 0.15	T = 0.02t + 1.42	T = 0.02t + 1.87	T = -0.03t + 3.09	T = 0.08t + 3.09	T = 0.07t + 2.99	T = -0.05t + 2.48	T = 0.02t - 0.38
	Urubamba	T = 0.02t + 2.10	T = 0.04t + 3.99	T = 0.06t + 5.37	T = 0.05t + 5.51	T = 0.06t + 5.23	T = 0.06t + 5.23	T = 0.02t + 3.30	T = -0.09t + 1.47

4.2 MODELOS EMPÍRICOS

4.2.1 DETERMINACIÓN DE MODELOS CON CAPACIDAD DE PRONÓSTICO

DE 12 HORAS

En la Tabla 5 y 6, se observan las constantes de las ecuaciones empíricas obtenidas, donde la constante b₆ de mayor significancia para inicio de campaña agrícola a diferencia de la constante b₉ no es significativo en la estación Granja Kcayra lo cual amerita una investigación más profunda, sin embargo las demás estaciones tanto para inicio como para final de campaña agrícola hay influencia de la variable ya que la constante presenta valores significativos.

En la Tabla 7 y Tabla 8 se muestran los modelos empíricos con capacidad de pronóstico de 12 horas, habiéndose obtenido ecuaciones de regresión lineal múltiple (R^2 : 0.8 a 0.9) así como los coeficientes de determinación (R^2) con valores altos y mejor ajuste para fin de campaña agrícola, lo cual permite un alto nivel de confiabilidad. La prueba estadística de F resultaron significativos al 95 por ciento de confianza (α =0.05).

Tabla 5: Coeficientes del modelo empírico de temperatura mínima, para inicio de campaña

ESTACIÓN	CCATCA	Granja Kcayra	LIRCAY	Puquio	UBINAS	URUBAMBA
b ₁	-0.40	2.01	-0.01	-0.89	0.99	0.90
b_2	0.20	0.10	0.31	0.28	0.40	0.09
b_3	0.13	0.29	0.08	0.05	0.09	0.05
b_4	-0.14	-0.19	-0.01	0.01	-0.13	-0.09
b_5	-0.03	-0.08	-0.04	0.20	0.21	-0.08
b_6	0.63	0.61	0.65	0.42	0.26	0.88
b ₇	-0.05	-0.01	-0.02	0.04	-0.02	-0.03
<i>b</i> ₈	0.10	0.05	-0.05	-0.05	-0.01	0.08
<i>b</i> ₉	0.03	0.00	-0.02	-0.01	-0.07	0.07

Tabla 6: Coeficientes del modelo empírico de temperatura mínima, para fin de campaña

ESTACIÓN	CCATCA	GRANJA KCAYRA	LIRCAY	Puquio	UBINAS	URUBAMBA
b ₁	-1.03	0.47	-0.36	-0.64	0.31	-0.38
b_2	0.24	0.10	0.43	0.29	0.28	0.16
b_3	0.24	0.22	0.09	0.20	0.24	0.08
b_4	-0.07	-0.17	0.08	0.02	-0.02	-0.11
b_5	-0.03	0.04	-0.07	0.10	0.12	0.03
b_6	0.45	0.67	0.60	0.37	0.27	0.76
\boldsymbol{b}_7	-0.07	0.09	-0.11	-0.01	0.02	0.03
<i>b</i> ₈	0.17	-0.04	-0.06	-0.02	-0.07	0.06
<i>b</i> ₉	0.04	0.01	-0.01	-0.01	-0.10	0.04

Tabla 7: Ecuaciones del modelo empírico de la temperatura mínima para inicio de campaña (periodo 1990 a 2005)

Estación	Modelo Empírico	Coeficiente de Correlación Múltiple	Coeficiente de Determinación	Desviación Estándar	Estadístico F $(\alpha = 0.05)$
CCATCA	$T_{MIN} = -0.40 + 0.20 \ T_{MIN-1} + 0.13 T_{BS07} - 0.14 \ T_{BS13} - 0.03 \ T_{BS19} + 0.63 T_{BH07} - 0.05 \ T_{BH13} + 0.1 T_{BH19} + 0.03 \ VV_{19}$	0.813	0.662	1.242	289.76
GRANJA KCAYRA	$T_{\text{MIN}} = 2.01 + 0.10 T_{\text{MIN-1}} + 0.29 T_{\text{BS07}} 0.19 T_{\text{BS13}} 0.08 T_{\text{BS19}} + \\ 0.61 T_{\text{BH07}} 0.01 T_{\text{BH13}} + 0.05 T_{\text{BH19}} + 0.0 \text{VV}_{19}$	0.881	777.0	1.236	782.24
LIRCAY	$T_{\text{MIN}} = -0.01 + 0.3 \; T_{\text{MIN-1}} \; + 0.08 \; T_{\text{BS07}} - 0.01 \; T_{\text{BS13}} - 0.04 \; T_{\text{BS19}} \; + \\ 0.65 \; T_{\text{BH07}} \; -0.02 \; T_{\text{BH13}} \; -0.05 \; T_{\text{BH19}} \; - 0.02 \; \text{VV}_{19}$	0.871	0.758	1.153	743.75
PUQUIO	$T_{\text{MIN}} = -0.89 + 0.28 \; T_{\text{MIN-1}} \; + 0.05 \; T_{\text{BS07}} + 0.01 \; T_{\text{BS13}} + 0.2 \; T_{\text{BS19}} \; + \\ 0.42 \; T_{\text{BH07}} \; + 0.04 \; T_{\text{BH13}} - 0.05 \; T_{\text{BH19}} \; - 0.01 \; \text{VV}_{19}$	0.881	0.776	0.976	469.73
UBINAS	$T_{\text{MIN}} = 0.99 + 0.4 \ T_{\text{MIN-1}} \ + 0.09 \ T_{\text{BS07}} 0.13 \ T_{\text{BS13}} + 0.21 \ T_{\text{BS19}} \ + \\ 0.26 \ T_{\text{BH07}} \ 0.02 \ T_{\text{BH13}} 0.01 \ T_{\text{BH19}} \ 0.07 \ \text{VV}_{19}$	0.864	0.746	1.001	707.95
URUBAMBA	$T_{MIN} = 0.9 + 0.09 \; T_{MIN-1} \; + 0.05 \; T_{BS07} - 0.09 \; T_{BS13} - 0.08 \; \; T_{BS19} \; + \\ 0.88 \; T_{BH07} \; - 0.03 \; T_{BH13} + 0.08 \; T_{BH19} \; + 0.007 \; VV_{19}$	0.905	0.818	0.913	1079.56

Nota: Los coeficientes y estadísticos de los cálculos del modelo de cada estación son detallados en las tablas de la sección Anexos.

Tabla 8: Ecuaciones del modelo empírico de la temperatura mínima para final de campaña (periodo 1990 a 2005)

$\begin{split} T_{min} = -1.03 + 0.24 T_{min-1} &+ 0.24 \ T_{bs07} - 0.07 \ T_{bs13} - 0.03 \ T_{bs19} \\ &+ 0.45 T_{bh07} \ -0.07 \ T_{bh13} + 0.17 \ T_{bh19} + 0.04 VV_{19} \end{split}$
$T_{min} = -0.36 + 0.43 T_{min-1} + 0.09 \ T_{bs07} + 0.08 \ T_{bs13} - 0.07 \ T_{bs19} $ 0.899 $+ 0.6 \ T_{bh07} - 0.11 T_{bh13} - 0.06 \ T_{bh19} - 0.01 \ VV_{19}$
$T_{min} = 0.64 + 0.29 T_{min-1} + 0.2 T_{bs07} + 0.02 T_{bs13} + 0.1 T_{bs19} + 0.9270$ $0.37 T_{bh07} - 0.01 T_{bh13} - 0.02 T_{bh19} - 0.01 VV_{19}$
$\begin{split} T_{min} &= 0.31 + 0.28 T_{min-1} \ + 0.24 \ T_{bs07} \ 0.02 \ T_{bs13} + 0.12 \ T_{bs19} \\ &+ 0.27 \ T_{bh07} + 0.02 \ T_{bh13} \ 0.07 \ T_{bh19} \ \ 0.10 \ VV_{19} \end{split}$
$\begin{split} T_{min} = -0.38 + 0.16 T_{min-1} &+ 0.08 \ T_{bs07} - 0.11 \ T_{bs13} + 0.03 \ T_{bs19} \\ &+ 0.76 \ T_{bh07} \ + 0.03 \ T_{bh13} + 0.06 \ T_{bh19} \ + 0.004 \ VV_{19} \end{split}$

Nota: Los coeficientes y estadísticos de los cálculos del modelo de cada estación son detallados en la sección de anexos.

