UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERIA AGRÍCOLA

"IDENTIFICACION DE ZONAS VULNERABLES, APLICANDO EL SISTEMA DE INFORMACION GEOGRAFICA, UNIDAD HIDROGRAFICA CHIRA-PIURA"

Presentado por:

NIELL WILSON RIVAS MEZA

TESIS PARA OPTAR EL TÍTULO DE INGENIERO AGRICOLA

Lima - Perú

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE INGENIERIA AGRICOLA

"IDENTIFICACIÓN DE ZONAS VULNERABLES, APLICANDO EL SISTEMA DE INFORMACIÓN GEOGRÁFICA, UNIDAD HIDROGRÁFICA CHIRA - PIURA"

TESIS PARA OPTAR EL TITULO DE:

INGENIERO AGRICOLA

Presentado por:

BACH. NIELL WILSON RIVAS MEZA

Sustentado y aprobado por el siguiente jurado:

Dr. ABSALÓN VÁSQUEZ VILLANUEVA PRESIDENTE

Dr. NÉSTOR MONTALVO ARQUIÑIGO **ASESOR**

MIEMBRO

Ing. DOMINGO MARCELO PORTUGUEZ MAURTUA Ing. HERMES ALBERTO VALDIVIA ASPILCUETA MIEMBRO

> LIMA – PERÚ 2017

AGRADECIMIENTOS

Quisiera expresar mis más sinceros agradecimientos a mi alma mater, Universidad Nacional Agraria La Molina y a la Facultad de Ingeniería Agrícola, que me formó académicamente con sus dedicados docentes, de los cuales guardo grandes enseñanzas.

A mi asesor, Doctor Néstor Montalvo, por su valiosa amistad, por sus constantes apoyos y estimulo durante el desarrollo del presente trabajo.

A mi padre Wilson Rivas y a mi madre Miriam Meza, por apoyarme en todo momento, por sus consejos, valores y paciencia que me ha permitido ser quien soy. Sobre todo, por su amor.

A mi hermana Jacqueline Rivas, por su paciencia y constancia, por estar conmigo y confiar en mí.

A mi persona favorita, J. Jaramillo, por su paciencia, comprensión y confianza, pero sobre todo, por su apoyo y amor incondicional.

A mis amigos y colegas: Max Gutiérrez, Enzo Hurtado y Pepe Chávez por su amistad incondicional. Apoyarme y aconsejarme en la elaboración del presente trabajo.

A mis amistades: Fabiola Duran, Wilde Abregu, Edson Tapullima e Irma Huayhua, por tener paciencia durante toda la elaboración de la presente tesis.

ÍNDICE

RE	SUN	1EN		i
I.		INT	FRODUCCIÓN	1
II.		RE	VISION BIBLIOGRAFICA	3
2	2.1.	Cue	encas Hidrográficas	3
2	2.2.	Des	sastres Naturales	4
2	2.3.	Peli	igro	4
2	2.4.	Vul	nerabilidad	5
2	2.5.	Rie	sgo	5
2	2.6.	Ges	stión del riesgo de desastres	6
2	2.7.	Prá	cticas conservacionistas para el manejo de la erosión de la cuenca	7
	2.7.	.1.	Prácticas mecánico-estructurales	7
	2.7.	.2.	Prácticas agronómicas	7
	2.7.	.3.	Prácticas silvopastoriles	7
2	2.8.	Fen	ómenos de geodinámica externa en la cuenca hidrográfica de Chira - Piura	a8
2	2.9.	Sist	emas de información geográfica (SIG)	10
	2.9.	.1.	Elementos de un SIG	11
	2.9.	.2.	Funciones de los SIG	12
	2.9.	.3.	Aplicaciones de los SIG	15
2	2.10.	Mo	delos Geoespaciales	15
2	2.11.	Bas	e de Datos (BD)	16
	2.1	1.1.	Ventajas y desventajas de las bases de datos	17
2	2.12.	Sist	ema Gestor de Base de Datos (SGBD)	19
2	2.13.	Aná	álisis de la vulnerabilidad mediante tecnología SIG	23
III	•	MA	ATERIALES Y MÉTODOS	24
3	3.1.	Des	scripción de la zona de estudio	24
	3.1.	.1.	Ubicación	24
	3.1.	.2.	Características biofísicas	26
	3.1.	.3.	Características socioeconómicas	34
3	3.2.	Ma	teriales y equipos	36
3	3.3.	Me	todología	36
	3.3.	.1.	Fase pre-campo	37
	3.3.	.2.	Trabajo de campo	38

	3.3.	3.	Trabajo de Gabinete	38
IV.		RES	SULTADOS Y DISCUSION	77
4.	.1.	Info	rmación temática generada para el modelo grado de Vulnerabilidad Física	77
	4.1.	1.	Variable temática de precipitaciones	77
	4.1.	2.	Variable temática de pendientes	80
	4.1.	3.	Variable temática de Geomorfología y Fisiografía	82
	4.1.	4.	Variable temática de Geología	85
	4.1.	5.	Variable temática de Suelos	88
	4.1.	6.	Variable temática de Cobertura Vegetal	90
	4.1.	7.	Modelo geoespacial de vulnerabilidad física	92
4.	.2.	Grad	do de Vulnerabilidad Socioeconómica	95
	4.2.	1.	Niveles de incidencia por las Actividades Económicas	95
	4.2.	2.	Niveles de incidencia por las unidades sociales	97
	4.2.	3.	Niveles de incidencia por la Infraestructura a la Vulnerabilidad	116
	4.2.	4.	Modelo geoespacial del Vulnerabilidad Socioeconómica	142
4.	.3.	GEN	NERACION DEL SUB MODELO DE CONFLICTO DE USO	145
	4.3.	1.	Información temática del sub modelo geoespacial de conflicto de uso	145
4.	.4.	VUI	LNERABILIDAD GLOBAL	.147
V.		CO	NCLUSIONES	150
VI.		REG	COMENDACIONES	152
VII.		REFERENCIAS BIBLIOGRAFICAS		153
VII	I.	ANI	EXOS	.156

ÍNDICE DE TABLAS

Tabla 1: Tipos Climáticos en el ámbito de Chira-Piura, según la clasificación de	
Thornthwaite	26
Tabla 2: Leyenda de mapa geológico de la cuenca Chira-Piura	28
Tabla 3: Leyenda de Geomorfología de la cuenca Chira- Piura	30
Tabla 4: Variables e indicadores para determinar el grado de vulnerabilidad	41
Tabla 5: Valorización de la información temática de precipitaciones máximas	46
Tabla 6: Valoración de la información temática de pendientes	47
Tabla 7: Valoración de la información temática de geología	47
Tabla 8: Valoración de la información temática de cobertura vegetal	49
Tabla 9: Valoración de la información temática de Fisiografía-Geomorfología	49
Tabla 10: Valoración de la información temática de suelo.	51
Tabla 11: Variables del Sub Modelo Actividades Económicas	55
Tabla 12: Valoración de la información temática de actividades económicas	57
Tabla 13: Valoración de la información temática de mercados y corredores	59
Tabla 14: Variables del Sub Modelo Unidades Sociales	59
Tabla 15: Criterios de Valoración para Pobreza Total	60
Tabla 16: Criterios de Valoración para IDH	61
Tabla 17: Criterios de Valoración para NBI	61
Tabla 18: Criterios de Valoración para Programas Sociales	62
Tabla 19: Criterios de Valoración de Redes Municipales	63
Tabla 20: Variables del Sub Modelo Infraestructura	63
Tabla 21: Clasificación de los establecimientos del sector salud	64
Tabla 22: Criterios de Valoración de la Variable Infraestructura de Servicios de Salud	64
Tabla 23: Criterios de Valoración de la Variable Infraestructura de Servicios de	
Educación	65
Tabla 24: Criterios de Valoración de la Variable Infraestructura de Saneamiento	65
Tabla 25: Criterios de Valoración de la Variable Abastecimiento de Agua Potable	66
Tabla 26: Rango de Ponderación para la Variable de Redes eléctricas	66
Tabla 27: Criterios de Valoración de la Variable Vías de Comunicación	66
Tabla 28: Criterios de Valoración de la Variable Infraestructura de Telecomunicaciones	.67
Tabla 29: Criterios de valorización de las variables de conflicto de uso	72
Table 30: Grado de participación de los sub modelos	75

Tabla 31: Grados de participación de v	ariables	76
Tabla 32: Calificación de la variable te	mática de precipitación	78
Tabla 33: Calificación de la variable te	mática de pendiente	30
Tabla 34: Clasificación de la variable t	emática de Geomorfología y Fisiografía	32
Tabla 35: Calificación de la variable te	mática de geología	35
Tabla 36: Calificación de la variable te	mática de Suelos	38
Tabla 37: Calificación de la variable te	mática de Cobertura Vegetal9	90
Tabla 38: Nivel de vulnerabilidad físic	a en la unidad hidrográfica Chira-Piura9	93
Tabla 39: Características de las activid	ades económicas9) 5
Tabla 40: Clasificación de la variable	temática de pobreza total9	€7
Tabla 41: Calificación de a variable ter	mática de IDH10	00
Tabla 42: Calificación de la variable te	mática de NBI10)3
Tabla 43: Calificación de la variable te	emática de Programas Sociales10)6
Tabla 44: Calificación de la variable te	mática de REMUR10)9
Tabla 45: Clasificación de las Unidade	s Sociales11	14
Tabla 46: Calificación de la variable te	mática de Infraestructura de Salud11	16
Tabla 47: Clasificación de la Infraestru	ıctura de Educación12	20
Tabla 48: Calificación de la variable te	mática de Infraestructura de Saneamiento12	23
Tabla 49: Calificación de la variable te	emática de Cobertura de Abastecimiento de agua	
potable		26
Tabla 50: Calificación de la variable te	mática Cobertura de red eléctrica12	29
Tabla 51: Calificación de la variable te	mática Red Vial13	32
Tabla 52: Calificación de la variable te	mática de Telecomunicaciones13	35
Tabla 53: Clasificación del Sub model	o Infraestructura14	1 0
Tabla 54: Nivel de vulnerabilidad soci	oeconómica en la unidad hidrográfica Chira-Piura	
	12	43
Tabla 55: Situación de conflicto de uso)1 ₄	45
Tabla 56: Nivel de vulnerabilidad glob	al en la unidad hidrográfica Chira – Piura14	18

ÍNDICE DE FIGURAS

Figura 1: Elementos de un SIG	12
Figura 2: Modelos raster y vectorial de un SIG	14
Figura 3: Sobreposición de capas	15
Figura 4: Niveles de abstracción de la arquitectura ANSI	20
Figura 5: Mapa de ubicación	25
Figura 6: Esquema metodológico desarrollado	37
Figura 7: Esquema lógico de la BDG integrado	42
Figura 8: Modelo conceptual de la vulnerabilidad Global	44
Figura 9: Modelo geoespacial para la determinación del sub modelo de la vulnerabilidad	l
física	52
Figura 10: Modelo geoespacial propuesto para la identificación de zonas con	
vulnerabilidad física	53
Figura 11: Modelo cartográfico para la determinación del sub modelo Actividades	
Económicas	68
Figura 12: Modelo cartográfico para la determinación del sub modelo Unidades Sociales	s 69
Figura 13: Modelo cartográfico para la determinación del sub modelo Infraestructura	70
Figura 14: Modelo cartográfico propuesto para la identificación de zonas con	
vulnerabilidad Socioeconómica	71
Figura 15: Modelo cartográfico propuesto para la identificación de zonas con conflicto	
de uso	73
Figura 16: Modelo cartográfico propuesto para la identificación de zonas vulnerables	
por fenómenos de geodinámica externa (Vulnerabilidad Global)	75
Figura 17: Mapa de Precipitación	79
Figura 18: Mapa de pendientes	81
Figura 19: Mapa geomorfología y fisiografía	84
Figura 20: Mapa de geología	87
Figura 21: Mapa de Suelos	89
Figura 22: Mapa de cobertura vegetal.	91
Figura 23: Modelo Geoespacial- Grado de Vulnerabilidad Física	94
Figura 24: Sub modelo de Niveles de Incidencia por las Actividades Económicas a la	
Vulnerabilidad	96
Figura 25: Mapa de Pobreza Total	99

Figura 26: Mapa de Índice de Desarrollo Humano	102
Figura 27: Mapa de Necesidades Básicas Insatisfechas	105
Figura 28: Mapa de Programas Sociales	108
Figura 29: Mapa de Redes de Municipalidades	111
Figura 30: Sub Modelo Niveles de Incidencia por las Unidades Sociales a la	
Vulnerabilidad	115
Figura 31: Mapa de Infraestructura de Salud	119
Figura 32: Mapa de Infraestructura Educativa	122
Figura 33: Mapa de Infraestructura de Saneamiento	125
Figura 34: Mapa de Cobertura de Abastecimiento de Agua Potable	128
Figura 35: Mapa de Cobertura de Red Eléctrica	131
Figura 36: Mapa de Vías de Comunicación	134
Figura 37: Mapa de Telecomunicaciones	137
Figura 38: Sub Modelo Niveles de Incidencia por la Infraestructura a la Vulnerabilidad	d 141
Figura 39: Modelo Geoespacial – Grado de Vulnerabilidad Socioeconómica	144
Figura 40: Modelo Geoespacial – Modelo Conflicto de Uso	146
Figura 41: Mapa de vulnerabilidad global de la unidad hidrográfica Chira – Piura	149
Figura 42: Mapa de actividades económicas primarias	157
Figura 43: Mapa de actividades económicas secundarias	158
Figura 44: Mapa de actividades económicas terciarias	159
Figura 45: Mapa de mercados	160
Figura 46: Mapa de corredores económicos	161

RESUMEN

El estudio se realizó en la unidad hidrográfica Chira – Piura, con la finalidad de determinar su grado de vulnerabilidad, en función a sus características físicas y socioeconómicas, empleando los sistemas de información geográfica como una herramienta de análisis. El desarrollo del presente trabajo de investigación, comprendió tres etapas: trabajo de precampo, que fue la recopilación de información y coordinación con instituciones relacionadas al tema; trabajo de campo, en la que se realizó la identificación de los puntos críticos y entrevistas con los principales actores de la zona de estudio; y, trabajo de gabinete, que consistió en la consolidación, sistematización y caracterización de la información temática referente a las variables físicas y socioeconómicas, y la generación de los modelos geoespaciales para determinar la vulnerabilidad en la unidad hidrográfica.

Los resultados obtenidos de la integración de las variables físicas, socioeconómicas y conflictos de uso, mediante el modelamiento geoespacial, permitieron identificar el grado de vulnerabilidad. Alrededor del 4.40 por ciento del territorio presenta vulnerabilidad muy alta (situación extrema), en la que se ubica 168 centros poblados como: Ramón Castilla (Huarmaca), Sapce (Canchaque), Vista Alegre (Lalaquiz), Nangay (Yamango), Miraflores (Pacaipampa), Cruz Huacas (Lagunas), Tapal (Ayabaca), entre otros. Aproximadamente, el 22.55 por ciento del territorio con vulnerabilidad alta (situación crítica), en la que se encuentra 913 centro poblados como: Pampa Larga (Sapillica), Nueva Esperanza (Huarmaca), La Capilla (Jijili), entre otros. Otro 57 por ciento tiene vulnerabilidad media (situación grave), la que se encuentra 956 centros poblados como: Casagrande (La Arena), Pedregral Grande (Catacaos), Mejía (Sullana), entre otros. Finalmente, un 15.65 por ciento tiene vulnerabilidad baja (situación regular), la que se encuentra 129 centros poblados como: Palonimo (Chulucanas), Santa Lucía (Piura), San Miguel (Tambo Grande), entre otros.

En las zonas identificadas con vulnerabilidad muy alta y alta, se recomienda implementar proyectos y actividades que permitan mitigar los efectos de los fenómenos extraordinarios.

Palabras claves: vulnerabilidad, sistemas de información geográfica, modelamiento geoespacial, unidad hidrográfica.

ABSTRACT

The investigation was performed in the hydrographic unit Chira – Piura, with the purpose of defining the grade of vulnerability, in function of its physical and socioeconomical features, using geographic information system as an analysis tool. The develop of this research work, included three stages: pre-field work, which was the recompilation of information and coordination with institutions related to the topic; field work, which the identification of critical points and interview with the principal actors in the study zone was done; and, desktop work, which consisted in the consolidation, systematization and characterization of the topic information referring to physical and socioeconomical variables, and the generation of the geospatial models to determine the vulnerability of the hydrographic unit.

The obtained results from the integration of physical, socioeconomical and conflicts of use variables, through geospatial modeling, allowed to identify the grade of vulnerability. Around 4.40 percent of the territory presents too high vulnerability (extreme situation), where are located 168 populated centers as: Ramón Castilla (Huarmaca), Sapce (Canchaque), Vista Alegre (Lalaquiz), Nangay (Yamango), Miraflores (Pacaipampa), Cruz Huacas (Lagunas), Tapal (Ayabaca), and others. Approximately, 22.55 percent of the territory with high vulnerability (critical situation), where are located 913 populated centers as: Pampa Larga (Sapillica), Nueva Esperanza (Huarmaca), La Capilla (Jijili), and other. Other 57 percent has medium vulnerability (serious situation), where are located 956 populated centers as: Casagrande (La Arena), Pedregal Grande (Catacaos), Mejía (Sullana) and others. Finally, 15.65 percent has low vulnerability (regular situation), where are located 129 populated centers as: Palonimo (Chulucanas), Santa Lucía (Piura), San Miguel (Tambo Grande), and others.

In the identified zones with high and too high vulnerability, is recommended to implement projects and activities that allow mitigate the effects of extraordinary phenomena.

Key words: Vulnerability, geographic information system, geospatial modeling, hydrographic unit.

I. INTRODUCCIÓN

El Perú, es un país que posee relativamente escasos recursos hídricos, debido principalmente a su desigual disponibilidad en las diferentes épocas del año. En la Costa aparecen las cuencas Chira y Piura que cruzan el desierto costero como franjas relativamente estrechas, los ríos que llevan su mismo nombre son de corto recorrido y de carácter torrencial, nacen en las faldas Occidentales de los Andes y después de discurrir por cauces generalmente estrechos y de pronunciadas pendientes, descargan en el Océano Pacífico. Estos ríos de carácter estacional producen grandes escurrimientos entre los meses de verano (enero - abril), así como también estiajes en el resto del año y sequías como el caso del río Piura.

Los peligros naturales como la pluviosidad, inundaciones, huaycos, deslizamientos, etc. y las actividades humanas generadoras de desechos contaminantes que ocurren en las cuencas en estudio, dan lugar a alta vulnerabilidad y riesgos destructores de las infraestructuras en el valle. (Infraestructura de riego, infraestructura vial, áreas de riego y zonas pobladas).

El Fenómeno El Niño, es el factor principal causante de los mayores daños presentados en la cuenca lo largo de su historia, asociado al grado alto de vulnerabilidad, producen cuantiosos daños y suceden en forma permanente y con diferente intensidad; han existido algunos períodos en que estas intensidades han resultado inusualmente altas, produciendo verdaderas catástrofes.

El estudio a desarrollar dará a conocer las principales amenazas (naturales y antrópicas) que afectan la cuenca hidrográfica Chira-Piura, así como a definir las áreas críticas o de mayor riesgo a la ocurrencia de un evento de desastre. Para tal fin se empleó el uso de Sistema de Información Geográfica (SIG) como herramienta para la elaboración de los mapas tanto de vulnerabilidad como amenazas y de esta manera tener una idea que oriente la gestión de riesgo en la zona.

En base a lo expuesto, el objetivo general del presente trabajo de investigación fue:

• Determinar el grado de vulnerabilidad en la Unidad Hidrográfica de Chira-Piura; aplicando el Sistema de Información Geográfica (SIG).

Para tal fin los objetivos específicos fueron:

- Implementar la base de datos geoespacial y generar la información temática.
- Generar un modelo geoespacial que permita la identificación del grado de vulnerabilidad física.
- Generar un modelo geoespacial que permita la identificación del grado de vulnerabilidad socio-económica.
- Determinar zonas vulnerables en función a la vulnerabilidad física y socioeconómica.

II. REVISION BIBLIOGRAFICA

2.1. Cuencas Hidrográficas

Se conoce como cuenca hidrográfica a1 área drenada por un rio. La cuenca es una unidad natural hidrológica y geofísica, con límites definidos que facilitan la planificación y el aprovechamiento de sus recursos. Los límites de la cuenca dependen de su topografía y están determinados por la línea divisoria de aguas. En la cuenca es posible efectuar un balance del ciclo hidrológico, cuantificando con mayor precisión el agua disponible. Asimismo, las cuencas hidrográficas facilitan la percepción del efecto negativo de las acciones del hombre sobre su entorno, evidenciándolas en la contaminación y en la calidad del agua evacuada por la cuenca, quedando claro, por cierto, que el agua es el recurso integrador y el producto resultante de la cuenca. (IPROGA 1996)

Vásquez (2000) define la cuenca hidrográfica como el territorio y el área geográfica (suelo, agua, clima, precipitación pluvial, escorrentía subterránea, etc.) delimitados por la colección del agua que se deriva en una fuente de agua. Ésta contiene determinados recursos naturales que otorgan posibilidades a la vida humana y animal. Su hilo conductor es el ciclo hidrológico y la cultura de población que ocupa y se relaciona con la naturaleza. Ese hilo se encuentra constantemente generándose, regenerándose o degenerándose, con la intervención del hombre y su sociedad, las cuales forman juntos un todo indivisible con la naturaleza, interrelacionándose en forma sistemática y deviniendo así en una determinada dinámica que fomenta su preservación o deterioro.

2.2. Desastres Naturales

Es una interrupción severa del funcionamiento de una comunidad causada por un peligro, de origen natural o inducido por la actividad del hombre, ocasionando pérdidas humanas, considerables pérdidas de bienes materiales, daños a los medios de producción, al ambiente y a los bienes culturales. La comunidad afectada no puede dar una respuesta adecuada con sus propios medios a los efectos del desastre, siendo necesaria la ayuda externa ya sea a nivel nacional y/o internacional.

Los desastres son situaciones o procesos sociales que se desencadenan como resultado de la ocurrencia de un fenómeno de origen natural, de fallas tecnológicas en sistemas industriales o bélicos o provocados por el hombre que, al encontrar condiciones propicias de vulnerabilidad en una comunidad, causa pérdidas humanas y materiales, efectos sobre la estructura socioeconómica de una región o un país y daños severos al medio ambiente; lo anterior determina la necesidad de asistencia inmediata de las autoridades y de la población para atender los afectados y restablecer la normalidad (Jiménez, 2004).

Algunos desastres de origen natural corresponden a amenazas que no pueden ser neutralizadas debido a que difícilmente su mecanismo de origen puede ser intervenido, aunque en algunos casos puede controlarse parcialmente. Terremotos, erupciones volcánicas, tsunamis (maremotos) y huracanes son ejemplos de amenazas que aún no pueden ser intervenidas en la práctica, mientras que inundaciones, sequías y deslizamientos pueden llegar a controlarse o atenuarse con obras civiles y de canalización y estabilización de suelos FEMICA (2005).

2.3. Peligro

Un peligro es la probabilidad de ocurrencia de un fenómeno o un proceso, ya sea natural o causado por el hombre, potencialmente dañino para un grupo de personas, sus pertenencias y medio ambiente, si no se toman las precauciones necesarias. (Mesa de Concertación para la Lucha contra la Pobreza, 2009)

EIRD (2009) menciona que la amenaza o peligro como un fenómeno, sustancia, actividad humana o condición peligrosa que pueden ocasionar la muerte, lesiones u otros impactos a las salud, al igual que daños a la propiedad, la pérdida de medios de sustento y de servicios, trastornos sociales y económicos, o daños ambientales.

2.4. Vulnerabilidad

La vulnerabilidad es el grado en que un sistema (grupo humano, ecosistema, etc.) se ve expuesto a sufrir daños, ante un peligro; así como la capacidad de recuperarse del impacto negativo del mismo. La UNISDR (2009) la define como el conjunto de características o circunstancias en un sistema que lo hacen susceptibles a sufrir los efectos de un peligro.

La vulnerabilidad es el resultado de procesos de desarrollo no sostenibles. Es una condición social, producto de los procesos y formas de cambio y transformación de la sociedad. Se expresa en términos de los niveles económicos y de bienestar de la población, en sus niveles de organización social, educación, en sus características culturales e ideológicas; pero también en términos de localización en el territorio, en el manejo del ambiente, en las características y capacidades propias de recuperar y de su adecuación al medio y a los peligros que este mismo presenta (MEF-DGPM, 2006)

Los dos tipos básicos de vulnerabilidad son la económica y la física. La primera es característica de las personas de bajos recursos y se refiere a la incapacidad de protegerse mejor y de recuperarse ante un peligro debido a las limitaciones económicas. La vulnerabilidad física se refiere a la susceptibilidad ante el peligro, de un grupo humano o ambiente, debido a sus características físicas (Ocala, 2007).

2.5. Riesgo

El riesgo es una condición latente que, al no ser modificada o mitigada a través de la intervención humana o por medio de un cambio en las condiciones del entorno físico-ambiental, anuncia un determinado nivel de impacto social y económico hacia el futuro, cuando un evento físico detona o actualiza el riesgo existente. Este riesgo se expresa y se

concreta con la existencia de población humana, producción e infraestructura expuesta al posible impacto de los diversos tipos de eventos físicos posibles, y que además se encuentra en condiciones de "vulnerabilidad", es decir, en una condición que predispone a la sociedad y sus medios de vida a sufrir daños y pérdidas. PREDECAN (2009)

La UNISDR (2004) define el riesgo como la probabilidad de que un peligro se convierta en un desastre, ocasionan pérdidas o daños. El riego se expresa mediante la siguiente notación:

Riesgo = Peligro x Vulnerabilidad.

Es decir, sólo existe el riego, en la medida en que estén presentes ambos factores, en el mismo espacio y tiempo. De esto se puede concluir que, si conocen con certeza los peligros y vulnerabilidades a lo que estamos expuestos, y si con ese conocimiento se trabaja para mitigarlos, entonces disminuye el riesgo

2.6. Gestión del riesgo de desastres

La EIRD (2009) define la gestión del riesgo de desastres como el enfoque y la práctica sistemática de gestionar la incertidumbre para minimizar los daños y las pérdidas potenciales, es decir abarca la evaluación y análisis del riesgo, al igual que la ejecución de estrategias y acciones específicas para controlar, reducir y transferir el riesgo.

De manera específica, se define como el proceso sistemático de utilizar directrices administrativas, organizaciones, destrezas y capacidades operativas para ejecutar políticas y fortalecer las capacidades de afrontamiento, con el fin de reducir el impacto adverso de las amenazas naturales y la posibilidad de que ocurra un desastre. EIRD (2009)

Esta definición contiene dos ideas fundamentales: la gestión como proceso, y la gestión para reducir vulnerabilidad y para evitar la generación de nuevas. Toma como base la noción social del riesgo, que requiere del análisis de las causas y consecuencias de los desastres, con el fin de promover acciones que repercutan en los procesos sociales, de tal manera que la gestión del riesgo se incluya como parte de la planificación del desarrollo. Lavell (s/f).

2.7. Prácticas conservacionistas para el manejo de la erosión de la cuenca

Vásquez (2000), menciona que las principales prácticas de conservación de suelos y aguas pueden resumirse en tres grandes grupos: mecánicas-estructurales, agronómicas y silvopastoriles.

2.7.1. Prácticas mecánico-estructurales

Entre las principales prácticas mecánico-estructurales se pueden mencionar:

- Zanjas o acequias de infiltración.
- Espejos de agua o "cochas"
- Terrazas de absorción, de formación lenta, etc.
- Muros de contención, enrocados y gaviones para la defensa ribereña u obras de encauzamiento

2.7.2. Prácticas agronómicas

Entre las principales prácticas agronómicas se puede mencionar:

- Barreras vivas
- Surcos en contorno
- Cultivos en fajas
- Ordenación territorial de cultivos
- Cobertura vegetal
- Labranza conservacionista o mínima labranza
- Rotación de cultivos
- Incorporación de materia orgánica
- Aplicación de fertilizantes y enmiendas químicas al suelo
- Manejo de pastos

2.7.3. Prácticas silvopastoriles

• Manejo y plantaciones silvopastoriles.

2.8. Fenómenos de geodinámica externa en la cuenca hidrográfica de Chira - Piura

Según el estudio realizado para el plan de gestión de la oferta de agua en las cuencas del ámbito del proyecto Chira-Piura se tiene lo siguiente:

Erosión de Riberas, es un fenómeno que se presenta en mayor o menor grado de intensidad en las planicies a lo largo de los ríos Chira y Piura. Las principales causas de su ocurrencia son el incremento brusco de sus descargas en cada temporada de lluvias y, las variaciones de su dinámica fluvial.

Entre las áreas afectadas por este proceso, de erosión destacan El Sector del Chipe (margen derecha del río Piura) en la ciudad de Piura, Area de Curumuy (Medio Piura), Sector de Tambogrande, Área del Puente Ñapique (Chulucanas), Tramo Puente Morropón-Serrán, Sector de San Pedro (margen izquierda del río San Jorge), Área de Hualcas (margen derecha del río Chignia), Área de Afiladera (río Pusmalca-Sector Canchaque).

Huaycos o llamados también flujos hídricos, este tipo de fenómenos se localizan en las cuencas altas del río Chira y Piura y sus principales afluentes, por lo general sus efectos además de ser locales generan otras situaciones de riesgo tales como: represamientos momentáneos, inundaciones, erosión de riberas y desvíos del cauce del río, afectando considerablemente a las obras de infraestructura vial (carreteras, puentes, etc, campos de cultivo, centros poblados aledaños, etc.).