4.2.2 DETERMINACIÓN DE MODELOS CON CAPACIDAD DE PRONÓSTICO DE 18 HORAS

En la Tabla 9 y 10, se muestran los modelos empírico con capacidad de pronóstico de 18 horas, habiéndose obtenido ecuaciones de regresión lineal múltiple (R²: 0.8 a 0.9) así como los coeficientes de determinación (R²) con valores altos y mejor ajuste para fin de campaña agrícola, lo cual permite un alto nivel de confiabilidad.

La prueba estadística de F resultaron significativos al 95% de confianza (α =0.05), lo que significa que los coeficientes de las ecuaciones empíricas planteadas son diferente de cero y las ecuaciones son válidas para la estación en estudio.

Tabla 9: Ecuaciones del modelo empírico de la temperatura mínima con 18 horas de pronóstico para inicio de campaña (periodo 1990 a 2005)

Estadístico F $(\alpha = 0.05)$	458.59	1243.48	1168.38	731.19	1048.85	1687.91
Desviación Estándar	1.246	1.238	1.160	0.986	1.029	0.921
Coeficiente de Determinación	0.659	0.775	0.754	0.771	0.731	0.814
Coeficiente de Correlación Múltiple	0.812	0.880	0.869	0.878	0.855	0.902
Modelo Empírico	$T_{\text{MIN}} = -0.26 + 0.21 \ T_{\text{MIN-1}} \ + 0.14 \ T_{\text{BS07}} - 0.13 \ T_{\text{BS13}} + 0.63$ $T_{\text{BH07}} \ - 0.03 \ T_{\text{BH13}}$	$T_{\text{MIN}} = 1.66 + 0.10 T_{\text{MIN-1}} + 0.25 \; T_{\text{BS07}} \cdot 0.21 \; T_{\text{BS13}} + 0.65$ $T_{\text{BH07}} + 0.01 \; T_{\text{BH13}}$	$T_{\text{min}} = -0.44 + 0.31 \; T_{\text{min-1}} \; + 0.07 \; T_{\text{Bs07}} - 0.02 \; T_{\text{Bs13}} + 0.67 \; T_{\text{BH07}} - 0.05 T_{\text{BH13}}$	$T_{\text{MIN}} = -0.34 + 0.29 T_{\text{MIN-1}} \ + 0.06 \ T_{\text{BS}07} + 0.06 \ T_{\text{BS}13} + \\ 0.41 \ T_{\text{BH}07} + 0.06 \ T_{\text{BH}13}$	$T_{\text{MIN}} = 1.45 + 0.42 \; T_{\text{MIN-1}} \; + 0.11 \; T_{\text{BS07-}} 0.06 T_{\text{BS13}} + 0.26$ $T_{\text{BH07}} \; + 0.002 \; T_{\text{BH13}}$	$T_{\text{MIN}} = 0.75 + 0.09 T_{\text{MIN-1}} \ + 0.02 \ T_{\text{Bs07}} - 0.11 \ T_{\text{Bs13}} + \\ 0.91 T_{\text{BH07}} \ + 0.001 \ T_{\text{BH13}}$
Estación	CCATCA	GRANJA KCAYRA	LIRCAY	PUQUIO	UBINAS	URUBAMBA

Tabla 10: Ecuaciones del modelo empírico de la temperatura mínima con 18 horas de pronóstico para final de campaña (periodo 1990 a 2005)

Estación	Modelo Empírico	Coeficiente de Correlación Múltiple	Coeficiente de Determinación	Desviación Estándar	Estadístico F $(\alpha = 0.05)$
CCATCA	$T_{min} = \text{-}0.70 + 0.27 \ T_{min\text{-}1} \ + 0.21 \ T_{bs07} \text{-} \ 0.06 \ T_{bs13} \\ + 0.49 \ T_{bh07} \ \text{-}0.03 \ T_{bh13}$	0.913	0.834	1.025	1159.94
GRANJA KCAYRA	$T_{min} = 0.53 + 0.10 \; T_{min-1} \; + 0.23 \; T_{bs07} - 0.16 \; T_{bs13} \\ + 0.67 \; T_{bh07} \; + 0.08 \; T_{bh13}$	0.953	0.909	1.002	3529.67
LIRCAY	$T_{min} = \text{-}0.84 + 0.43 T_{min\text{-}1} + 0.04 \ T_{bs07} + 0.06 \ T_{bs13} \\ + 0.63 \ T_{bh07} \ \text{-}0.14 \ T_{bh13}$	0.897	0.804	1.171	1558.49
PUQUIO	$T_{min} = \ 0.30 + 0.29 \ T_{min1} + 0.21 \ T_{bs07} + 0.04$ $T_{bs13} + 0.36 \ T_{bh07} \ \ 0.01 \ T_{bh13}$	0.926	0.858	0.836	1261.55
UBINAS	$\begin{split} T_{min} = 0.38 + 0.29 \ T_{min-1} \ + 0.27 \ T_{bs07} + 0.01 \ T_{bs13} \\ + 0.24 \ T_{bh07} + 0.01 \ T_{bh13} \end{split}$	0.940	0.883	0.756	2867.46
URUBAMBA	$\begin{split} T_{min} = -0.01 + 0.17 T_{min\text{-}1} &+ 0.08 \ T_{bs07} - 0.10 \ T_{bs13} \\ &+ 0.76 \ T_{bh07} \ + 0.06 \ T_{bh13} \end{split}$	0.944	0.892	0.827	3100.88

4.2.3 DETERMINACIÓN DE MODELOS CON CAPACIDAD DE PRONÓSTICO DE 24 HORAS

En la Tabla 11 y 12, se muestran los modelos empírico con capacidad de pronóstico de 24 horas, habiéndose obtenido ecuaciones de regresión lineal múltiple (R²: 0.8 a 0.9) así como los coeficientes de determinación (R²) con valores altos mostrando mejor ajuste para fin de campaña agrícola.

La prueba estadística F resultaron significativos al 95 por ciento de confianza (α =0.05), lo que significa que los coeficientes de las ecuaciones empíricas planteadas son diferente de cero y las ecuaciones son válidas para las estaciones en estudio, por tanto atribuibles a cambios importantes en el comportamiento de las poblaciones en estudio.

Tabla 11: Ecuaciones del modelo empírico de la temperatura mínima con 24 horas de para inicio de campaña (periodo 1990 a 2005)

$CCATCA T_{MIN} = -2.1^{\circ}$	Atourio Edipinico	Correlación Múltiple	Determinación	Estándar	Estadistico F $(\alpha = 0.05)$
	$T_{\text{MIN}} = -2.14 + 0.22 \; T_{\text{MIN-1}} + 0.02 \; T_{\text{BS07}} + 0.74 \; T_{\text{BH07}}$	0.800	0.639	1.280	703.19
$GRANJA \\ T_{MIN} = -2.48$ $KCAYRA$	$T_{_{MIN}} = -2.48 + \ 0.15 \ T_{_{MIN-1}} + \ 0.20 \ T_{_{BS07}} + \ 0.70 \ T_{_{BH07}}$	0.857	0.735	1.344	1670.04
LIRCAY $T_{MIN} = -1.38$	$T_{\text{MIN}} = -1.38 + \ 0.31 \ T_{\text{MIN-1}} \ + \ 0.06 \ T_{\text{BS}07} + \ 0.68 \ T_{\text{BH}07}$	0.867	0.752	1.166	1921.18
PUQUIO $T_{MIN} = 1.09$	$T_{_{MIN}} = 1.09 + 0.31 T_{_{MIN-1}} + 0.07 T_{_{BS07}} + 0.41 T_{_{BH07}}$	0.875	0.765	966.0	1184.62
$UBINAS \qquad \qquad T_{MIN} = 0.52$	$T_{_{MIN}} = 0.52 + 0.42 T_{_{MIN-1}} + 0.07 T_{_{BS07}} + 0.29 T_{_{BH07}}$	0.853	0.728	1.034	1723.36
URUBAMBA $T_{MIN} = -1.76$	$T_{_{MIN}} =$ -1.76 + $0.10T_{_{MIN-1}}$ - $0.06T_{_{BSO7}}+1.01T_{^{BHO7}}$	0.893	0.797	0.963	2515.70