De acuerdo a la frecuencia de ocurrencia, existen dos tipos de huaycos: unos, los "periódicos" que ocurren generalmente en los meses lluviosos (Enero a Abril), y los otros "ocasionales" que se presentan eventualmente en las épocas de precipitaciones excepcionales como sucede en la aparición del Fenómeno El Niño.

Derrumbes, que juegan un papel importante en su ocurrencia, la fuerte pendiente de las vertientes en la parte media de los valles, la composición litológica de sus flancos, el fracturamiento y grado de alteración de las rocas que predisponen a la acumulación de escombros, y el factor humano que al desarrollar actividades agrícolas y pecuarias y

construir vías de penetración, altera constantemente el estado de equilibrio natural de los taludes.

En las vías de penetración hacia los pueblos de la zona andina de la cuenca, como la Carretera Loma Larga – Canchaque - Huarmaca, Morropón – Paltashaco - San Jorge –Bigote - Los Ranchos, etc. se observa la presencia de estos fenómenos por haberse practicado cortes de materiales coluviales, o en rocas muy alteradas con ángulos de talud próximos a la vertical, en una morfología abrupta con un fondo de valle estrecho y taludes muy pronunciados.

Desprendimientos de Rocas, este tipo de fenómeno tiene ocurrencia en las áreas de la cuenca que presentan una morfología abrupta de taludes muy pronunciados. Dependen, entre otros factores, de la litología de los terrenos, grado de fracturamiento y meteorización de la roca, la pendiente, la gravedad, el clima, los sismos, etc. Las zonas de Paltashaco, San Pedro-Quilpón (Quebrada de San Jorge), Platanal (Quebrada Yapatera), Pueblo Nuevo (río Buenos Aires), El Fayque, Afiladera (río Canchaque), etc., son lugares donde los desprendimientos ocurren en rocas intrusivas que muestran fuerte diaclasamiento, a partir del cual se inicia la disyunción esferoidal que en sus procesos avanzados deja numerosos bloques libres en estado de equilibrio crítico. En las zonas donde las laderas rocosas están cubiertas por vegetación, son las lluvias las que provocan las situaciones de mayor riesgo debido a que el conjunto pierde cohesión produciéndose dichos desprendimientos como ocurrió durante las lluvias de 1982-1983; en muchas áreas de la cuenca.

Deslizamientos, estos fenómenos son poco frecuentes en las cuencas los casos que ofrecen algún peligro de reactivación son de poca magnitud, aunque sus efectos pueden ser considerables.

Entre los de mayor significación se tiene el deslizamiento de la Capilla en la Carretera Canchaque - Huarmaca, cuyo ápice o área de arranque se ubica en la parte superior del pueblo, donde se observan grietas tensionales de poca abertura y cuya área inferior ó pie de deslizamiento se ubica en las partes bajas de la ladera cubiertas por una densa vegetación que lo ha estabilizado. Huellas de deslizamientos antiguos estabilizados son observables en

Palambra y en la parte alta del valle del río Piura sí como en los flancos de sus principales tributarios.

Arenamientos, que constituyen fenómenos de geodinámica externa destacables en el área, se hallan relacionados con la migración de arenas en la cuenca baja, como dunas-barkanas y Pur Pur. El fenómeno de arenamiento ocupa grandes extensiones de terreno en la planicie costanera en el sector que se ubica entre la parte oriental de la Depresión de Ramón y la margen izquierda del Valle del Medio y Alto Piura, cubriendo las terrazas marinas o tablazos, y las pequeñas cadenas de promontorios que limitan el flanco occidental del Valle. Constituyen depósitos muy potentes que se caracterizan por presentar un drenaje dentífrico que le da el aspecto de tierras malas (área occidental de Ñaupe) y áreas plano-onduladas surcadas por vegas donde crece una vegetación herbácea a arbustiva que las ha estabilizado.

Arenamientos modernos provocados por la migración de dunas barcanas son observables en la Carretera Piura-Chiclayo (Sectores: de Tabanco, Chutuque, Nuevo Tallán, etc.), Piura-Sechura (Sector de Letirá), Piura-Paita en el límite norte de la cuenca, así como en el área de Chato Chira, Cura Mori, etc.

2.9. Sistemas de información geográfica (SIG)

El SIG es una herramienta computacional compuesta por equipos, programas, datos georreferenciados y usuarios que requieren organizar, analizar, automatizar procesos y producir información.

Un SIG es un sistema computarizado que permite la entrada, almacenamiento, representación, análisis de datos, así como la salida eficiente de información espacial (mapas) y atributos (tabulares) Burrough (1986); Valenzuela, (1989).

Se concibe como un modelo informatizado del mundo real, descrito en un sistema de referencia ligada a la Tierra, establecido para satisfacer unas necesidades de información específicas respondiendo a un conjunto de preguntas concreta. Rodríguez Pascual (1993).

La utilidad principal de un Sistema de Información Geográfica radica en su capacidad para construir modelos o representaciones del mundo real a partir de las bases de datos digítales y utilizarlos en la simulación de los efectos que un proceso de la naturaleza o una acción antrópica produce sobre un determinado escenario en una época especifica (IGAC, 1995). Indudablemente la tecnología SIG, permite almacenar y manipular información usando la geografía, contribuyendo a tomar mejores decisiones para solucionar amplias necesidades técnicas y al mismo tiempo, espaciales o territoriales (ZAMORA, 2009).

2.9.1. Elementos de un SIG

Un SIG está formado por cinco componentes o elementos y cada uno de esos componentes cumplen con una función para que existan entre ellos una interacción.

A continuación, se describen a esos componentes:

Hardware: Es el equipo de cómputo con el que opera un SIG. Actualmente el software de estos sistemas se ha adaptado a diversos tipos de hardware desde arquitecturas clientes-servidor hasta computadoras de escritorio aisladas. Para las consultas espaciales el hardware es útil para efectuar el procesamiento de las operaciones que con base a algoritmos solucionan las relaciones entre geometrías.

Software: Proporciona las herramientas y funciones necesarias para almacenar, analizar y desplegar la información geográfica, para ello se necesitan de elementos principales de software los cuales son:

Herramientas para la entrada y manipulación de información geográfica.

Un sistema de administración de base de datos (DBMS Data Base Management System).

Herramientas que soportan consultas, análisis y visualización de elementos geográficos.

Una interfaz gráfica de usuario (GUI Graphical User Interface) de manera que facilite el acceso a las herramientas anteriormente mencionadas.

Dato: se refiere al elemento principal para lograr una correcta información. Es decir una vez conocido el objeto del modelo del mundo real, se identifican las propiedades que lo forman, por ejemplo, sus atributos que se refieren a los elementos descriptivos y el tipo de geometría como el elemento espacial. En las consultas espaciales es necesario conocer el tipo de geometría entre los objetos del mundo real que se relacionan topológicamente.

Usuario: son las personas que se encargan de administrar el sistema, así como de desarrollar un proyecto basado en el mundo real, entre los que se involucran analistas, desarrolladores, administradores, programadores, y usuarios. Por ejemplo, para las consultas espaciales, esas personas se refieren a quienes proporcionan la información fuente, realizan la edición de la información, implementan los algoritmos útiles para resolver las consultas espaciales y los usuarios finales que se favorecen de la aplicación o proyecto elaborado.

Procedimiento: son los planes de un buen diseño y las normas por parte de la empresa, las cuales son modelos y prácticas de operación de cada organización. [E.S.R.I., 2001].

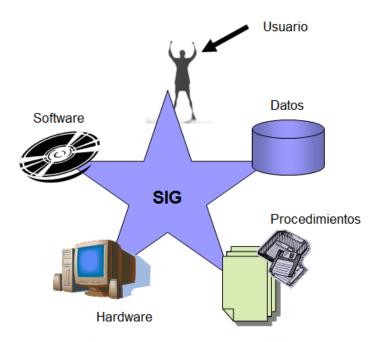


Figura 1: Elementos de un SIG

FUENTE: ESRI (2012)

2.9.2. Funciones de los SIG

Rodgers (1993), menciona algunas de las operaciones de un SIG conforme la entrada y salida de datos:

• Ingreso de datos

El ingreso de datos se refiere a todas las operaciones por medio de las cuales los datos espaciales de mapas, sensores remotos y otras fuentes son convertidos a un formato digital. Se deben ingresar dos tipos diferentes de datos al SIG: referencias geográficas y atributos. Los datos de referencias geográficos son las coordenadas (latitud y longitud) que fijan la ubicación de la información que se está ingresando, los datos

de atributos asignan un código numérico a cada conjunto de coordenadas y a cada variable, sea para representar los valores actuales (precipitación) o para connotar tipos de datos categóricos (usos del terreno, tipo de vegetación, etc.).

Almacenamiento de datos

Almacenamiento de datos se refiere al modo como los datos especiales son estructurados y organizados dentro del SIG, de acuerdo a la ubicación, interrelación, y diseños de atributos.

La estructura de la base de datos espaciales puede ser representada de dos formas: el modelo vectorial y modelo raster. (Bernhardsen, 2002).

El modelo raster funciona a través de una retícula que permite asociar datos a una imagen; es decir, se pueden relacionar paquetes de información a los pixeles de una imagen digitalizada, (Bernhardsen, 2003)

El modelo vectorial almacena tres objetos cartográficos básicos: puntos, líneas y polígonos, los mismos que se almacena como una colección de coordenadas x,y. La ubicación de una característica puntual (casas, núcleos de población), pueden describirse con un solo punto x,y. Las características lineales (vías, curvas de nivel, ríos), pueden almacenarse como un conjunto de puntos de coordenadas x,y. Las características poligonales (limites administrativos, parcelas), pueden almacenarse como un circuito cerrado de coordenadas, (Musso y Cotos, 2005).

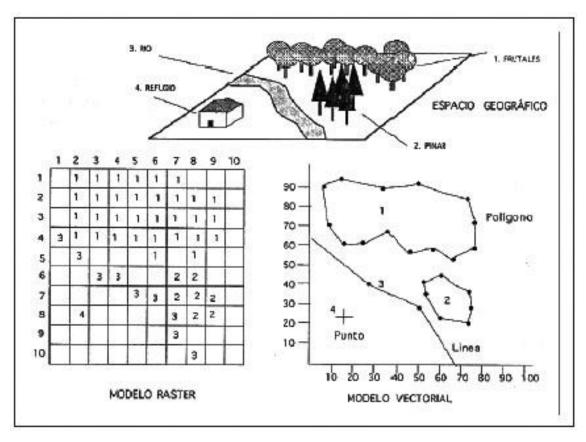


Figura 2: Modelos raster y vectorial de un SIG

FUENTE: UMSS (2007)

• Manipulación y procedimiento de datos

La manipulación y procesamiento de datos se hace para obtener información útil de los datos previamente ingresados al sistema. La manipulación de datos abarca dos tipos de operaciones: (1) operaciones para eliminar errores y actualizar conjuntos de datos actuales (editar); y (2) operaciones que hacen uso de técnicas analíticas para dar respuestas a preguntas específicas formuladas por el usuario. El proceso de manipulación puede ser desde una simple sobre posición de dos o más mapas, hasta una extracción compleja de elementos de información dispares, de una gran variedad de fuentes.

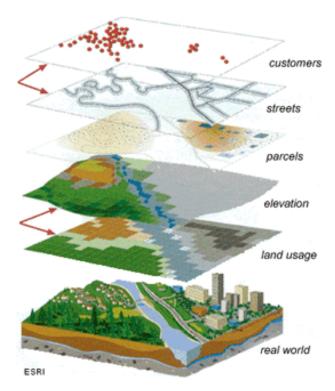


Figura 3: Sobreposición de capas

FUENTE: ESRI (2012)

2.9.3. Aplicaciones de los SIG

Los SIG pueden ser usados en gran variedad de aplicaciones agrícolas, pecuarias y agroindustriales, entre ellas: manejos de campos de cultivos, zonificación ecológica económica, proyección de pérdida de suelos y manejo de sistemas de irrigación, (Escobar, 1997)

Aplicando la tecnología de los SIG se puede realizar el manejo de cuencas el cual debe tener como un enfoque fundamental la reducción de la vulnerabilidad, principalmente la asociada a fenómenos hidroclimaticos (inundaciones, deslizamientos, avalanchas, sequías, etc.), (Jiménez, 2004).

2.10. Modelos Geoespaciales

Los modelos geoespaciales se basan en la utilización de las funciones de análisis de un Sistema de Información Geográfica bajo una secuencia lógica de tal manera que se puedan resolver problemas espaciales complejos. Estos modelos son expresiones detalladas dela

manipulación de los datos utilizando funciones del software SIG, para la producción de nueva información que será almacenada en el computador, de manera permanente como nuevas entidades, o de manera virtual para análisis determinado. IGAC (1995)

Barredo, (1996) menciona que la versatilidad del ordenador ha hecho posible que la definición de modelos funciones bajo esquemas simples y reiterados, con un coste en tiempo e inversión reducidos. En este sentido, con los SIG, en la medida que son capaces de gestionar gran cantidad y variedad de datos, se mejoran sustancialmente los modelos tales como:

Modelos descriptivos al uso; esto es, aquellos cuya finalidad no es otra que la de describir la situación, hecho o proceso sometido a estudio, La tecnología IG facilita la integración de la información representado los fenómenos de un modo más cercano a la realidad, lo que nos lleva, en última instancia, a una mayor compresión del tema objeto de estudio.

Los Modelos predictivos se basan en la aplicación de funciones de geo-estadística inferencial para simular aspectos físicos, una vez conocido el comportamiento de las variables que participan en el hecho, fenómeno o situación.

Modelos prescriptivos; esto es, aquellos ligados a los modelos de localización de centros y ubicación de recursos y a los modelos de alocate-locate en los que participan criterios y objetivos en conflicto. A éstos últimos, se les conoce como modelos de impacto y acogida. Estos modelos aplican una evaluación multicriterio basada fundamentalmente en la integración (superposición) cartográfica en relación con criterios de ponderación.

2.11. Base de Datos (BD)

Date (2001) define la base de datos como un sistema computarizado cuya finalidad general es almacenar información y permitir a los usuarios recuperar y actualizar esa información con base en peticiones. La información en cuestión puede ser cualquier cosa que sea de importancia para el individuo u organización; en otras palabras, todo lo que sea necesario para auxiliarle en el proceso general de su administración.

Sin embargo; según Elmasri (2007) considera que una base de datos tiene las siguientes propiedades implícitas:

Una base de datos representa algún aspecto del mundo real, lo que en ocasiones se denomina minimundo o universo de discurso (UoD, Universe 01 discollrse). Los cambios introducidos en el minimundo se reflejan en la base de datos.

Una base de datos es una colección de datos lógicamente coherente con algún tipo de significado inherente. No es correcto denominar base de datos a un surtido aleatorio de datos. Una base de datos se diseña, construye y rellena con datos para un propósito específico. Dispone de un grupo pretendido de usuarios y algunas aplicaciones preconcebidas en las que esos usuarios están interesados.

En otras palabras, una base de datos tiene algún origen del que se derivan los datos, algún grado de interacción con eventos del mundo real y un público que está activamente interesado en su contenido. De aquí la importancia de la creación de una base de datos geográfica en formato abierto para poder ser accesible a personas que pueden continuar con las transformación y mejoramiento de la misma. Se define una base de datos (BDG) o también denominado Geodatabase como una colección de datos organizados de tal manera que sirvan efectivamente para una o varias aplicaciones SIG. Esta base de datos comprende la asociación entre sus dos principales componentes: datos espaciales y datos atributos. (ESRI, citado por Morales Xique 2001)

2.11.1. Ventajas y desventajas de las bases de datos

El manejo de base de datos ha evolucionado la forma de administrar información otorgando al usuario una serie de ventajas. Como lo argumenta Rodríguez (2007), las BD permiten:

Independencia de los datos respecto a los tratamientos y viceversa: un cambio en los tratamientos no implica un nuevo diseño lógico y/o físico de la base de datos. Por otro lado, cambios en la incorporación, desaparición de datos, cambios en la estructura física o caminos de acceso no deben obligar a alterar los programas. Así se evita la reprogramación de las aplicaciones.

Coherencia de los resultados: debido a que la información de la base de datos se almacena en forma unificada y coordinada, en todos los tratamientos se utilizan los mismos datos, por lo que los resultados de estos son coherentes y comparables. Así, se reducen las divergencias en los resultados.

Mejor disponibilidad de los datos para el conjunto de los usuarios: en una base de datos ningún usuario es propietario de los datos, pues estos se comparten entre las aplicaciones, existiendo una mayor disponibilidad y transparencia.

Mayor eficiencia en la captura, validación e ingreso de datos al sistema: al no existir redundancias, los datos se capturan y validan una sola vez aumentando el rendimiento del proceso previo al almacenamiento.

Reducción del espacio de almacenamiento: por un lado, la disminución de redundancias y las técnicas de compactación hacen que disminuya el espacio en disco.

Mejor y más normalizada documentación: la mayoría de los SGBD proporcionan herramientas para reflejar el contenido semántico de los datos, es decir, incluyen una descripción de los datos dentro del sistema (metadata).

Mayor valor informativo: esto se refiere al concepto de sinergia, en donde el valor informativo del conjunto de datos es superior a la suma del valor informativo de los elementos individuales.

Como toda tecnología, presenta también desventajas que cada usuario le corresponde evaluar a fin de optimizar su trabajo. Sánchez (2004) rescata la necesidad de contar con personal calificado en el manejo de BD, lo que significa a su vez una implementación dificultosa si no se cuenta con un grupo de profesionales capacitados y/o equipamiento adecuado. Respecto a los BDG, el principal inconveniente se presenta en el mantenimiento de los datos espaciales y otros componentes geográficos (Morales Xique 2001).

2.12. Sistema Gestor de Base de Datos (SGBD)

Sánchez (2004) define al sistema gestor de bases de datos o SGBD (Data Base Management System) como el software que permite a los usuarios procesar, describir, administrar y recuperar los datos almacenados en una base de datos. Coincidiendo con Date (2001)

Arquitectura de los SGBD

La arquitectura planteada por ANSI-SPARC (American Nacional Standard Institute – Satandard Planning and Requirements Committee) ocupa un lugar importante en el desarrollo de tecnologías de bases de datos porque separa el nivel externo de los usuarios, el nivel conceptual del sistema y el nivel de almacenamiento interno para diseñar una base de datos. El cual es explicado por Elmasri (2007):

El nivel interno o físico

Mediante un esquema interno, que describe la estructura de almacenamiento físico de la base de datos. El esquema interno utiliza un modelo de datos físico y describe todos los detalles del almacenamiento de datos y las rutas de acceso a la base de datos.

El nivel conceptual

Tiene un esquema conceptual, que describe la estructura de toda la base de datos para una comunidad de usuarios. El esquema conceptual oculta los detalles de las estructuras de almacenamiento físico y se concentra en describir las entidades, los tipos de datos, las relaciones, las operaciones de los usuarios y las restricciones. Normalmente, el esquema conceptual se describe con un modelo de datos representativo cuando se implementa un sistema de bases de datos. Este esquema conceptual de implementación se basa a menudo en un diseño de esquema conceptual en un modelo de datos de alto nivel.

El nivel de vista o externo

Incluye una cierta cantidad de esquemas externos o vistas de usuario. Un esquema externo describe la parte de la base de datos en la que un grupo de

usuarios en particular está interesado y le oculta el resto de la base de datos. Como en el caso anterior, cada esquema externo se implementa normalmente mediante un modelo de datos representativo, posiblemente basado en un diseño de esquema externo de un modelo de datos de alto nivel.

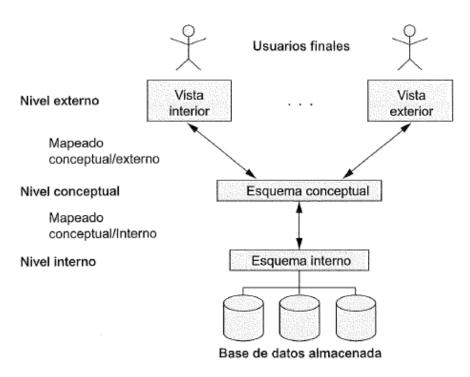


Figura 4: Niveles de abstracción de la arquitectura ANSI

FUENTE: Elmasri (2007)

Diseño de una base de datos

Un diseño de una base de datos consiste en definir la estructura de los datos que debe tener la base de datos de un sistema de información determinado. En el caso relacional, esta estructura será un conjunto de esquemas de relación con sus atributos, dominios de atributos, claves primarias, claves foráneas, etc. (Costa 2007)

Portuguez (2011) menciona que un diseño de una base de datos es un proceso complejo que abarca decisiones en distintos niveles. La complejidad se controla mejor si se descompone el problema en subproblemas y se resuelve cada uno de éstos de manera independiente, utilizando técnicas específicas. Así, el diseño de una base de datos se descompone en diseño conceptual, diseño lógico y diseño físico.

Etapa del diseño conceptual

En esta etapa se obtiene una estructura de la información de la futura BD independiente de la tecnología que hay que emplear. No se tiene en cuenta todavía qué tipo de base de datos se utilizará; en consecuencia, tampoco se tiene en cuenta con qué SGBD ni con qué lenguaje concreto se implementará la base de datos. Así pues, la etapa del diseño conceptual permite concentrar únicamente en la problemática de la estructuración de la información, sin tener que preocuparnos al mismo tiempo de resolver cuestiones tecnológicas. El resultado de la etapa del diseño conceptual se expresa mediante algún modelo de datos de alto nivel. Uno de los más empleados es el modelo entidad-interrelación (E/R) (Costa 2007).

Etapa de diseño lógico

En esta etapa se parte del resultado del diseño conceptual, que se transforma de forma que se adapte a la tecnología que se debe emplear. Más concretamente, es preciso que se ajuste al modelo del SGBD con el que se desea implementar la base de datos. Esta etapa parte del hecho de que ya se ha resuelto la problemática de la estructuración de la información en un ámbito conceptual, y permite concentrarnos en las cuestiones tecnológicas relacionadas con el modelo de base de datos (Costa 2007).

Portuguez (2011) menciona al esquema lógico es una fuente de información para el diseño físico. Además, juega un papel importante durante la etapa de mantenimiento del sistema, ya que permite que los futuros cambios que se realicen sobre los programas de aplicación o sobre los datos se representen correctamente en la base de datos.

Etapa de diseño físico

En esta etapa se transforma la estructura obtenida en la etapa del diseño lógico, con el objetivo de conseguir una mayor eficiencia; además, se completa con aspectos de implementación física que dependerán del SGBD. En la etapa del diseño físico, se deben tener en cuenta las características de los procesos que consultan y actualizan la base de datos (Costa 2007)

Modelo Entidad – Relación E/R

Costa (2007) menciona al modelo ER es uno de los enfoques de modelización de datos que más se utiliza actualmente por su simplicidad y legibilidad. Su legibilidad se ve favorecida porque proporciona una notación diagramática muy comprensiva. Es una herramienta útil tanto para ayudar al diseñador a reflejar en un modelo conceptual los requisitos del mundo real de interés como para comunicarse con el usuario final sobre el modelo conceptual obtenido y, de este modo, poder verificar si satisface sus requisitos.

El modelo E/R se basa en una percepción del mundo real, la cual está formada por objetos básicos llamados entidades y las relaciones entre estos objetos así como las características básicas de estos objetos llamado atributos (Portuguez 2011)

Tipos de relaciones

El Departamento de Informatica de la Universidad de Fasta (2012) resume este ítem de la siguiente manera:

Uno a uno: En una relación de uno a uno, cada registro de la Tabla A sólo puede tener un registro coincidente en la Tabla B, y viceversa. Este tipo de relación no es normal, porque la mayoría de la información que se relaciona de esta forma podría estar en una tabla.

Uno a varios: Es el tipo de relación más común. En este tipo de relación, un registro de la Tabla A puede tener muchos registros coincidentes en la Tabla B, pero un registro de la Tabla B sólo tiene un registro coincidente en la Tabla A. Varios a varios: En una relación varios a varios, un registro de la Tabla A puede tener muchos registros coincidentes en la Tabla B, y viceversa. Este tipo de relación sólo es posible si se define una tercera tabla (denominada tabla de unión) cuya clave principal consta de dos campos: las claves externas de las Tablas A y B. Una relación de varios a varios no es sino dos relaciones de uno a varios con una tercera tabla.

2.13. Análisis de la vulnerabilidad mediante tecnología SIG

La evaluación de la vulnerabilidad mediante los SIG permite: contar con una visión de conjunto y multivariedad de la vulnerabilidad, estableces relaciones espaciales y vincular distintos tipos de información, contar con una información digital de consulta directa, realizar actualizaciones que respondan al dinamismo del problema (Saborio, 2003)

González (2001), realizó una investigación en las Subcuencas Molino Norte y San Francisco Matagalpa — Nicaragua, resaltando que la importancia de este estudio radica en que se propone una metodología para identificar áreas críticas y vulnerables a desastres naturales, utilizando Sistema de Información Geográfica como herramienta clave, con el cual se analizó toda la información obtenida y se delimito mediante la unión de ambos mapas, áreas de mayor riesgo a desastres naturales. Mediante un diagnóstico participativo se obtuvo la identificación de los principales problemas de las subcuencas, y los lineamientos de acción para la reducción y mitigación a desastres naturales.

III. MATERIALES Y MÉTODOS

3.1. Descripción de la zona de estudio

3.1.1. Ubicación

La unidad hidrográfica del río Chira tiene un área 11 933 km2, geográficamente se encuentra ubicada entre las coordenadas 03°40'28" y 05°07'06" de Latitud Sur y 80°46'11" y 79°07'52" de Longitud Oeste, la unidad hidrográfica del río Piura tiene un área de drenaje de 12 216 km2 hasta la desembocadura al mar por el Estuario de Virrilá. Se ubica entre las coordenadas 04°42' y 05°45' de Latitud Sur y 79°29' y 81° de Longitud Oeste. El río nace a 3 600 m.s.n.m., en la divisoria de la cuenca del río Huancabamba, donde inicia su recorrido cruzando las provincias de Morropón y Piura. Su cauce de 280 km, tiene una dirección de Sur a Norte, con curvatura desde la Quebrada San Francisco hasta la Caída de Curumuy, luego en dirección Sur- Oeste hasta llegar a su desembocadura al Océano Pacífico a través del Estuario de Virrilá.

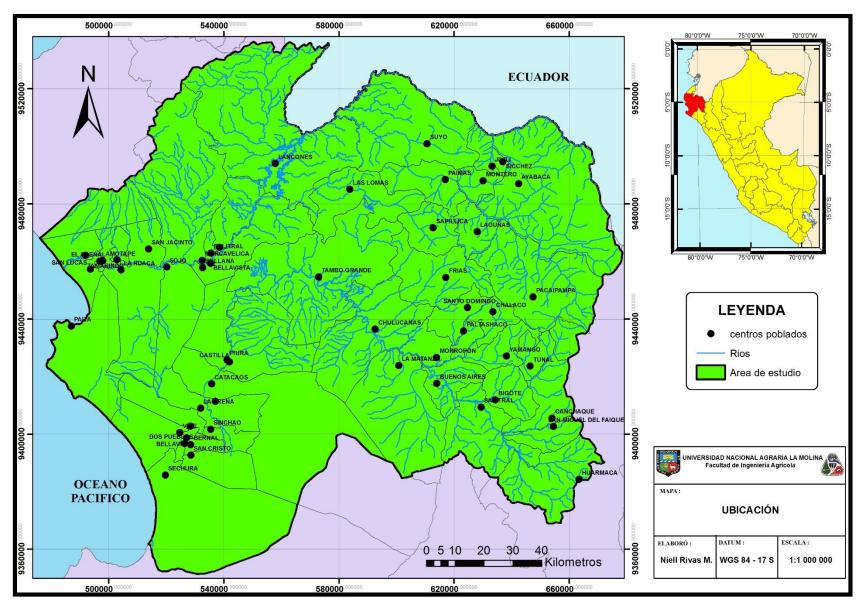


Figura 5: Mapa de ubicación

3.1.2. Características biofísicas

a. Climatología

El clima de las cuencas Chira y Piura, corresponde al de una zona sub-tropical según la clasificación de Koppën, al tipo de clima semi-tropical costero de Pettersen y semicálido según W. Thornthwaite. Este clima esta caracterizados por pluviosidad moderada y altas temperaturas, con pequeñas oscilaciones estacionales. A continuación, se presenta la Tabla 1 con los Tipos Climáticos en el Ámbito Chira-Piura.

Tabla 1: Tipos Climáticos en el ámbito de Chira-Piura, según la clasificación de Thornthwaite

TIPO DE CLIMA	COBERTURA	RANGO ALTITUDINAL (msnm)
Cálido	Esperanza, Mallares, Lanoones, Las Lomas, Timbes, Suyo, Paimas, Sausal de Culucán, Piura, Chulucanas, Tambogrande, Morropón	Menor de 1000
Semicalido	Nazaino, Sapillica, Montero, Sicchez, Sechura	1000-1700
Templado Cálido	Palo Blanco, Lagunas, Pacaimpampa	1700-2300
Templado Frío	Los Alisos, Minas, Sauce, Ayabaca, Yangana, Pacaypampa	2300-3000
Semifrío	Arrendamiento, Las Piroas, Talaneo	3000-3500
Frío Moderado	Las cumbres más altas de la cuenca	Mayor de 3500

Fuente: Estudio climático Consorcio ATA-UNP-UNL: UNIGEC, Ecuador-Perú, 2003

Específicamente en la parte baja y media de las cuencas, el clima es cálido y seco, típico de la Costa Norte del Perú. Recibe influencia de las variaciones de la Faja Ecuatorial y los cambios de dirección en sentido Este-Oeste de las corrientes marinas de aguas frías (Humboldt) y caliente (Ecuatorial). Estas características ocasionan altas temperaturas ambientales con escasez de precipitaciones, salvo durante períodos cortos y esporádicos de ingresos al hemisferio sur de la corriente marina de aguas calientes (El Niño), como los ocurridos en 1982-83, 1997-98 y 2001/2002 de características extraordinarias.