Tabla 12: Ecuaciones del modelo empírico de la temperatura mínima con 24 horas para final de campaña (periodo 1990 a 2005)

Estación	Modelo Empírico	Coeficiente de Correlación Múltiple	Coeficiente de Determinación	Desviación Estándar	Estadístico F $(a = 0.05)$
CCATCA	$T_{min} = -1.93 + 0.28 T_{min-1} \ + 0.24 \ T_{bs07} + 0.48 \ T_{bh07}$	0.911	0.830	1.037	1877.49
GRANJA KCAYRA	$T_{min} = -1.67 + 0.11 T_{min\text{-}1} + 0.13 \; T_{bs07} + 0.81 \; T_{bh07}$	0.949	0.900	1.048	5326.65
LIRCAY	$T_{min} = -1.32 + 0.45 T_{min-1} \ + 0.04 \ T_{bs07} + 0.59 \ T_{bh07}$	0.892	0.796	1.193	2476.96
PUQUIO	$T_{min} = 0.33 + 0.30 \; T_{min\text{-}1} + 0.24 \; T_{bs07} + 0.33 \; T_{bh07}$	0.926	0.857	0.839	2082.48
UBINAS	$T_{min} = 0.55 + 0.30 \ T_{min1} \ + 0.28 \ T_{bs07} + 0.23 \ T_{bh07}$	0.940	0.883	0.756	4777.37
URUBAMBA	$T_{min} = -1.57 + 0.18 \; T_{min-1} \; + 0.03 \; T_{bs07} + \; 0.85 \; T_{bh07}$	0.941	0.886	0.848	4878.85

4.3 VALIDACIÓN DE LOS MODELOS

4.3.1 INICIO DE LA CAMPAÑA AGRÍCOLA(SETIEMBRE A DICIEMBRE) DE CADA ESTACIÓN. PERIODO 2006 A 2011, CON PRONÓSTICO DE 12 HORAS

Los cálculos de temperatura mínima se realizaron con los modelos de la Tabla 7 y 8, cuyos valores resultados de las ecuaciones del modelo son muy cercanos a los observados en la estación, así mismo en las figuras 22 a 33, se observan los diagramas de dispersión mostrando una relación positiva, subestiman la temperatura mínima en las estaciones de Ccatca, Granja Kcayra, Lircay y Urubamba, sobre estima la temperatura en las estaciones de Puquio y Ubinas. En la tabla 13, se muestran los parámetros estadísticos de verificación de las temperaturasmínimas pronosticadas por el modelo y las temperaturas mínimas observadas para cada una de las estaciones meteorológicas en periodo de inicio de campaña agrícola.

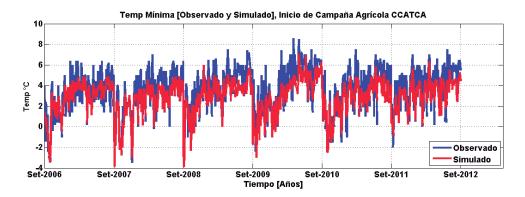


Figura 22: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado, para inicio de campaña, estación Ccatca

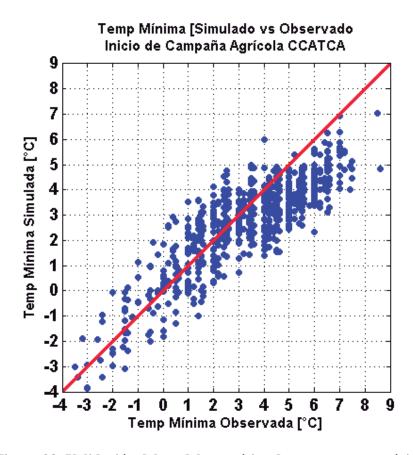


Figura 23: Validación del modelo empírico de temperatura mínima pronosticada vs.la observada, casos que superan ± 2 =13%, estación Ccatca

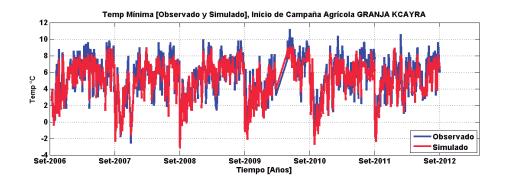


Figura 24: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Granja Kcayra.

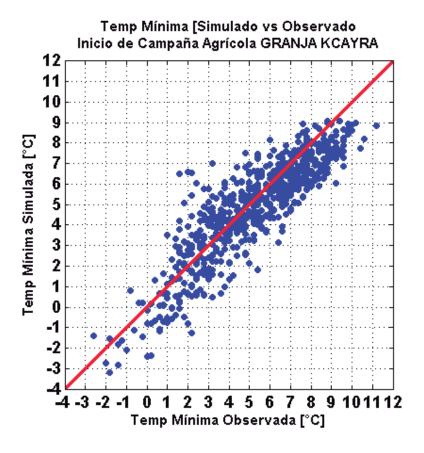


Figura 25: Validación del modelo empírico de temperatura mínima pronosticada vs.la observada, casos que superan ±2 =11%, estación Granja Kcayra

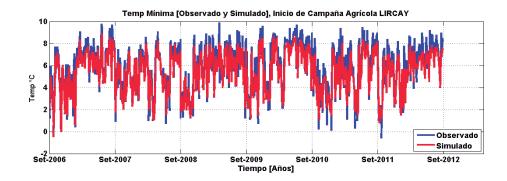


Figura 26: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Lircay

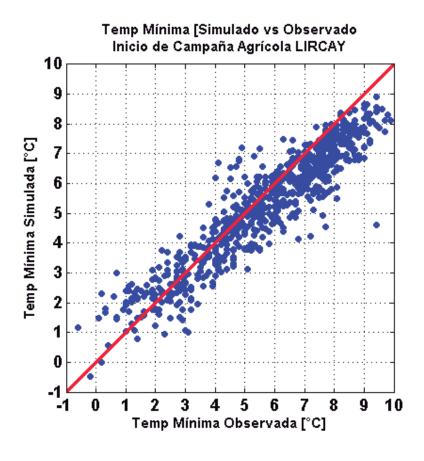


Figura 27: Validación del modelo empírico de temperatura mínima pronosticada vs.la observada, casos que superan ± 2 =3%, estación Lircay.

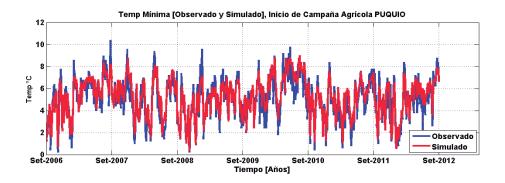


Figura 28: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Puquio

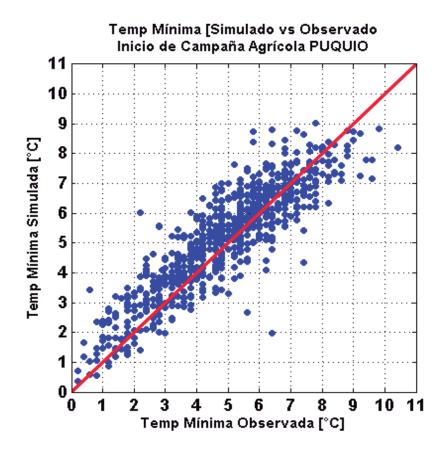


Figura 29: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan $\pm 2 = 3\%$, estación Puquio

Figura 30: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado, estación Ubinas

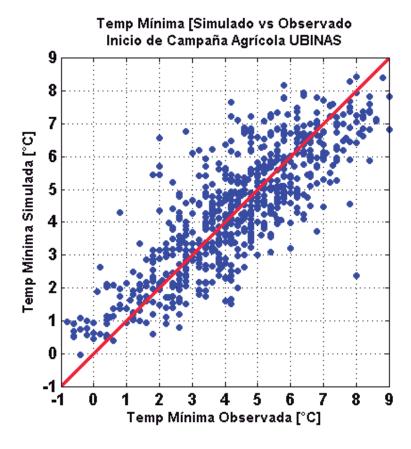


Figura 31: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan $\pm 2 = 7\%$, estación Ubinas

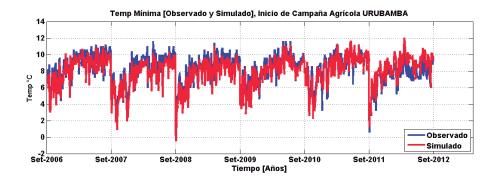


Figura 32: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Urubamba

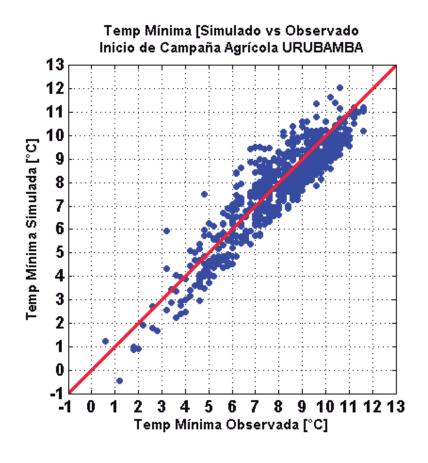


Figura 33: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan ±2 = 1%, estación Urubamba

Tabla 13: Parámetros Estadísticos de validación de la temperatura mínima pronosticada (12 horas antes) vs observada, para inicio de campaña agrícola periodo 2006 a 2011

Estación	RMSE (°C)	Bias (°C)	Coeficiente de correlación	Coeficiente de determinación	Fc, \(\prec{\pi}{2}\)
CCATCA	1.37	-0.66	0.86	0.73	981.44
GRANJA	1.27	-0.35	0.88	0.77	1160.02
KCAYRA	1.27	0.55	0.00	0.77	
LIRCAY	0.93	-0.41	0.93	0.87	4858.62
PUQUIO	0.93	0.28	0.89	0.78	1287.0
UBINAS	1.16	0.03	0.81	0.66	657.09
URUBAMBA	0.84	-0.22	0.91	0.83	1760.09

A través del RMSE se verifica que las temperaturas mínimas pronosticadas con 12 horas de anticipación varían entre ~0.8 a ~1.4°C cercanos a los valores de temperaturas mínimas registradas en las estaciones meteorológicas para inicio de las campañas agrícolas entre los años 2006 a 2011.La prueba estadística BIAS muestra que los modelos de pronóstico de 12 horas de anticipación subestiman las temperaturas mínimas en la estación Ccatca, Granja Kcayra, Lircay, Urubamba y sobrestiman en las estaciones de Puquio y Ubinas. . Los coeficientes de determinación muestran valores altos en las estaciones de Granja Kcayra, Lircay y Urubamba. La prueba estadística de Fischer resultó significativa con un nivel de confianza de 95 por ciento. Respecto a los estadísticos de validación, la tabla 15, indica que todos los modelos pasan la validación.

4.3.2 FIN DE CAMPAÑA AGRÍCOLA (FEBRERO A MAYO) DE CADA ESTACIÓN. PERIODO 2006 A 2011, CON PRONÓSTICO DE 12 HORAS

Los modelos empíricos presentan baja discrepancia entre las temperaturas mínima estimada y observada, en los diagramas de dispersión existe una relación positiva entre las variables, lo cual se muestra en las Figura 34 a la 45.

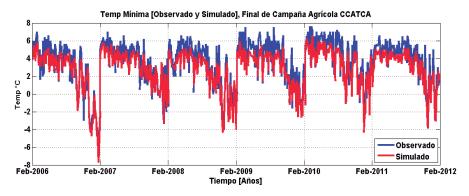


Figura 34: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Ccatca

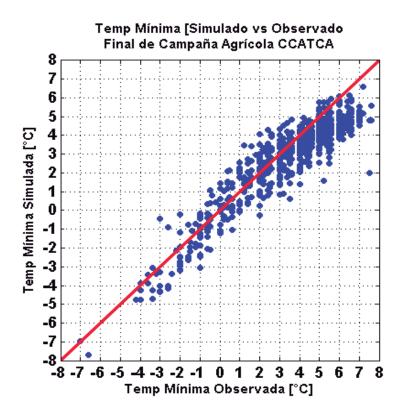


Figura 35: Validación del modelo empírico de temperatura mínima pronosticada vs.la observada, casos que superan $\pm 2 = 5\%$, estación Ccatca

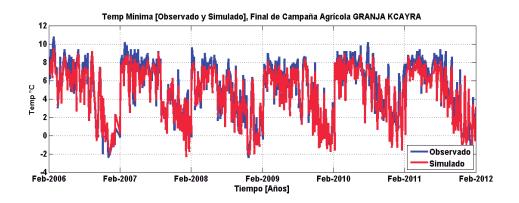


Figura 36: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado es la estación Granja Kcayra

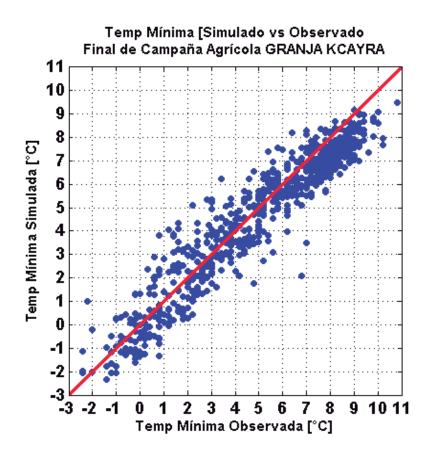


Figura 37: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan $\pm 2 = 4\%$, estación Granja Kcayra

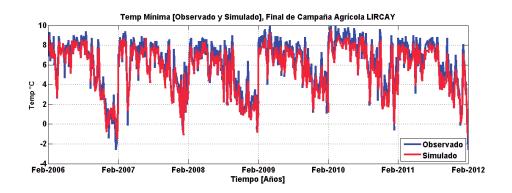


Figura 38: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Lircay

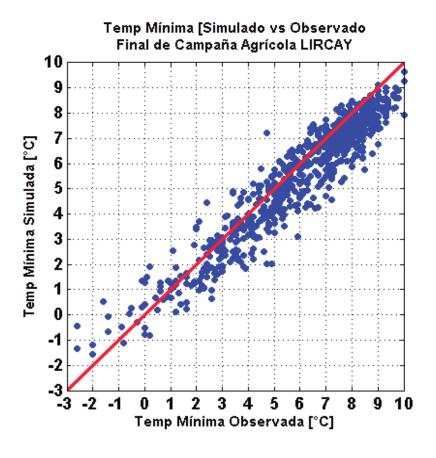


Figura 39: Validación del modelo empírico de temperatura mínima vs.la observada, casos que superan $\pm 2 = 3\%$, estación Lircay

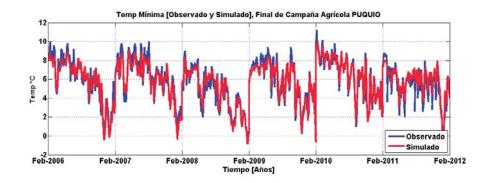


Figura 40: Comparación de las series de tiempo de la temperatura mínima pronosticada por el modelo empírico y observado en la estación Puquio.

Figura 41: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan $\pm 2 = 1\%$, estación Puquio

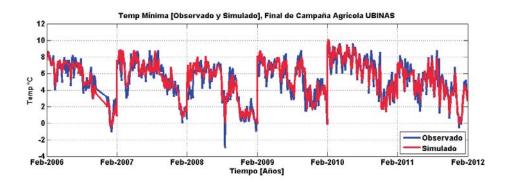


Figura 42: Comparación de las series de tiempo de temperatura mínima pronosticada por el modelo empírico y observado en la estación Ubinas

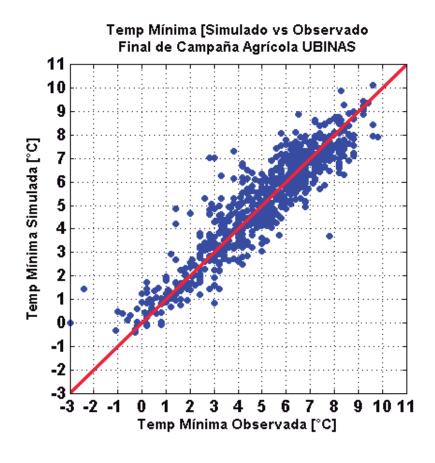


Figura 43: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan \pm 2 = 3%, estación Ubinas

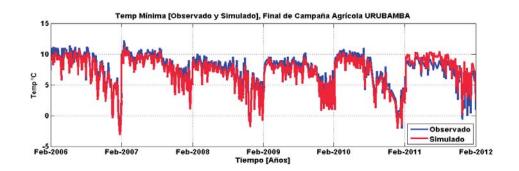


Figura 44: Comparación de las series de tiempo de la temperatura mínima pronostica por el modelo y observado en la estación Urubamba

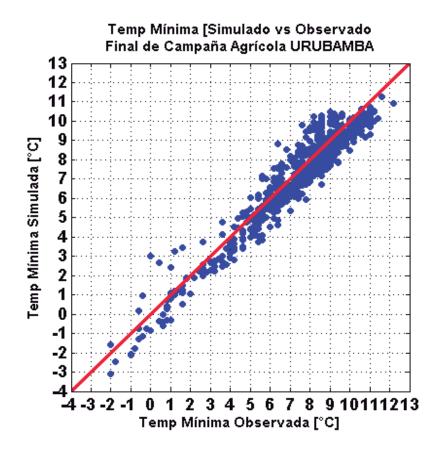


Figura 45: Validación del modelo empírico de temperatura mínima pronosticada vs la observada, casos que superan $\pm 2 = 1\%$, estación Urubamba.