En la parte alta de las cuencas el clima es temperado y muy húmedo, característica

particular de la sierra norte de la vertiente del Pacífico, motivada por la vecindad con

la Línea Ecuatorial y la Cordillera Occidental Andina. En esta zona se producen

precipitaciones pluviales generalmente en los cuatro primeros meses del año. Sin

embargo, cada cierto número de años se presentan períodos con lluvias de gran

intensidad, ocasionadas por nubes provenientes del Atlántico que al vencer la barrera

de los Andes se enfrían y precipitan. (Plan de Gestión de los Recursos Hídricos de la

Cuenca Chira-Piura)

b. Precipitación

Según el Plan de Gestión de los Recursos Hídricos de la Cuenca Chira-Piura. El

régimen de lluvias en las cuencas puede clasificarse en tres tipos:

- La zona baja entre las curvas de nivel 0,0 y 80 msnm con precipitaciones escasas

del orden de 10 a 80 mm anuales (Ene-Abr).

La franja ubicada entre los 80 y 500 msnm, donde las lluvias registradas son del

orden de los 100 y 600 mm (Dic-May).

La franja ubicada desde los 500 msnm hasta la línea divisoria de aguas de las 2

cuencas, con lluvias promedios anuales que varían entre 700 y 1 100 mm, (Ene-

May).

c. Geología

Gran parte del territorio del departamento de Piura se encuentra localizado en la

llanura costera (60%) y otra dentro de la cadena andina (40%) lo cual le confiere una

fisiografía muy heterogénea con paisajes y ecosistemas muy especiales y diversos.

Las principales unidades geológicas que conforman la cuenca Chira-Piura (Tabla 2)

se enumeran a continuación por orden de antigüedad:

Paleozóico Inferior

Mesozóico: Jurásico y Cretáceo

Cenozóico

Cuaternario

27

Geológicamente el territorio piurano está conformado por rocas sedimentarias, rocas ígneas (volcánicas e intrusivas) y rocas metamórficas. Siendo dominantes las rocas sedimentarias en la zona de la costa y las rocas intrusivas en la Sierra.

Tabla 2: Leyenda de mapa geológico de la cuenca Chira-Piura

LEYENDA DEL MAPA GEOLOGICO							
ERA	SISTEMA	SER	IE	UNIDAD LITOESTRATIGRAFICA	SIMBOLOGIA	HA	%
				Depósito eólico reciente	Qr-e	526232.61	21.80
				Depósito aluvial reciente	Qr-al	187076.16	7.75
		Recie	nte	Depósito fluvial	Qr-fl	76034.28	3.14
				Depósitos lacustrinos	Qr-la	33453.13	1.39
	-			Cordon litoral	Qr-cl	36.81	0.01
	Cuaternario			Depósitos glaciares	Qp-g	2639.86	0.11
				Depósito aluvial antiguo	Qp-al	66685.51	2.76
		Pleisto	cono	Depósito eólico antiguo	Qp-e	42226.06	1.75
		rieisid	ceno	Tablazo lobito	Qp-tl	67249.72	2.79
				Tablazo talara	Qp-tt	99224.97	4.11
8				Tablazo máncora	Qp-tm	7613.39	0.32
Cenozoico			Plioceno	Formación Tambogrande	Ts-tg	37083.27	1.54
enc		Superior	111000110	Formación Miramar	Ts-mi	7896.89	0.33
			Mioceno				
	-			Formación Zapallal	Ts-za	962.5	0.04
				Volcánico Shimbe	Tms-vsh	17537.66	0.73
				Volcánico Porculla	Tm-vp	60225.7	2.50
	Terciario			Formación Mirador	Tm-mi	4109.91	0.17
		Medio	Eoceno	Formación Chira	Tm-ch	12544.6	0.52
				Volcánico Llama	Tm-vII	68277.39	2.83
				Formación Chira Verdum	Tm-chv	41031.69	1.70
				Formación Verdum	Tm-v	18670.77	0.77
				Grupo Talara	Tm-t	4194.34	0.17
		Infe	rior	Formación Yapatera	Ti-y	4942.32	0.20
				Formación La Mesa	Ks-m	1785.43	0.07
				Formación Tortugas	Ks-to	298.7	0.01
		Superior	Formación Tablanes	Ks-ta	6722.33	0.28	
				Formación Encuentros	Ks-e	50148.19	2.08
				Formación Jahuay negro	Ks-jn	90783.88	3.76
	-			Formación Huasimal	Ks-h	13842.08	0.57
Mesozoico	Cretaceo			Volcánico Lancones	Km-vl	257477.43	10.67
OZO		Med	lio	Volcánico La Bocana	Km-vb	27070.26	1.12
Z es				Volcánico Ereo	Km-e	11253.62	0.49
_	-			Formación Chignia	Km-chi	7778.72	0.32
				Formación Muerto	Ki-m	7250.27	0.30 1.85
		Infe	rior	Grupo San Pedro Formación Chimú	Ki-sp Ki-chi	44116.9 597.69	0.02
				Grupo Goyllarisquizca	Ki-g	44749.71	1.85
	Jurasico	Supe	rior	Formación Sarayagullo	Js-s	627.11	0.05
	30103100	Triasico		Formación La Leche	TJ-l	301.58	0.03
		Pensilva	aniano	Formación Cerro Prieto	Ps-cp	261.61	0.01
	Carbonifero	Misisip		Formación Chaleco de Paño	Ps-chp	2135.49	0.10
ojico		•		Formación Cerro Negro	Ps-cn	13629.48	0.60
Palezoi		Devonico		Formación río seco	Pi-rs	31383.47	1.30
Př	(Ordivisco		Grupo salas	Pi-s	52241.18	2.20
		Silurico		Indiferenciado	Pi-i	2293.1	0.10
	Mesoneo-Pr	oterozoico		Complejo de Olmos	Pe-co	73511.52	3.05
ROCAS IN	TRUSIVAS						
Mesoldico	Cretaceo			Granodiorita	Kti-gd/di/gr/to/m	266691.45	11.10
Mes		•		Gabro	Ks-gb	8096.6	0.34
		Supe	rior	Granito	Ps-gr	3534.12	0.15
Paleozoico		Infe	rior	Oranitto	Pi-gr	4060.23	0.17

FUENTE: Proyecto Especial Chira-Piura

d. Geomorfología

De acuerdo al Estudio Geodinámico de la Cuenca del río Piura, realizado por el Instituto Geológico Minero y Metalúrgico (INGEMMET - 1994), la Cuenca del río Piura comprende dos áreas fisiográficas plenamente identificadas; la primera en la zona Occidental, que forma parte del llamado Desierto de Sechura, constituido por terrenos topográficamente planos con ondulaciones de hasta 275 m s.n.m. en sus partes más altas, surcado por el Valle del río Piura que desemboca en el Océano Pacífico. Destacan en esta planicie en la parte Nor Occidental los Cerros de Asperrería que al igual que los de los Macizos de Paita se alzan abruptamente hasta alturas de 390 m s.n.m., y en la parte Norte Oriental otro cordón de cerros de edad Pre - Terciaria.

La segunda área, constituida por la parte oriental de la cuenca se caracteriza por presentar una topografía que paulatinamente se hace más abrupta hacia el Oriente apareciendo al inicio los Promontorios que constituyen los flancos de la Cordillera Occidental con alturas de 200 m s.n.m., que ascienden posteriormente conformando el macizo de la Cordillera Occidental con altitudes de hasta 3 644 m s.n.m. Tanto el macizo como las estribaciones andinas son disectadas por valles de corto recorrido y fuerte pendiente que desembocan por la margen derecha del valle del río Piura, el que en la zona oriental sigue una orientación Sur a Norte, cortando en sus nacientes a los promontorios de los flancos de la Cordillera Occidental.

Mientras que en la cuenca Chira, la evaluación geomorfológica de una región amplia del valle del río Chira se refleja en los fenómenos tectónicos ocurridos en los períodos de cresta y terciario. Se presenta las siguientes unidades geomorfológicas:

Los valles representan los drenajes de las aguas superficiales y subterráneas. Uno de los valles es el del río Chira, cuyas aguas corren desde el Este hacia el Oeste, desembocándose al Océano Pacífico.

La margen derecha del río hacia el Norte muestra una topografía ondulada, con la vegetación y rocas de antigüedad cuaternaria Paleozólica. En la margen izquierda del río hacia el Sur, hasta Sechura y Olmos, está ubicado el desierto.

Y la cordillera de la Costa. Este masivo se extiende desde Sila de Paita hasta el río Tumbes; en su parte Este tiene inicio las quebradas, su dirección es hacia el río Chira.

Tabla 3: Leyenda de Geomorfología de la cuenca Chira-Piura

			LEYENDA DE GEOMORFOLOGÍA			
F	REGION	FORMAS DE RELIEVE		SIMBOLO	HA	%
		Planicie	Llanura	Ll-a	1110408.69	24.35
	Planicie		Valle y llanura irrigada	V-a	184364.61	4.2
		Planicies onduladas a	Llanura ondulada	Llo-b	383852.51	8.58
	Costa	disectadas	Llanura disectadas	Lld-c	263560.8	5.79
		Colina y	Colina	C-d	249860.99	5.46
		Montaña	Vertiente montañosa moderadamente	Vc-d	29774.88	0.65
		IVIOTICATIA	Vertiente montañosa empinada a escarpada	Vc-e	683229.44	14.92
	Zona Alto Andina Planicies onduladas a disectadas		Altiplanicie ondulada	Ao-b	4290.32	0.1
			Altiplanicie disectada	Ad-c	3996.18	0.1
	Andina	Colina y	Vertiente montañosa y colina	Vs1-d	16172.03	0.45
Montaña	Montaña	Vertiente montañosa y colina empinada a	Vs1-e	45081.99	0.98	
Sierra	Zona Meso Andina Planicies onduladas a disectadas		Vertiente allanada a disectada	Vso-c	3126.43	0.08
		Montaña	Vertiente montañosa moderadamente	Vs2-d	14453.2	0.32
		ivioittalla	Vertiente montañosa moderadamente	Vs2-e	1211053.48	25.6
	Zona Bajo	Montaña	Vertiente montañosa moderadamente	Vs3-d	6005.28	0.23
	Andina	ivioritaria	Vertiente montañosa empinada a escarpada	Vs3-e	230497.07	5.23
Selva	Ceja de selva	Montaña	Vertiente montañosa moderadamente empinada	VsA1-e	130819.68	2.96

FUENTE: Proyecto Especial Chira-Piura

e. Características de los suelos

Los suelos de la unidad hidrográfica Chira-Piura, de acuerdo al sistema de clasificación de Grupos Principales de Suelos de FAO/UNESCO, son 6 unidades taxonómicas. A continuación, se detallan las características de cada unidad cartográfica identificada.

Eutric Fluvisols

El término fluvisol deriva del vocablo latino "fluvius" que significa río, haciendo alusión a que estos suelos están desarrollados sobre depósitos aluviales.

El material original de este grupo de suelo lo constituyen depósitos, predominantemente recientes, de origen fluvial, lacustre o marino. Se encuentran en áreas periódicamente inundadas, a menos que estén protegidas por diques, de llanuras aluviales, abanicos fluviales y valles pantanosos. El perfil es de tipo AC con evidentes muestras de estratificación que dificultan la diferenciación de los horizontes, aunque es frecuente la presencia de un horizonte Ah muy conspicuo. Los rasgos redoximórficos son frecuentes, sobre todo en la parte baja del perfil.

Este tipo de suelo suele utilizarse para cultivos de consumo, huertas y, frecuentemente, para pastos. Es habitual que requieran un control de las inundaciones, drenajes artificiales y que se utilicen bajo regadío.

Eutric Fluvisols tiene tres modalidades:

- Endoéutrico. La saturación citada se produce en la totalidad del suelo comprendido entre 50 cm y un metro.
- Hiperéutrico. La saturación entre 20 cm y un metro es del 80 % o superior.
- Ortiéutrico. La saturación es del 50 % o mayor entre 20 cm y un metro

Eutric Gleysols

El término gleysol deriva del vocablo ruso"gley" que significa masa fangosa, haciendo alusión a su exceso de humedad.

El material original lo constituye un amplio rango de materiales no consolidados, principalmente sedimentos de origen fluvial, marino o lacustre, del Pleistoceno u Holoceno. La mineralogía puede ser ácida o básica.

Se encuentran en áreas deprimidas o zonas bajas del paisaje, con mantos freáticos someros. El perfil es de tipo ABgCr o HBgCr, si bien el horizonte Bg puede no existir. Es característica la evidencia de procesos de reducción, con o sin segregación de compuestos de hierro dentro de los primeros 50 cm del suelo.

La humedad es la principal limitación de los Gleysoles; suelen estar cubiertos con una vegetación natural pantanosa e inútil o se usan para pastizal extensivo. Una vez drenados pueden utilizarse para cultivos, agricultura de subsistencia o huertas. En los trópicos y subtrópicos se utilizan ampliamente para el cultivo del arroz.

Eutric Gleysols tiene tres modalidades:

- Endoéutrico. La saturación citada se produce en la totalidad del suelo comprendido entre 50 cm y un metro.
- Hiperéutrico. La saturación entre 20 cm y un metro es del 80 % o superior.
- Ortiéutrico. La saturación es del 50 % o mayor entre 20 cm y un metro.

Lithosols

Tambien se denominan leptosol, dicho termino se deriva del vocablo griego "leptos" que significa delgado, haciendo alusión a su espesor reducido.

El material original puede ser cualquiera tanto rocas como materiales no consolidados con menos del 10 % de tierra fina.

Aparecen fundamentalmente en zonas altas o medias con una topografía escarpada y elevadas pendientes. Se encuentran en todas las zonas climáticas y, particularmente, en áreas fuertemente erosionadas. El desarrollo del perfil es de tipo AR o AC, muy rara vez aparece un incipiente horizonte B. En materiales fuertemente calcáreos y muy alterados puede presentar un horizonte Móllico con signos de gran actividad biológica.

Son suelos poco o nada atractivos para cultivos; presentan una potencialidad muy limitada para cultivos arbóreos o para pastos. Lo mejor es mantenerlos bajo bosque.

Luvic Kastanozems

El término Kastanozem deriva del vocablo latino "castanea" que significa castaño y del ruso "zemlja" que significa tierra, haciendo alusión al color pardo oscuro de su horizonte superficial, debido al alto contenido en materia orgánica.

El material original lo constituye un amplio rango de materiales no consolidados; muchos de ellos se desarrollan sobre loess.

Se asocian a regiones con un clima seco y cálido. El relieve es llano o suavemente ondulado y la vegetación herbácea de poco porte y anuales.

El perfil es de tipo AhBC con un horizonte superficial pardo. El horizonte B puede ser de tipo Cámbico o Árgico de color pardo a canela; los carbonatos o el yeso presentes se redistribuyen formando acumulaciones en el horizonte C.