En la Tabla 14, se muestran los estadísticos de verificación de la temperatura mínima pronosticada por el modelo empírico y la temperatura mínima observada para cada una de las estaciones meteorológicas en periodo de fin de campaña agrícola.

Tabla 14: Parámetros estadísticos de validación de la temperatura mínima pronosticada (12 horas) vs observada, para fin de campaña agrícola periodo 2006 a 2011

Estación	RMSE (°C)	Bias (°C)	Coeficiente correlación	Coeficiente de determinación	Fc, \(\alpha\)
CCATCA	1.14	-0.64	0.93	0.87	2362.38
GRANJA	1.04	-0.33	0.95	0.90	3055.5
KCAYRA	1.04	-0.55	0.73	0.50	
LIRCAY	0.92	-0.49	0.95	0.90	3580.0
PUQUIO	0.78	0.09	0.94	0.89	2896.55
UBINAS	0.92	0.06	0.92	0.85	1977.67
URUBAMBA	0.78	-0.27	0.96	0.92	3938.75

A través del RMSE se verifica que las temperaturas mínimas pronosticadas con 12 horas de anticipación varían entre ~0.8 a ~1.4°C cercanos a los valores de temperaturas mínimas registradas en las estaciones meteorológicas para fin de las campañas agrícolas entre los años 2006 a 2011.La prueba estadística BIAS muestra que los modelos de pronóstico de 12 horas de anticipación subestiman las temperaturas mínimas en la estación Ccatca, Granja Kcayra, Lircay, Urubamba y sobrestiman en las estaciones de Puquio y Ubinas. Los coeficientes de determinación muestran valores altos en las estaciones de Granja Kcayra, Lircay y Urubamba mostrando mejor ajuste para fin de campaña agrícola. La prueba estadística de Fisher resultó significativacon un nivel de confianza de 95 por ciento

Tabla 15: Validación del modelo empírico de temperatura mínimapronosticada(12 horas)

	Inicio de Campaña Agrícola 2006 - 2011									
Casos que	Ccatca	Ccatca Granja Kcayra		Puquio	Ubinas	Urubamba				
superan	13%	11%	3%	3%	7%	1%				
± 2 °C		Fin de Campaña Agrícola 2006 - 2011								
	5%	4%	3%	1%	3%	0.9%				

Tomando en cuenta los criterios de validación tanto para inicio como para fin de campaña agrícola, todos los modelos empíricos de las estaciones en estudio pasaron la prueba de validación del Er, donde la diferencias térmicas entre las temperaturas mínimas pronosticadas por el modelo y las temperaturas observadas mayores a \pm 2°C, constituye porcentajes muy por debajo del 25% del tamaño de la muestra. Ver Tabla 15.

4.3.3 VALIDACIÓN DE MODELOS DE PRONÓSTICOS CON 18 HORAS DE ANTICIPACIÓN.

En la Tabla 16 y Tabla 17se muestran los estadísticos de verificación de la temperatura mínima pronosticada por el modelo empírico y la temperatura mínima observada para cada una de las estaciones meteorológicas en inicio y fin de campañas agrícolas.

Tabla 16: Parámetros Estadísticos de la validación de la temperatura mínima pronosticada vsobservada, para inicio de campaña agrícola periodo 2006 a 2011

Estación	RMSE (°C)	Bias (°C)	Coeficiente de correlación	Coeficiente de determinación	Fc, \(\infty\) = 0.05
CCATCA	4.47	-4.08	-0.72	0.52	393.25
GRANJA	3.88	3.17	0.53	0.28	1160.02
KCAYRA	3.00	3.17	0.33	0.20	
LIRCAY	4.93	-4.57	0.62	0.39	232.08
PUQUIO	2.44	-2.06	0.84	0.71	892.39
UBINAS	1.73	-1.19	0.81	0.65	628.64
URUBAMBA	4.58	-4.19	0.22	0.05	18.97

Tabla 17: Parámetros Estadísticos de validación de la temperatura mínima pronosticada vs. observada, para final de campaña agrícola periodo 2006 a 2011

Estación	RMSE (°C)	Bias (°C)	Coeficiente correlación	Coeficiente de determinación	Fc, \(\infty\) =0.05
CCATCA	3.20	-2.94	0.88	0.77	1181.78
GRANJA	5.33	-4.96	0.93	0.86	2085.5
KCAYRA	3.33	-4.70	0.73	0.00	
LIRCAY	4.65	-4.34	0.81	0.66	694.94
PUQUIO	2.37	-1.97	0.93	0.86	2199.14
UBINAS	1.54	-1.01	0.91	0.83	237.32
URUBAMBA	7.14	-6.87	0.88	0.78	1214.32

El RMSE muestra alta variación de las temperaturas mínimas pronosticadas. La prueba estadística BIAS muestra los modelos que subestiman las temperaturas mínimas a diferencia de Granja Kcayra que sobrestima en la temporada de inicio de campaña agrícola. Los coeficientes de determinación presentan mejor ajuste para fin de campaña agrícola, la prueba estadística de Fisher resultó significativocon un nivel de confianza de 95 por ciento. Lo cual indica que estadísticamente los modelos pasan la validación.

Tabla 18: Validación del modelo empírico de temperatura mínima pronosticada (18 horas)

	Inicio de Campaña Agrícola 2006 - 2011								
superan	Ccatca	Granja Kcayra	Lircay	Puquio	Ubinas	Urubamba			
	27% 82%		95%	50%	23%	89%			
± 2 °C	Fin de Campaña Agrícola 2006 - 2011								
	71%	90%	81%	49%	20%	90%			

Considerando el criterio de validación los modelos empíricos tanto para inicio como para fin de campaña agrícola de todas las estaciones en estudio, resulta únicamente la estación Ubinas cumple con el criterio de validación para periodos de inicio y fin de campaña, es decir el error relativo o sus diferencias térmicas entre las temperaturas mínimas pronosticadas por el modelo y las temperaturas observadas mayores a ± 2°C constituye un porcentaje por debajo del 25% a diferencia de las estaciones Ccatca, Granja Kcayra, Lircay, Puquio y Urubamba donde sus diferencias térmicas entre las temperaturas mínimas estimadas por el modelo y observadas mayores ± 2°C superan el 25% del tamaño de la muestra, por tanto los modelos empíricos de dichas estaciones no pasaron la prueba de validación. Ver Tabla 18.

4.3.4 VALIDACIÓN DE MODELOS DE PRONÓSTICOS CON 24 HORAS DE ANTICIPACIÓN.

En la Tabla 19 y 20 se muestran los estadísticos de la verificación de la temperatura mínima pronosticada por el modelo empírico y la temperatura mínima observada para cada una de las estaciones meteorológicas en las respectivas campañas agrícolas.