Se utilizan preferentemente para cereales de invierno, más cuando se riegan pueden soportar cualquier cultivo. Muchos Kastanozem se utilizan para pastos extensivos. Las inundaciones y la erosión eólica o hídrica son sus principales limitaciones.

Luvic Kastanozems presenta un horizonte árgico en, cuya totalidad, la CIC es como mínimo de 24 cmol(c)/kg de arcilla y su saturación en bases del 50 % o superior hasta una profundidad de 100 cm.

Luvic Phaeozems.

También denominado Feozem, cuyo término deriva del vocablo griego "phaios" que significa oscuro y del ruso "zemlja" que significa tierra, haciendo alusión al color oscuro de su horizonte superficial, debido al alto contenido en materia orgánica.

El material original lo constituye un amplio rango de materiales no consolidados; destacan los depósitos glaciares y el loess con predominio de los de carácter básico.

Se asocian a regiones con un clima suficientemente húmedo para que exista lavado, pero con una estación seca; el clima puede ir de cálido a frío y van de la zona templada a las tierras altas tropicales. El relieve es llano o suavemente ondulado y la vegetación de matorral tipo estepa o de bosque.

El perfil es de tipo AhBC el horizonte superficial suele ser menos oscuro y más delgado que en los Chernozem. El horizonte B puede ser de tipo Cámbico o Árgico.

Los Feozems vírgenes soportan una vegetación de matorral o bosque, si bien son muy pocos. Son suelos fértiles y soportan una grna variedad de cultivos de secano y regadío, así como pastizales. Sus principales limitaciones son las inundaciones y la erosión.

Luvic Phaeozems presenta un horizonte árgico en, cuya totalidad, la CIC es como mínimo de 24 cmol(c)/kg de arcilla y su saturación en bases del 50 % o superior hasta una profundidad de 100 cm.

Pellic Vertisols

El término vertisol deriva del vocablo latino "vertere" que significa verter o revolver, haciendo alusión al efecto de batido y mezcla provocado por la presencia de arcillas hinchables.

El material original lo constituyen sedimentos con una elevada proporción de arcillas esmectíticas, o productos de alteración de rocas que las generen.

Se encuentran en depresiones de áreas llanas o suavemente onduladas. El clima suele ser tropical, semiárido a subhúmedo o mediterráneo con estaciones contrastadas en cuanto a humedad. La vegetación cimácica suele ser de savana, o de praderas naturales o con vegetación leñosa.

El perfil es de tipo ABC. La alternancia entre el hinchamiento y la contracción de las arcillas, genera profundas grietas en la estación seca y la formación de superficies de presión y agregados estructurales en forma de cuña en los horizontes subsuperficiales.

Los Vertisoles se vuelven muy duros en la estación seca y muy plásticos en la húmeda. El labrado es muy díficil excepto en los cortos periodos de transición entre ambas estaciones. Con un buen manejo, son suelos muy productivos.

El Pellic Vertisols presenta en la matriz del suelo, de los 30 cm superiores, una intensidad de color en húmedo de 3.5 o menos y una pureza de 1.5 o menor.

3.1.3. Características socioeconómicas

La caracterización socioeconómica incluye aspectos de población, vivienda, servicios de agua y alcantarillado, educación, salud, economía, actividad productiva, y otros.

En relación a la población en hogares por tipo de Necesidad Básica Insatisfecha, los problemas son la existencia de viviendas con características inadecuadas, con hacinamiento,

las que no cuentan con desagüe de ningún tipo, donde además existe un alto porcentaje de niños(as) que no asisten en la escuela y hay alta dependencia económica.

Estos índices varían en la Región de Piura dependiendo del Distrito al que nos refiramos, pero la realidad es que a nivel Región la tasa de pobreza supera el 42,5% de la población.

El derecho a la identidad es reconocido tanto en la normatividad nacional como en las declaraciones internacionales como un derecho fundamental y universal. No contar con los documentos de identidad limita el ejercicio de los derechos de ciudadanía. La carencia de partida de nacimiento representa un riesgo adicional para los menores de edad, ya que al no ser ciudadanos debidamente identificados pierden la protección de sus derechos fundamentales a cargo del Estado. En la Región de Piura hay un total del 1,5% de la población que no cuenta con partida de nacimiento y un 3% que no tiene DNI.

En referencia a la salud, en el Departamento de Piura la tasa de médicos por cada 1 000 habitantes es de 9,3%, lo que resulta insuficiente ya que, además, esta es mayor en ciudades que en territorios rurales. En cuanto a la desnutrición infantil encontramos una tasa del 24,4% con tendencia a ascender, siendo preocupante la frecuencia de las infecciones respiratorias agudas (IRA) y las enfermedades diarreicas en niños.

En educación se ha producido un aumento considerable de la tasa de estudiantes de 12 a 16 años pasando de 45,5% en 1993 a 73,7% en 2007, sin embargo, esta tasa varía dentro del Departamento de Piura en función de la provincia a la que nos refiramos; además al observar el resultado de la educación secundaria como componente de la calidad sobre la base de la matricula (64,7%), la tasa de conclusión de estudiantes de 17 a 19 años de edad, es de 56,6% y la tasa de analfabetismo se sitúa en un 11,5%.

El acceso restringido de los servicios de saneamiento básico afecta la calidad de la población, vital para subsistir y producir; un considerable porcentaje de la población especialmente de la Cuenca Media y Alta no vienen siendo atendidos con agua potable, necesidad básica que tiene que ser satisfecha; encontramos una diferencia de atención, ya que la población porcentualmente no atendida es aproximadamente del 68%. Adicionalmente la mayor proporción de hogares sin servicio higiénico se encuentra en el área rural (34,0%), utilizando

letrina, pozo ciego o negro; situación de carencias que vulnera particularmente a las poblaciones de la sierra piurana en su calidad de vida y derechos fundamentales. A esto se suma la falta de energía eléctrica en los hogares, lo que limita severamente las posibilidades de alcanzar mejores condiciones de vida al impedirse el acceso a nuevas y mayores oportunidades económicas tanto en la cuenca baja como alta del departamento de Piura.

3.2. Materiales y equipos

- Cartografía base: Mapas de ubicación del área, escala 1/100000
- Mapas temáticos obtenidos del geo servidor IGN, escala 1/100000
- Mapa hidrográfico del ANA
- Mapa geológico del geo servidor MINAM
- Información descriptiva y cartográfica de los proyectos: Plan de gestión de la oferta
 de agua en las cuencas del ámbito del proyecto Chira-Piura (Ministerio de Vivienda,
 Construcción y Saneamiento), Plan de gestión de los Recursos Naturales de la
 Cuenca Chira-Piura (Ministerio de Agricultura), y Proyecto Binacional de
 ordenamiento, manejo y desarrollo de la cuenca Catamayo-Chira.
- Equipo de computación CORE i5
- Microsoft Word y Excel 2010
- Arc GIS 10

3.3. Metodología

La metodología utilizada para dar cumplimiento a los objetivos propuestos, consistió en el desarrollo de tres etapas secuenciales: trabajo de pre-campo, trabajo de campo y trabajo de gabinete, como se muestra en la Figura 6.

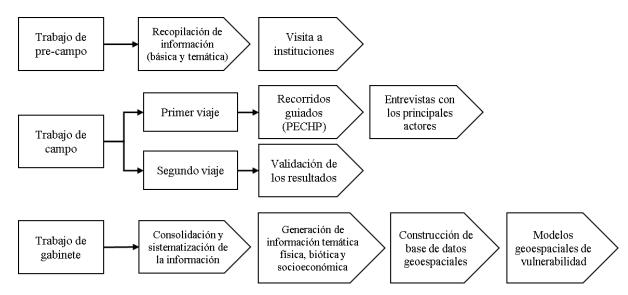


Figura 6: Esquema metodológico desarrollado

FUENTE: Elaboración Propia, Adaptado de Ochoa (2014)

3.3.1. Fase pre-campo

Consistió en la recopilación de información de estudios, tanto básica y temática, que involucren la zona de estudio, a fin de conocer sus características físicas, bióticas y socioeconómicas. Se obtuvo información descriptiva, cartográfica y analítica de la unidad hidrográfica a través de los geoservidores del Instituto Geográfico Nacional (IGN), Instituto Geológico Minero y Metalúrgico (INGEMMET), Autoridad Nacional del Agua (ANA), Ministerio del Ambiente (MINAM), Ministerio de Educación del Perú (MINEDU), Instituto Nacional de Estadística e Informática (INEI), Programa de las Naciones Unidas para el Desarrollo (PNUD), Instituto Nacional de Defensa Civil (INDECI), Ministerio de Salud del Perú (MINSA), entre otros.

En paralelo, se realizaron visitas a instituciones como: Autoridad Nacional de Agua (ANA), para información referente a las características físicas, bióticas y socioeconómicas e Instituto de Estudios Peruanos (IEP), para complementar la información socioeconómica.

Así mismo se recopilará información del estudio "PLAN DE GESTIÓN DE LA OFERTA DE AGUA EN LAS CUENCAS DEL ÁMBITO DEL PROYECTO CHIRA – PIURA" (Ministerio de Vivienda, Construcción y Saneamiento, 2002).

3.3.2. Trabajo de campo

En coordinación con la Autoridad Nacional del Agua (ANA) y el Proyecto Especial Chira – Piura se realizaron recorridos guiados de toda la unidad hidrográfica Chira - Piura, se hizo un reconocimiento de las características físicas: vegetación, fisiografía, geología, suelo y clima; y se realizó entrevistas con los principales actores de la unidad hidrográfica Chira - Piura para complementar y actualizar la información socioeconómica: características sociales y económicas, características de uso del suelo, vías de comunicación de los centros poblados, entre otros. Permitiendo identificar las zonas críticas en la zona de estudio.

Así mismo, se recorrió la zona para visitar las zonas críticas de vulnerabilidad, a fin de constatar y validar el resultado de los modelos de vulnerabilidad generados para la unidad hidrográfica Chira-Piura.

3.3.3. Trabajo de Gabinete

a. Consolidación y generación de la información temática física y socioeconómica

Una vez recolectada la información de carácter espacial y no espacial de distintas instituciones para el desarrollo del estudio, se procedió a consolidar, uniformizar y sistematizar en función de los requerimientos del proceso emprendido para el análisis de vulnerabilidad en la unidad hidrográfica. Así mismo, se uniformizó el sistema de referencia espacial para todo el proceso al Datum WGS 1984, proyección UTM en la Zona 18 tomando como escala de trabajo 1:100000.

El mapa base se generó en base a la información del Autoridad Nacional del Agua y del Proyecto Especial Chira-Piura.

Los mapas de geología, geomorfología, fisiografía y cobertura vegetal se generaron en base a la información proporcionada por el Diagnóstico Consolidado del Plan de Gestión de la Oferta de Agua en las Cuencas del Ámbito del Proyecto Chira-Piura.

El mapa de pendientes se generó en base a la información de las curvas de nivel descargada del servidor web del Ministerio de Educación, este se abre con el software ArcGIS10 y con la ayuda de la herramienta 3D analysis se procede a realizar la pendiente, se hace el contorno del Feature para tener polilíneas de las curvas de nivel

y se coloca como dato las cotas de esta. Después se procede a crear el TIN con 3D Analysis > créate TIN from features, luego es necesario el MED, se convierte el TIN a raster en 3D Analysis > convert TIN to Rater en este caso en el Attribute se coloca Slope (pendiente en inglés) en porcentaje, para obtener un raster al cual es necesario reclasificar con 3D Analysis > Reclasify el dato de entrada es el raster luego se coloca la cantidad de partes con la que se quiere reclasificar, en este caso se colocó 8 para que dividiera en 8 diferentes rangos de pendientes, por último, una vez obtenida los rangos de pendiente se convierte este raster a polígono en Arctoobox > raster to poligon. Al tener el mapa de pendientes en polígono se la uniformiza con la misma escala y datúm.

El mapa de precipitaciones se generó en base a la información hidrológica de las 39 estaciones meteorológicas de la unidad hidrográfica Chira-Piura teniendo en cuenta que para crear las isolíneas de precipitación es necesario contar con una capa de putos de las estaciones meteorológicas georreferenciadas y con su respectiva proyección definida. La interpolación de la precipitación se realizará con la extensión de Geostatistical Analyst, se elegirá un método de interpolación que en este caso será Kriging (es un procedimiento geo estadístico avanzado que genera una superficie estimada a partir de un conjunto de puntos dispersados con valores z). Según metodología del ANA (2009) se ajustará el modelo al Semivariograma Empírico, se vio conveniente el método Gaussian. El cual consiste en transformar un sistema de ecuaciones en otro equivalente de forma que este escalonado. Con los datos de precipitación en Z, se obtiene como dato de salida un raster. Con la herramienta 3D Analysis > Surface Analysis > contour, se crea las isolineas. Por ultimo para obtener los polígonos vectoriales es necesario Reclasificar el raster mediante la herramienta Spatial Analyst Tools > Reclass > Reclassify, para posteriormete transformarlo como shape con Conversión Tools > From Rater > Raster to polygon. Este polígono de las precipitaciones se uniformarizara para que tenga la misma escala y datum correspondiente.

Para generar los mapas de pobreza total, las actividads económicas, los servicios de salud, educación, saneamiento, cobertura de red eléctrica, programa sociales, vías de comunicación, telecomunicaciones, NBI, IDH, se procedio a rellenar a los distritos

pertenecientes a la unidad hidrográfica Chira Piura con la información cuantitativa en porcentajes o cantidades y cualitativa con la descripción de los indicadores en base a la información adquirida del INEI y del Diagnóstico Consolidado del Plan de Gestión de la Oferta de Agua en las Cuencas del Ámbito del Proyecto Chira-Piura.

b. Construcción de la base de datos geoespaciales

Se determinó la vulnerabilidad en función de sus características de tipo físico, socioeconómico y conflicto de uso. Dónde para cada uno de ellos se identificó sus variables temáticas y sus respectivos indicadores principales, que cuantitativa y cualitativamente permitiera evaluar la vulnerabilidad en la unidad hidrográfica Chira- Piura (Tabla 4)

Dentro del sistema de información geográfica se construyó la base de datos geoespacial de cada una de las variables para el modelo de vulnerabilidad física, socioeconómica, conflicto de uso e integral, diseñándose una proyección del esquema lógico de cada variable estudiada, tal como se muestra en la Figura 7.