Tabla 19: Estadística de la validación de la temperatura mínima pronosticada vs observada, para inicio de campaña agrícola periodo 2006 a 2011

Estación	RMSE (°C)	Bias (°C)	Coeficiente de correlación	Coeficiente de determinación	Fc, x =0.05
CCATCA	5.14	-4.72	0.59	0.35	195.46
GRANJA	5.74	-5.38	0.81	0.66	986.19
KCAYRA	3.74	-3.30	0.01	0.00	
LIRCAY	5.20	-4.81	0.67	0.45	297
PUQUIO	2.22	-1.73	0.80	0.65	676.93
UBINAS	1.90	-1.37	0.80	0.64	601.78
URUBAMBA	9.84	-9.65	-0.08	0.01	3.64

Tabla 20: Estadística de validación de la temperatura mínima pronosticada vs observada, para final de campaña agrícola periodo 2006 a 2011

Estación	RMSE (°C)	Bias (°C)	Coeficiente correlación	Coeficiente de determinación	Fc, ∝ =0.05
CCATCA	3.20	-2.99	0.89	0.78	1251.55
GRANJA	5.81	-5.24	0.91	0.83	3055.5
KCAYRA	3.81	-3.2 -	0.71	0.03	3033.3
LIRCAY	4.65	-4.34	0.81	0.66	694.94
PUQUIO	2.17	-1.76	0.93	0.86	2199.14
UBINAS	1.54	-1.01	0.91	0.83	237.32
URUBAMBA	7.70	-7.37	0.79	0.62	558.82

Del RMSE se verifica alta variación de las temperaturas mínimas pronosticadas. La prueba estadística BIAS indica que los modelos subestiman las temperaturas mínimas en todas las estaciones. Los coeficientes de determinación presentan mejor ajuste para final de campaña agrícola. La prueba estadística de Fischer resultó significativo con un nivel de 95 por ciento de confianza. Lo cual indica que estadísticamente los modelos pasan la validación.

Tabla 21: Validación del modelo empírico de temperatura mínima pronosticada (24 horas)

	Inicio de Campaña Agrícola 2006 - 2011								
Casos que	Ccatca	Granja Kcayra	Lircay	Puquio	Ubinas	Urubamba			
superan	54%	96%	95%	42%	30%	95%			
± 2 °C	Fin de Campaña Agrícola 2006 - 2011								
	72%	85%	90%	43%	19.7%	90%			

Considerando el criterio de validación los modelos empíricos tanto para inicio como para finde campaña agrícola resultó únicamente la estación Ubinascumple con el criterio de validaciónpara fin de campañaagrícola, es decir, las diferencias entre las temperaturas mínimas pronosticadas y observadas mayores a ± 2°C constituye porcentaje por debajo del 25% a diferencia de las estaciones Ccatca, GranjaKcayra, Lircay, Puquio y Urubamba las diferencias térmicas entre las temperaturas mínimas estimadas por el modelo y observadas mayores ± 2°C superan el 25% del tamaño de la muestra, lo cual indica quelos modelos empíricos para dichas estaciones nopasaron la prueba de validación. Ver (Tabla 21).

CAPITULO V

CONCLUSIONES

- Los resultados obtenidos muestran tendencias positivas de temperaturas mínimas de noches más cálidas y más frías en las estaciones de Ccatca y Lircay, tanto para inicio y fin de campaña agrícola, lo cual indica que TNx y TNn se están incrementando a través de los años. En Granja Kcayra, Puquio, Ubinas y Urubamba se detectaron calentamientos y enfriamientos de TNx y TNn en inicio y fin de las campañas agrícolas, lo cual indicaría que el efecto de cambio climático tiene manifestaciones muy locales y variables, siendo más notorio en algunas estaciones a diferencia de otras donde los cambios no son significativos.
- Los modelos empíricos de pronósticos (12 horas de anticipación) temperaturas mínimas a nivel de caseta, se ajustaron a ecuaciones de regresión lineal múltiple tanto para inicio como para final de campaña agrícola y resultaron estadísticamente significativos, pasando la etapa de validación y pueden ser aplicados como modelos operativos. Sin embargo los modelos de pronóstico con 18 y 24 horas de anticipación no pasaron la etapa de validación, a excepción de la estación Ubinas. Por lo tanto no se recomienda aplicar como modelos operativos con horizonte de pronóstico de más de 12 horas, tanto para inicio y fin de campaña agrícola.

CAPITULO VI

RECOMENDACIONES

- Es importante disponer de herramientas que contribuyan a prevenir las temperaturas críticas como son las heladas, se recomienda determinar modelos empíricas para estimar temperaturas mínimas de estaciones que dispongan de información climática.
- Comparar los distintos modelos existentes y encontrar aquella que mejor se ajusta a la información obtenida de la estación.

CAPITULOVI

REFERENCIAS BIBLIOGRÁFICAS

AgenciaPerú. 2007. Declaran en emergencia cuatro departamentos afectados por helada, diario Online 21 de febrero del

2007http://agenciaperu.com/sociedad/2007/feb/emergencia_helada.html,

Allen, C.C. 1957. A simplified equation for minimum temperature prediction.MonthlyWeatherReview, 85: 119–120.

Bellido Urquizo, Sandra (2004). «La ciudad de la primavera». Moquegua: 463 aniversario. Arequipa: Grupo La República. Suplemento Especial Diario La República, [2004-11-25]

Brunt, D. 1932.Notes on radiation in the atmosphere. Quarterly Journal of the Royal Meteorological Society, 58: 389–418.

Cellier, P. 1982. Contribution à prévision des températures minimales nocturnes en conditions de gelées de printemps. Etude de l'évolution des températures de l'air et du sol aucours de la nuit. PhD Thesis, INA Paris-Grignon.

Cellier, P. 1993. An operational model for predicting minimum temperatures near the soil surface under Garay, D., y A. Cicero. 2001. Aplicación de redes neuronales al pronóstico de heladas. Rev. Argentina de Agrometeorología 1:29-34.

Fisher, R.A. 1954. Statistical Methods for Research Workers.Oliver and Boyd.ISBN 0-05-002170-2.

García J., Villegas, E. 1993. Pronóstico de temperaturas mínimas para previsión de heladas con 18 horas de anticipación. Anales Científicos UNALM (aprobado para su publicación). La Molina. Lima Perú.

García J., J. Sanabria (2007), Modelos de pronóstico de temperaturas mínimas en el Valle del Mantaro, Anales Científicos. UNALM, ISSN 0255-0407.

INEI (2009). Perú: Perfil del Productor Agropecuario, 2008. Preparado por Centro de Investigación y Desarrollo del Instituto Nacional de Estadística e Informática (INEI). http://www.inei.gob.pe/biblioineipub/bancopub/est/lib0851/libro.pdf

INDECI (2006). Plan Nacional de Contingencia ante la Ocurrencia de Eventos Fríos y/o Heladas. Informe elaborado por el Sistema Nacional de Defensa Civil (INDECI).

 $http://www.indeci.gob.pe/planes_proy_prg/p_operativos/p_contingencia/2008/01_planes_cont_nac/02.pdf$

Kalma, J.D., Laughlin, G.P., Caprio, J.M. &Hamer, P.J.C. 1992. Advances in Bioclimatology, 2.The Bioclimatology of Frost.Berlin: Springer-Verlag .144p. Ovando, G.; S. Bocco, y S. Sayago. 2005. Redes neuronales para modelar predicción de heladas. agric. téc. vol.65, n.1 p. 65-73.

Descripción de la prueba de Fisher:

http://es.wikipedia.org/wiki/Prueba_F_de_Fisher,Consultado el 26/10/2014

MINAM (2009), Informe de Síntesis Sobre Asuntos Clave Relacionados al Sector de la Agricultura (Adaptación). Programa de las Naciones Unidas para el Desarrollo (PNUD) Dirección de Políticas de Desarrollo Grupo Sobre Medio Ambiente y Desarrollo.

Municipalidad provincial de Huancavelica (2014), Datos generales, Clima.http://www.munihuancavelica.gob.pe/es/muni.php/paginas/id/2011050626_ubicacion_geog rafica. Consultado el 26/10/2014.

Municipalidad provincial de Huamanga (2014), Datos generales, Clima.http://www.munihuamanga.gob.pe/turismo/index.php/ciudad/geografia-y-clima. Consultado el 26/10/2014.

Mohandes, M., S. Rehman, and T.O. Halawani.1998a. A neural network approach for wind speed prediction. RenewableEnergy 13:345–354.

Snyder R. L., J. P. Melo-Abreu, 2010. Protección contra las heladas: fundamentos, práctica y economía. Publicación de la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), Vol. 2.

SENAMHI (2009). Tendencia actual de los indicadores extremos de cambio climático en la cuenca del rio Mantaro.

 $http://sania.comunidadandina.org/UpLoad/Contenido/9/25/05_indices\%\,20 de\%\,20 eventos\%\,20 extremos.pdf$

SENAMHI (2012). Caracterización agroclimática de la región Cusco. Informe final de investigación de la Dirección General de Agro meteorología, realizado en el marco del Programa de Adaptación al Cambio Climático (PACC - Perú).

Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B. and Zwiers, F. W. (2011), Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREsClimChange, 2: 851–870. doi: 10.1002/wcc.147.

CAPITULO VIII

ANEXOS

8.1 ESTADÍSTICA DE MODELO DE INICIO DE CAMPAÑA, 12 HORAS DE PRONÓSTICO

8.1.1 ESTACIÓN CCATCA

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.813
COEFICIENTE DE DETERMINACIÓN R^2	0.662
R^2 AJUSTADO	0.659
ERROR TÍPICO	1.242
OBSERVACIONES	1194

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	3574.680	446.835	289.766	0.000
RESIDUOS	1185	1827.333	1.542		
TOTAL	1193	5402.013			

	Correction	Error	ESTADÍSTICO	Drop a pur in a p	Inferior	SUPERIOR
	COEFICIENTES	TÍPICO	T	PROBABILIDAD	95%	95%
INTERCEPCIÓN	-0.401	0.313	-1.281	0.200	-1.014	0.213
T_MÍN -1	0.199	0.020	9.858	0.000	0.159	0.238
TBS 07H	0.135	0.051	2.658	0.008	0.035	0.234
ТВS 13н	-0.136	0.023	-5.816	0.000	-0.182	-0.090
ТВS 19н	-0.028	0.050	-0.563	0.574	-0.127	0.070
ТВН 07н	0.625	0.060	10.491	0.000	0.508	0.742
ТВН 13н	-0.046	0.036	-1.270	0.204	-0.116	0.025
ТВН 19н	0.102	0.060	1.703	0.089	-0.016	0.220
Vv 19н	0.030	0.011	2.784	0.005	0.009	0.051

8.1.2 ESTACIÓN GRANJA KCAYRA

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.881
COEFICIENTE DE DETERMINACIÓN R^2	0.777
R^2 ajustado	0.776
ERROR TÍPICO	1.236
OBSERVACIONES	1809

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	9553.521	1194.190	782.248	0.000
RESIDUOS	1800	2747.903	1.527		
TOTAL	1808	12301.425			

	COEFICIENTES	Error	ESTADÍSTICO	PROBABILIDAD	Inferior	SUPERIOR
	COLITCILIVILIS	TÍPICO	T	TROBABILIDAD	95%	95%
INTERCEPCIÓN	2.011	0.288	6.971	0.000	1.445	2.577
T_MÍN -1	0.102	0.014	7.446	0.000	0.075	0.129
TBS 07H	0.288	0.043	6.695	0.000	0.203	0.372
TBS 13H	-0.189	0.014	-13.297	0.000	-0.217	-0.161
TBS 19H	-0.083	0.025	-3.321	0.001	-0.132	-0.034
ТВН 07н	0.615	0.049	12.497	0.000	0.518	0.711
ТВН 13н	-0.007	0.020	-0.346	0.729	-0.047	0.033
ТВН 19н	0.053	0.026	2.006	0.045	0.001	0.104
Vv 19н	-0.003	0.012	-0.209	0.834	-0.027	0.021

8.1.3 ESTACIÓN LIRCAY

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.871
COEFICIENTE DE DETERMINACIÓN R^2	0.758
R^2 ajustado	0.757
ERROR TÍPICO	1.153
OBSERVACIONES	1908

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	7903.7963	987.9745	743.7567	0
RESIDUOS	1899	2522.550	1.328		
TOTAL	1907	10426.346			

	COEFICIENTE S	ERRO R TÍPICO	ESTADÍSTICO T	Probabilida D	Inferio r 95%	SUPERIO R 95%
INTERCEPCIÓ	-0.0107	0.2761	-0.0386	0.9692	-0.5522	0.5309
T_MÍN -1	0.3068	0.0135	22.6591	0.0000	0.2803	0.3334
TBS 07H	0.0841	0.0315	2.6704	0.0076	0.0223	0.1459
TBS 13H	-0.0060	0.0136	-0.4395	0.6604	-0.0328	0.0208
ТВS 19н	-0.0390	0.0150	-2.5944	0.0095	-0.0685	-0.0095
ТВН 07н	0.6491	0.0334	19.4336	0.0000	0.5836	0.7146
ТВН 13н	-0.0203	0.0200	-1.0161	0.3097	-0.0596	0.0189
ТВН 19н	-0.0515	0.0248	-2.0795	0.0377	-0.1002	-0.0029
Vv 19H	-0.0175	0.0091	-1.9313	0.0536	-0.0353	0.0003

8.1.4 ESTACIÓN UBINAS

Estadísticas de la regresión	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.864
COEFICIENTE DE DETERMINACIÓN R^2	0.746
R^2 ajustado	0.745
ERROR TÍPICO	1.001
OBSERVACIONES	1934

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	5669.353	708.669	707.955	0
RESIDUOS	1925	1926.942	1.001		
TOTAL	1933	7596.294			

	COEFICIENTES	Error	ESTADÍSTICO	Probabilidai	INFERIO	OR SUPERIOR
	COEFICIENTES	TÍPICO	T	PROBABILIDAI	95%	95%
INTERCEPCIÓN	0.988	0.230	4.304	0.000	0.538	1.438
T_MÍN -1	0.396	0.016	24.168	0.000	0.364	0.428
TBS 07H	0.092	0.019	4.942	0.000	0.055	0.128
TBS 13H	-0.126	0.018	-7.073	0.000	-0.160	-0.091
TBS 19H	0.212	0.024	8.891	0.000	0.165	0.259
ТВН 07н	0.259	0.026	9.921	0.000	0.208	0.310
ТВН 13н	-0.016	0.023	-0.703	0.482	-0.062	0.029
ТВН 19н	-0.006	0.028	-0.213	0.831	-0.060	0.048
Vv 19H	-0.069	0.014	-4.806	0.000	-0.097	-0.041

8.1.5 ESTACIÓN URUBAMBA

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.905
COEFICIENTE DE DETERMINACIÓN R^2	0.818
R^2 ajustado	0.817
ERROR TÍPICO	0.913
OBSERVACIONES	1929

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	7192.965	899.121	1079.564	0
RESIDUOS	1920	1599.0817	0.8329		
TOTAL	1928	8792.047			

	COEFICIENTE S	ERRO R TÍPICO	ESTADÍSTICO T	Probabilida d	Inferio	SUPERIO R 95%
INTERCEPCIÓ	0.898	0.260	3.447	0.001	0.387	1.408
T_MÍN -1	0.087	0.013	6.848	0.000	0.062	0.112
TBS 07H	0.053	0.030	1.731	0.084	-0.007	0.112
TBS 13H	-0.094	0.012	-7.963	0.000	-0.117	-0.071
TBS 19H	-0.082	0.019	-4.362	0.000	-0.119	-0.045
ТВН 07н	0.883	0.039	22.793	0.000	0.807	0.959
ТВН 13н	-0.026	0.024	-1.104	0.270	-0.073	0.020
ТВН 19н	0.083	0.034	2.453	0.014	0.017	0.149
Vv 19H	0.068	0.013	5.071	0.000	0.042	0.094

8.1.6 ESTACIÓN PUQUIO

Estadísticas de la regresión	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.881
COEFICIENTE DE DETERMINACIÓN R^2	0.776
R^2 ajustado	0.774
ERROR TÍPICO	0.976
OBSERVACIONES	1093

	GRADOS DE SUMA DE LIBERTAD CUADRAD		PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE
RESIÓN	8	3576.588	447.073	469.735	F 0
RESIDUOS TOTAL	1084 1092	1031.705 4608.292	0.952	107.733	Ü

	COEFICIENTES	ERRO R TÍPICO	ESTADÍSTICO T	Probabilida d	Inferio r 95%	SUPERIO R 95%
INTERCEPCIÓ	-0.892	0.362	-2.467	0.014	-1.602	-0.183
T_MÍN -1	0.283	0.020	13.981	0.000	0.243	0.323
ТВЅ 07н	0.055	0.025	2.172	0.030	0.005	0.105
ТВS 13н	0.008	0.025	0.329	0.742	-0.041	0.057
ТВS 19н	0.197	0.041	4.828	0.000	0.117	0.277
ТВН 07н	0.420	0.027	15.638	0.000	0.367	0.472
ТВН 13н	0.044	0.030	1.497	0.135	-0.014	0.102
ТВН 19н	-0.054	0.023	-2.379	0.018	-0.099	-0.010
Vv 19H	-0.006	0.018	-0.337	0.736	-0.040	0.029

8.2 ESTADÍSTICA DE MODELO DE FINAL DE CAMPAÑA8.2.1 ESTACIÓN CCATCA

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.9161
COEFICIENTE DE DETERMINACIÓN R^2	0.8392
R^2 ajustado	0.8381
ERROR TÍPICO	1.0099
OBSERVACIONES	1161

	GRADOS DE	SUMA DE	PROMEDIO DE		VALOR
		Semile		F	CRÍTICO DE
	LIBERTAD	CUADRADOS	LOS CUADRADOS		F
REGRESIÓN	8	6130.961	766.370	751.423	0
RESIDUOS	1152	1174.916	1.020		
TOTAL	1160	7305.877			

COEFICIENTES		ERROR ESTADÍSTICO T		PROBABILIDAD	Inferior	SUPERIOR
CO	COEFICIENTES		TÍPICO		95%	95%
INTERCEPCIÓN	-1.032	0.296	-3.481	0.001	-1.614	-0.450
T_MÍN -1	0.237	0.017	13.837	0.000	0.203	0.270
TBS 07H	0.240	0.060	3.977	0.000	0.121	0.358
TBS 13H	-0.075	0.022	-3.381	0.001	-0.118	-0.031
ТВS 19н	-0.034	0.046	-0.736	0.462	-0.124	0.056
ТВН 07н	0.452	0.063	7.162	0.000	0.328	0.575
ТВН 13н	-0.072	0.027	-2.674	0.008	-0.125	-0.019
ТВН 19н	0.173	0.047	3.673	0.000	0.080	0.265
Vv 19H	0.045	0.012	3.834	0.000	0.022	0.068

8.2.2 . ESTACIÓN GRANJA KCAYRA

Estadísticas de la regresión	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.9534
COEFICIENTE DE DETERMINACIÓN R^2	0.9089
R^2 ajustado	0.9085
ERROR TÍPICO	1.0014
OBSERVACIONES	1780

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	17714.028	2214.254	2208.201	0
RESIDUOS	1771	1775.854	1.003		
TOTAL	1779	19489.882			

C S	OEFICIENTE	ERROR TÍPICO	ESTADÍSTICO T	PROBABILIDAD	INFERIO R 95%	SUPERIO R 95%
INTERCEPCIÓ	0.465	0.238	1.957	0.050	-0.001	0.931
T_MÍN -1	0.100	0.011	8.918	0.000	0.078	0.122
TBS 07H	0.224	0.069	3.251	0.001	0.089	0.359
TBS 13H	-0.167	0.013	-12.447	0.000	-0.193	-0.141
TBS 19H	0.040	0.023	1.739	0.082	-0.005	0.085
ТВН 07н	0.675	0.072	9.320	0.000	0.533	0.817
ТВН 13н	0.089	0.017	5.164	0.000	0.055	0.122
ТВН 19н	-0.041	0.023	-1.743	0.082	-0.086	0.005
Vv 19н	0.009	0.014	0.694	0.488	-0.017	0.036

8.2.3 ESTACIÓN LIRCAY

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.899
COEFICIENTE DE DETERMINACIÓN R^2	0.808
R^2 ajustado	0.807
ERROR TÍPICO	1.159
OBSERVACIONES	1908

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	10742.766	1342.846	1000.517	0
RESIDUOS	1899	2548.748	1.342		
TOTAL	1907	13291.513			

	COEFICIENTES	ERROR TÍPICO	ESTADÍSTICO T	PROBABILIDAD	INFERIOR 95%	SUPERIOR 95%
INTERCEPCIÓN	-0.356	0.287	-1.238	0.216	-0.919	0.208
T_MÍN -1	0.425	0.013	32.399	0.000	0.400	0.451
TBS 07H	0.089	0.045	1.983	0.048	0.001	0.177
TBS 13H	0.082	0.015	5.434	0.000	0.053	0.112
TBS 19H	-0.070	0.018	-3.841	0.000	-0.105	-0.034
ТВН 07н	0.596	0.046	12.922	0.000	0.506	0.687
ТВН 13н	-0.106	0.019	-5.505	0.000	-0.143	-0.068
ТВН 19н	-0.056	0.028	-2.004	0.045	-0.110	-0.001
Vv 19н	-0.005	0.011	-0.471	0.638	-0.027	0.016

8.2.4 ESTACIÓN UBINAS

ESTADÍSTICAS DE LA REGRESIÓN	
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.942
COEFICIENTE DE DETERMINACIÓN R^2	0.888
R^2 ajustado	0.887
ERROR TÍPICO	0.741
OBSERVACIONES	1905

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	8239.049	1029.881	1877.351	0
RESIDUOS	1896	1040.112	0.549		
TOTAL	1904	9279.160			

Coeficientes		ERROR ESTADÍSTICO T		PROBABILIDA	Inferior	SUPERIOR
		TÍPICO	ESTADISTICO I	D	95%	95%
INTERCEPCIÓN	0.310	0.132	2.349	0.019	0.051	0.569
T_MÍN -1	0.282	0.014	19.972	0.000	0.255	0.310
ТВS 07н	0.239	0.020	11.965	0.000	0.200	0.278
TBS 13H	-0.018	0.012	-1.480	0.139	-0.042	0.006
ТВS 19н	0.117	0.020	5.949	0.000	0.079	0.156
ТВН 07н	0.272	0.023	12.014	0.000	0.228	0.317
ТВН 13н	0.017	0.016	1.063	0.288	-0.014	0.048
ТВН 19н	-0.071	0.020	-3.537	0.000	-0.111	-0.032
Vv 19н	-0.097	0.013	-7.534	0.000	-0.122	-0.072

8.2.5 ESTACIÓN URUBAMBA

ESTADÍSTICAS DE LA REGRESIÓN					
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.945				
COEFICIENTE DE DETERMINACIÓN R^2	0.893				
R^2 AJUSTADO	0.892				
ERROR TÍPICO	0.823				
OBSERVACIONES	1889				

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
	8	10617.353	1327.169	1958.976	0
RESIDUOS	1880	1273.665	0.677		
TOTAL	1888	11891.018			

	COEFICIENTES	ERROR TÍPICO	ESTADÍSTICO T	PROBABILIDAD	Inferior 95%	SUPERIOR 95%
INTERCEPCIÓN	-0.382	0.237	-1.613	0.107	-0.847	0.082
T_MÍN -1	0.157	0.011	14.197	0.000	0.135	0.179
TBS 07H	0.082	0.032	2.561	0.011	0.019	0.145
TBS 13H	-0.109	0.011	-9.678	0.000	-0.131	-0.087
TBS 19H	0.033	0.018	1.792	0.073	-0.003	0.069
ТВН 07н	0.756	0.037	20.628	0.000	0.684	0.828
ТВН 13н	0.025	0.021	1.217	0.224	-0.015	0.066
ТВН 19н	0.063	0.030	2.102	0.036	0.004	0.122
Vv 19H	0.043	0.026	1.654	0.098	-0.008	0.095

8.2.6 ESTACIÓN PUQUIO

ESTADÍSTICAS DE LA REGRESIÓN					
COEFICIENTE DE CORRELACIÓN MÚLTIPLE	0.9270				
COEFICIENTE DE DETERMINACIÓN R^2	0.8594				
R^2 ajustado	0.8583				
ERROR TÍPICO	0.8338				
OBSERVACIONES	1047				

	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	PROMEDIO DE LOS CUADRADOS	F	VALOR CRÍTICO DE F
REGRESIÓN	8	4410.984	551.373	793.133	0
RESIDUOS	1038	721.601	0.695		
TOTAL	1046	5132.585			

	COEFICIENTES	Error Típico	ESTADÍSTICO T	Probabilidad	Inferior 95%	SUPERIOR 95%
INTERCEPCIÓN	-0.638	0.275	-2.318	0.021	-1.179	-0.098
T_MÍN -1	0.288	0.018	15.761	0.000	0.252	0.324
TBS 07H	0.200	0.026	7.670	0.000	0.149	0.252
TBS 13H	0.021	0.019	1.119	0.263	-0.016	0.059
TBS 19H	0.099	0.036	2.743	0.006	0.028	0.171
ТВН 07н	0.366	0.027	13.721	0.000	0.314	0.418
ТВН 13н	-0.007	0.026	-0.263	0.792	-0.057	0.044
ТВН 19н	-0.017	0.019	-0.888	0.375	-0.054	0.020
Vv 19н	-0.010	0.016	-0.607	0.544	-0.041	0.021