Tabla 4: Variables e indicadores para determinar el grado de vulnerabilidad

	Sub Modelos	Mapa temático	Indicador
		Pendientes	Rango de % de pendiente
		Precipitación	Intervalo de Precipitación Máxima
			Era
		Caalaaía	Periodo
	•	Geología	Serie
	Físico		Unidades geológicas
	<u> </u>	Suelos	Grandes Grupos (Clasificación FAO)
		Cobertura Vegetal	Unidad de cobertura vegetal
		C	Descripción del paisaje
		Geomorfología y Fisiografía	Elemento del paisaje
		risiografia	Paisaje dominante
		A .: :1 1 E	% Actividades Económicas Primarias
		Actividades Económicas Agropecuarias	% Actividades Económicas Secundarias
	Actividades Económicas	Agropecuarias	% Actividades Económicas Terciarias
	Economicas	Mercado y corredores	Tipo de Mercado
		Económicos	Tipo de Corredor
		Pobreza Total	Rango del % de Pobreza Total
		IDH	Rango de IDH
	Unidades Sociales	NBI	Rango de Hogares con al menos 2 NBI
nico	Sociales	Programas Sociales	N° de Programas Sociales
nón		REMUR	Redes Municipales
(O)		Infraestructura de Salud	Servicio Salud
Socioeconómico		Infraestructura Educativa	Nivel de Centros Educativos
		Infraestructura de Saneamiento	% Población con acceso al servicio de Saneamiento
	Infraestructura	Abastecimiento de agua potable	% Población con abastecimiento de agua potable
		Redes Eléctricas	% Población con cobertura de redes eléctricas
		Vías de Comunicación	Red Vial Asfaltada y/o Afirmada (Km)
		Telecomunicaciones	N° de Servicios
	onfliato de Use	Capacidad de Uso Mayor	Descripción del CUM
	onflicto de Uso	Uso Actual (Cobertura Vegetal)	Descripción del UA

FUENTE: Adaptado de Ochoa, 2014

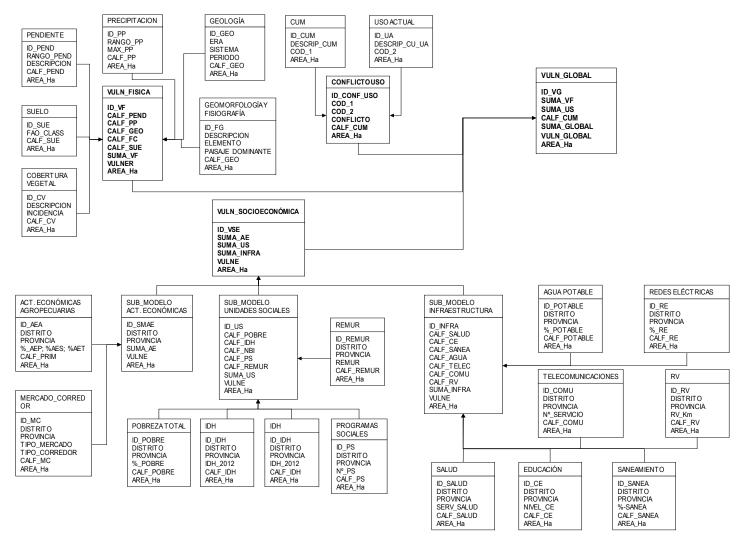


Figura 7: Esquema lógico de la BDG integrado

FUENTE: Elaboración Propia

c. Modelos geoespaciales de vulnerabilidad

El modelo geoespacial conjunto de reglas conceptuales para formar representaciones del territorio en un entorno digital y discreto. Un Modelo geoespacial establece los términos en que las entidades abstraídas del mundo real se diseñan para ser conceptualizadas como objetos y éstos a través de las especificaciones que declara el modelo son transformados en datos geoespaciales.

En el modelamiento se realizan una serie de operaciones de análisis utilizando mapas temáticos que representen variables calificadas y ponderadas de acuerdo a los estudios y las experiencias en el tema, y teniendo en cuenta el grado de incidencia de cada una de las unidades sobre el resultado, Dichos mapas, mediante superposición, definen características espaciales en base a potencialidades y limitaciones. El modelo conceptual nos muestra la estructura de los campos considerados para evidenciar los niveles de vulnerabilidad existentes en la cuenca.

Para efectos de estudió fue necesario analizar la vulnerabilidad física y socioeconómica independientemente, considerando al conflicto de uso de tierra como tercer modelo a analizar. Para ello se crearon sub modelos, como indica la figura 8.

La construcción de cada modelo se realizó teniendo en cuenta las variables más importantes e incidentes en el objetivo del modelo, luego se realizó la calificación en las unidades de cada variable, y la ponderación para realizar los ajustes y porcentaje de participación de las variables en cada uno de los modelos, para lo cual se ha utilizado el sistema de información geográfica con el software ArcGIS y la herramienta Model Builder.

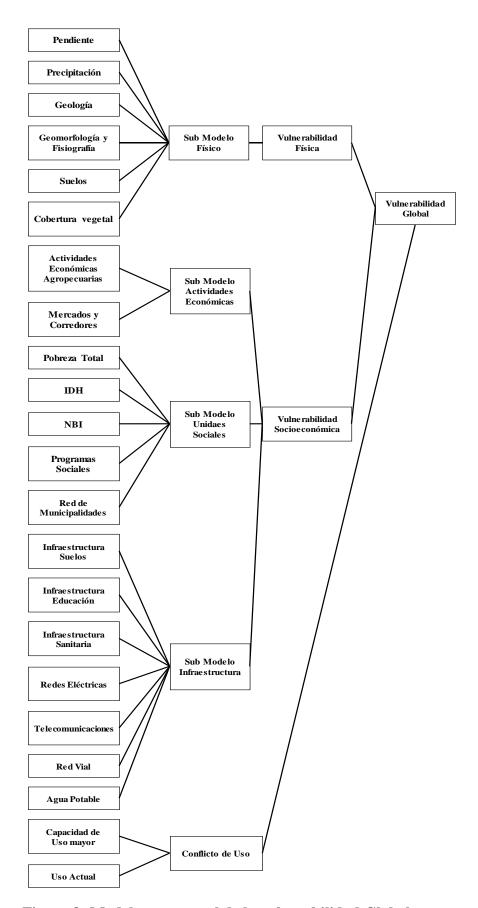


Figura 8: Modelo conceptual de la vulnerabilidad Global

FUENTE: Elaboración propia, adaptado de Ochoa (2014)

Generación del Sub Modelo de Vulnerabilidad Física

El sub modelo de vulnerabilidad física será la representación espacial de las unidades

físicas con mayor o menor incidencia de que la unidad hidrográfica tenga

susceptibilidad a sufrir daños y pérdidas ante la manifestación de un peligro por

fenómenos de geodinámica externa.

Para generar este sub modelo de vulnerabilidad física se integraron 7 capas: Mapa de

geomorfología, Mapa de pendientes, mapa de precipitaciones, mapa de fisiografía,

mapa de suelos, mapa de geología y mapa de cobertura vegetal.

Modelo de análisis de vulnerabilidad física

Para el cálculo e integración de los factores físicos involucrados sus grados de

incidencia en la vulnerabilidad es representada mediante la siguiente fórmula:

MVF = A * Pend + B * Prec + C * CV + D * Sue + E * FG + F * Geo

Dónde:

Pend = Pendiente

Prec = Precipitación

CV = Cobertura Vegetal

Sue = Suelos

FG = Fisiografía y Geomorfología

Geo = Geología

A,B,C,D,E,F, son porcentajes de participación de las variables en el modelo.

La ecuación de integración ponderativa presentada para el análisis de vulnerabilidad

física fue trabajada por Ochoa Janampa (2014) en el análisis similar realizado para

la cuenca hidrográfica Jequetepeque, exponiendo el objetivo de analizar la acción de

los externos e internos como influencia en la ocurreción de fenómenos de

geodinámica externa.

45

Para definir los valores de calificación asociados a cada variable temática se trabajó en base a los criterios de valorización establecidos por el Ministerio del Ambiente en la elaboración del mapa de Vulnerabilidad Física del Perú tomando una escala de 1 a 10 en función de que atributos condicionan las unidades como más o menos variables.

a. Información Temática de Precipitación

La importancia que tiene la precipitación es en cuanto sus variaciones influyen en el drenaje superficial generando deslizamientos, huaycos, erosión, etc. En tal sentido, se trabajó la siguiente clasificación según la distribución del rango de valores máximos anuales obtenidos de los registros históricos de estaciones de la unidad hidrográfica Chira – Piura.

Tabla 5: Valorización de la información temática de precipitaciones máximas

RANGO	VALOR DE CALIFICACION
< 200 mm	2
200 - 400 mm	2
400 - 600 mm	5
600 - 800 mm	5
800 - 1000 mm	7
1000 - 1200 mm	7
1200 - 1400 mm	10
1400 - 1600 mm	10

b. Información temática de Pendientes

Los valores calificativos del factor pendiente han sido establecidos en función a los rangos de la pendiente en la unidad hidrográfica. Toma importancia en cuanto a la relación que tiene con el grado de resistencia de los suelos, frente a la ocurrencia de deslizamiento y en proceso de erosión de los suelos.

Tabla 6: Valoración de la información temática de pendientes

RANGO	VALOR DE CALIFICACION
0 - 4%	1
4 - 8%	2
8 - 15 %	4
15 - 25%	5
25 - 50 %	7
50 - 75 %	9
> 75 %	10

c. Información temática de Geología

Se toma en cuenta las características litológicas de las unidades con la finalidad de entender el comportamiento del relieve y el grado de resistencia física de la roca ante agentes erosivos.

Tabla 7: Valoración de la información temática de geología

UNIDAD LITOESTRATIGRAFICA	ERA	PERIODIO	SERIE	VALOR DE CALIFICACION
Cordón litoral	Cenozoico	Cuaternario	Reciente	10
Deposito aluvial antiguo	Cenozoico	Cuaternario	Pleistoceno	10
Deposito aluvial reciente	Cenozoico	Cuaternario	Reciente	10
Depósito eólico antiguo	Cenozoico	Cuaternario	Pleistoceno	10
Depósito eólico reciente	Cenozoico	Cuaternario	Reciente	10
Depósito fluvial	Cenozoico	Cuaternario	Reciente	10
Depósitos glaciares	Cenozoico	Cuaternario	Pleistoceno	10
Depósitos lacustrinos	Cenozoico	Cuaternario	Reciente	10
Deposito eólico reciente	Cenozoico	Cuaternario	Reciente	10
Tablazo lobito	Cenozoico	Cuaternario	Pleistoceno	10
Tablazo mancora	Cenozoico	Cuaternario	Pleistoceno	10
Tablazo talara	Cenozoico	Cuaternario	Pleistoceno	10
Formación Miramar	Cenozoico	Terciario	Mioceno	8
Formación Tambogrande	Cenozoico	Terciario	Plioceno	8
Formación Yapatera	Cenozoico	Terciario	Inferior	8
Formación Zapallal	Cenozoico	Terciario	Mioceno	8
Formación Chignia	Mesozoico	Cretáceo	Medio	7
Formación Chimu	Mesozoico	Cretáceo	Inferior	7
Formación Encuentros	Mesozoico	Cretáceo	Superior	7
Formación Huasimal	Mesozoico	Cretáceo	Superior	7
Formación Jahuay negro	Mesozoico	Cretáceo	Superior	7
Formación La Leche	Mesozoico	Triás	ico	7
Formación La Mesa	Mesozoico	Cretáceo	Superior	7

...continuación

	1	1	1	
Formación Muerto	Mesozoico	Terciario	Inferior	7
Formación Sarayaquillo	Mesozoico	Jurásico	Superior	7
Formación Tablones	Mesozoico	Cretáceo	Superior	7
Formación Tortugas	Mesozoico	Cretáceo	Superior	7
Grupo San Pedro	Mesozoico	Cretáceo	Inferior	7
Grupo. Goyllarisquizga	Mesozoico	Cretáceo	Inferior	7
Volcánico Ereo	Mesozoico	Cretáceo	Medio	7
Volcánico La Bocana	Mesozoico	Cretáceo	Medio	7
Volcánico Lancones	Mesozoico	Cretáceo	Medio	7
Formación Chira	Cenozoico	Terciario	Eoceno	5
Formación Chira Verdum	Cenozoico	Terciario	Eoceno	5
Formación Mirador	Cenozoico	Terciario	Eoceno	5
Formación Verdun	Cenozoico	Terciario	Eoceno	5
Grupo Talara	Cenozoico	Terciario	Eoceno	5
Volcánico Llama	Cenozoico	Terciario	Eoceno	5
Volcánico Porculla	Cenozoico	Terciario	Eoceno	5
Volcánico Shimbe	Cenozoico	Terciario	Eoceno	5
Complejo de Olmos	M	lesoneo-Proterozo	oico	4
Formación Cerro Negro	Paleozoico	Devonico	Superior	4
Formación Cerro Prieto	Paleozoico	Carbonifero	Pensilvanio	4
Formación Chaleco de Paño	Paleozoico	Carbonifero	Misisipiano	4
Formación rio seco	Paleozoico	Devonico	Inferior	4
Grupo salas	Paleozoico	Ordovisico	Inferior	4
Gabro	Mesozoico	Cretáceo	Superior	3
Granodiorita, diorita, granito, tonalita, monzogranito	Mesozoico	Cretáceo	Superior	3
Indiferenciado	Paleozoico	Silurico	Inferior	3
Granito	Pal	eozoico	Inferior	1
Granito	Pal	eozoico	Superior	1

d. Información temática de cobertura vegetal

La cobertura vegetal es calificada tomando en consideración características de densidad de vegetación y la capacidad de protección del suelo que ella pueda proporcionar. En otras palabras, un suelo con escasa vegetación brinda una escasa protección a las laderas, acelera el desplazamiento y/o la velocidad del agua de escorrentía superficial producto de las fuertes precipitaciones pluviales, propiciando el fenómeno de la erosión hídrica; en cambio, la abundante vegetación, tiene mayor capacidad de proteger a los suelos de los efectos erosivos, dando mayor estabilidad y mantiene la forma del relieve.

Tabla 8: Valoración de la información temática de cobertura vegetal

DESCRIPCIÓN	INCIDENCIA	VALOR DE CALIFICACION
Planicies costeras y estribaciones andinas sin vegetación	Tierra sin vegetación	10
Cultivos agrícolas	Tierra con cultivos agrícolas	8
Pajonal	Tierras con pastos naturales	5
Matorrales	Tierras con vegetación arbustica	4
Bosque húmedo de montañas	Tierra con bosques húmedos	2
Bosque seco de lomadas y colinas	Tierras con bosque seco	1
Bosque seco de montañas	Tierras con bosque seco	1
Bosque seco tipo sabana	Tierras con bosque seco	1

e. Información Temática de Fisiografía - Geomorfología

La fisiografía toma en cuanto a su relieve, es decir en cuanto a la forma de la tierra, así como los rasgos generales del modelado de la zona. Mientras que, la valoración de atributos de la variable geomorfológica, se ha realizado en función a la amplia variedad de caracteres geomorfológicos, que resultan de su compleja topografía y de la existencia de varios pisos altitudinales que condicionan ambientes morfoclimáticos característicos.

Tabla 9: Valoración de la información temática de Fisiografía-Geomorfología

DESCRIPCION DEL PAISAJE	ELEMENTO DEL PAISAJE	PAISAJE DOMINANTE	VALOR DE CALIFICACIÓN
Montaña-vertiente montañosa empinada a escarpada	Pendiente 25 a 50% de vertiente semiárida subdesértica	Montañoso	10
Montaña-vertiente montañosa empinada a escarpada	Pendiente de 25a 50% con superficie rocosa y material coluvial	Montañoso	10
Montaña-vertiente montañosa moderadamente empinada	Pendiente mayor a 50% con numerosos escarpes	Montañoso	10
Vertiente Alta Empinada a Escarpada	Pendiente 25 a 50% de vertiente húmeda y boscosa	Montañoso	10
Colina y montaña-vertiente montañosa colina empinada	Pendiente predominante de mayor a 50% con superficie rocosa	Montañoso- Colinoso	8
Colina y montaña-vertiente montañosa moderadamente	Pendiente predominante de 25 a 50% con superficie rocosa	Montañoso- Colinoso	8
Colina y montaña-vertiente montañosa moderadamente	Pendiente predominante de 4 a 15% con superficie de erosión local	Montañoso- Colinoso	8

...continuación

_			
Colina y montaña-colina	Pendiente de 25a 50%, superficie mayoritariamente rocosa bajo una cubierta de arena y limo eólico reciente	Colinoso	6
Colina y montaña-vertiente del pacifico	Pendiente de 25a 50%, superficie mayoritariamente rocosa bajo una cubierta de arena y limo eólico reciente	Colinoso	6
Colina y montaña-vertiente montañosa moderadamente	Pendiente mayor a 50%, superficie mayoritariamente rocosa bajo una cubierta de arena y limo eólico reciente	Colinoso	6
Altiplanicie disectada	Llanura de 0 a 15% de pendiente con frecuentes accidentes topográficos	Altiplanicie	3
Altiplanicie ondulada	Llanura de 0 a 4% de pendiente formada por acumulación lacustre, aluvial y fluvial	Altiplanicie	3
Planicie-llanura	Planicie desértica de 0 a 4% de pendiente con recubrimiento de arena y limo eólico	Planicie	2
Planicie llanuras	Acumulación fluvial reciente. Terrenos irrigados y cultivados permanentemente	Planicie	2
Planicie ondulada	Llanura desértica muy disectada con 15 a 25% de pendiente	Planicie	2
Planicie ondulada a disectada- llanura disecta Llanura desértica de configuración ondulada con 4 a 15% de pendiente		Planicie	2
Planicie ondulada a disectada- vertiente allanada	Pendiente de 0 a 15% con acumulación fluvial reciente, superficie de erosión, fondo valle y vertiente montañosa	Planicie	2

f. Información temática de Suelos

Las unidades edáficas identificas de acuerdo al sistema de clasificación de Grupos Principales de Suelos de FAO/UNESCO. Considera la profundidad efectiva, textura y pedregosidad como características importantes en el estudio. Como indicó Ochoa (2014), una interacción de pendiente empinada, profundidad efectiva muy superficial, textura gruesa y alto porcentaje de pedregosidad predispondrían la inestabilidad de la unidad de suelo para derrumbes, deslizamientos, huaycos.

Tabla 10: Valoración de la información temática de suelo.

UNIDAD TAXONÓMICA	VALOR DE CALIFICACION
Eutric Fluvisols	10
Eutric Gleysols	9
Pellic Vertisols	7
LITHOSOLS	6
Luvic Phaeozems	6
Luvic Kastanozems	5

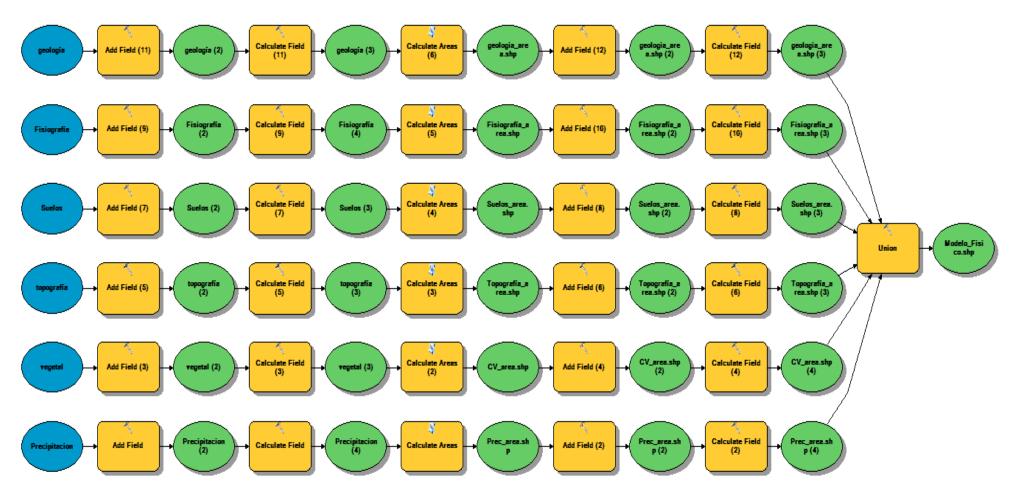


Figura 9: Modelo geoespacial para la determinación del sub modelo de la vulnerabilidad física

Figura 10: Modelo geoespacial propuesto para la identificación de zonas con vulnerabilidad física

• Generación del Sub Modelo de Vulnerabilidad Socioeconómica

El sub modelo de vulnerabilidad socioeconómica es la representación espacial de las unidades socioeconómicas con mayor o menor nivel de susceptibilidad a sufrir daños y pérdidas ante la manifestación de un peligro.

Para generar el sub modelo de vulnerabilidad socioeconómica se agruparon las capas en 3 criterios los cuales nos generaron propios sub modelos tales como: Sub modelo de actividades económicas donde se seleccionaron 2 capas criterios generadas calificadas y ponderadas: Mapa de actividades económicas (Uso actual) y mapa de mercados y corredores económicos; para el sub modelo de Unidades Sociales se seleccionaron 5 capas criterio generadas calificadas y ponderadas: Mapa de Pobreza Total, Mapa de Índice de Desarrollo Humano, Mapa de Necesidades Básicas, Mapa de Programas Sociales y Mapa de las Redes Municipales; para el sub modelo de Infraestructura se seleccionó 7 capas: Mapa de Infraestructura de Salud, Mapa de Infraestructura Educativa, Mapa de Infraestructura de Saneamiento, Mapa de Abastecimiento de Agua Potable, Mapa de Redes Eléctricas, Mapa de Vías de comunicación y Mapa de Telecomunicaciones.

Modelo de análisis de vulnerabilidad socioeconómica

La integración de los factores físicos involucrando sus grados de incidencia en la vulnerabilidad es representada mediante la siguiente formula:

$$MVSE = A * SUS + B * SE + C * SI$$

Dónde:

SUS = Submodelo de Unidades Sociales

SE = Submodelo Económico

SI = Submodelo de Infraestructura

A, B, C, son porcentajes de participación de las variables en el modelo.

La ecuación de integración ponderativa presentada para el análisis de vulnerabilidad física fue trabajada por Ochoa Janampa (2014) en el análisis similar realizado para la cuenca hidrográfica Jequetepeque, influenciados por la situación de conflictos de uso del territorio, las características de calidad de vida y finalmente lo referido a infraestructura pública como elementos que permiten acciones efectivas de acción frente al desastre.

Para definir los valores de calificación asociados a cada variable temática se trabajó en base a los criterios de valorización en función de sus grados de incidencia en la vulnerabilidad de la sociedad involucrada, tomando una escala de 1 a 3 en función de que atributos condicionan las unidades como más o menos variables.

a. Sub Modelo Actividades Económicas

Estrechamente relacionado con los medios de vida de las unidades sociales. Incorpora dos variables importantes que permiten, indirectamente, caracterizar y valorar el nivel de desarrollo de la actividad agraria; como principal fuente de producción, ocupación e ingresos de las familias: Uso actual del suelo (ubicación de las actividades económicas agropecuarias); mercados y corredores económicos.

Las variables analizadas facilitan entonces cualificar las actividades generadoras de ingresos y las oportunidades que tiene la población para lograr mayores o menores ingresos económicos, mediante la venta o intercambio de productos en los mercados; lo que les permitirá un mayor nivel de resiliencia, bienestar o calidad de vida. Por lo tanto, el Sub modelo nos muestra las actividades generadoras de ingresos o de subsistencia de las unidades sociales y su dinámica comercial.

Tabla 11: Variables del Sub Modelo Actividades Económicas

Sub Modelo	Variable	Atributos de la Variable	Indicador	Fuente de Información
ADES ICAS	Ubicación de las actividades económicas por distritos.	Actividades económicas primarias, secundarias y terciarias.	% de población que desarrolla la actividad	INEI - CENSO 2007
ACTIVID/ ECONOM	Mercados y Corredores Económicos Mercados locales, regionales, nacionales e internacionales. Corredores intra e interregionales		Tipo de mercado	ZEE - OT Región Piura

Actividades económicas

Se llama actividad económica a cualquier proceso mediante el cual obtenemos productos, bienes y los servicios que cubren nuestras necesidades.

Las actividades económicas son aquellas que permiten la generación de riqueza dentro de una comunidad (ciudad, región, país) mediante la extracción, transformación y distribución de los recursos naturales o bien de algún servicio; teniendo como fin la satisfacción de las necesidades humanas. Algunas actividades económicas son la agricultura, la ganadería, la industria, el comercio, las comunicaciones, entre otras.

Existen tres tipos de actividad económica: la primaria, la secundaria y la terciaria. Cuanto más avanzada o desarrollada es una economía, más peso tiene el sector terciario y menos el sector primario.

Actividades económicas primarias: Son aquellas que se dedican puramente a la extracción de los recursos naturales, ya sea para el consumo o para la comercialización. Están clasificadas como primarias: la agricultura, la ganadería, la producción de madera y pesca comercial, la minería, entre otras.

Actividades económicas secundarias: Este sector se refiere a las actividades industriales, aquellas que transforman los recursos del sector primario. Dentro del mismo, las industrias ligeras producen bienes de consumo inmediato como

alimentos, zapatos, bolsas, juguetes, mientras que las pesadas, maquinaria y otros insumos para otros sectores; las industrias manufactureras se encargan de la elaboración de productos más complejos a través de la transformación de las materias primas.

Actividades económicas terciarias: Gracias a estas actividades, la población humana encuentra comodidad y bienestar. Consisten básicamente en la prestación de algún servicio, la comunicación o el turismo. Existe por importancia, en el seno de este sector, una división importante: Actividades económicas financieras.

Toda ciudad, región o país se emplea específicamente en alguna actividad económica lo que permite clasificarlos, y de acuerdo a la capacidad de producción y eficiencia de dicha actividad se generara su riqueza.

En este sentido, las actividades económicas se constituyen en medio de vida y generadoras de bienestar para las comunidades; por lo que es lógico entender que sus características incidirán en el nivel de vulnerabilidad de las unidades sociales.

La lógica de la variable se basa en que, unidades sociales con mayor/menor porcentaje de población que desarrollan los diferentes tipos de actividades económicas, presentan mayor/menor niveles de vulnerabilidad; en la medida de que podrían disponer de servicios de apoyo a la producción, de excedentes o volúmenes de producción para orientar al mercado, entre otros aspectos.

La Tabla 12, nos muestran los criterios de valoración definidos para esta variable.

Tabla 12: Valoración de la información temática de actividades económicas

Actividad Primaria		Actividad Secundaria		Actividad Terciaria	
% de la población por distrito que desarrolla la actividad	Calificación	% de la población por distrito que desarrolla la actividad	Calificación	% de la población por distrito que desarrolla la actividad	Calificación
< 20	3	< 6	3	< 8	3
20.1 - 70	2	6.1 - 18	2	8.1 - 35	2
70.1 - 90	1	18.1 - 40	1	35 - 65	1

Para sacar el valor cuantitativo del nivel de vulnerabilidad se sacó el promedio de las calificaciones de cada una de las actividades; y de esta manera se calificó la vulnerabilidad con respecto a las actividades económicas primarias, secundarias y terciarias.

Mercados y corredores económicos

Mercado, en economía, es cualquier conjunto de transacciones o acuerdos de negocios entre compradores y vendedores. En contraposición con una simple venta, el mercado implica el comercio regular y regulado, donde existe cierta competencia entre los participantes.

El mercado es, también, el ambiente social (o virtual) que propicia las condiciones para el intercambio. En otras palabras, debe interpretarse como la institución u organización social a través de la cual los ofertantes (productores y vendedores) y demandantes (consumidores o compradores) de un determinado bien o servicio, entran en estrecha relación comercial a fin de realizar abundantes transacciones comerciales.

Por ámbito geográfico, los mercados pueden ser de los siguientes tipos:

- Mercado internacional o mercado exterior: Es aquel que se encuentra en uno o más países en el extranjero.
- Mercado nacional o mercado interior: abarca todo el territorio nacional para el intercambio de bienes y servicios.

- Mercado regional: Es una zona geográfica determinada libremente, que no coincide de manera necesaria con los límites políticos.
- Mercado de Intercambio Comercial al Mayoreo: Es aquel que se desarrolla en áreas donde las empresas trabajan al mayoreo dentro de una ciudad.
- Mercado metropolitano: Se trata de un área dentro y alrededor de una ciudad relativamente grande.
- Mercado local: Es la que se desarrolla en una tienda establecida o en modernos centros comerciales dentro de un área urbana o metropolitana.

Por otro lado, un corredor económico viene a ser la "interrelación de bienes y servicios en un espacio territorial, que articulan las ciudades intermedias a partir de las ventajas comparativas que poseen respecto a otros territorios. La red vial juega un rol importante, integrando las ciudades".

El corredor económico implica:

Articulación entre poblaciones urbanas y rurales mediante las vías de comunicación. Complementariedad entre producción rural y servicios urbanos.

Articulación de mercados locales y regionales.

Conformación de conglomerados por productos o servicios para la competitividad.

Del entendimiento de estos conceptos podemos concluir que, tanto el tipo mercado como el desarrollo de una actividad económica bajo un enfoque territorial están estrechamente relacionados con la fortaleza o debilidad de los medios de vida que sustentan a una comunidad y por lo tanto inciden en el nivel de vulnerabilidad de las unidades sociales.

La lógica de su influencia en los niveles de vulnerabilidad es que una inserción en mercados locales caracterizará a comunidades con mayor nivel de vulnerabilidad y una inserción a mercados nacionales e internacionales a comunidades menos vulnerables. De igual forma comunidades que desarrollan sus actividades productivas bajo un enfoque territorial serán menos vulnerables que aquellas que no se insertan en este tipo de procesos.

Tabla 13: Valoración de la información temática de mercados y corredores

Tipo de mercado	Calificación	Tipo de corredor	Calificación
Local o provincial	3	Intrarregional – local	3
Regional	2	Intrarregional – provincial	2
Nacional	1	Interregional	1

b. Sub modelo Unidades Sociales

Se optó por evaluar cualitativamente el grado de bienestar de las unidades sociales, como factor de vulnerabilidad. Incorpora las siguientes variables: Pobreza total, Índice de Desarrollo Humano (IDH), Necesidades Básicas Insatisfechas (NBI), programas sociales y redes/asociaciones de municipalidades. Estas variables, permiten analizar las características socio-económicas y las carencias de la población, como causas que contribuyen a definir su nivel de vulnerabilidad. La lógica es que a mayores niveles de pobreza o bajo IDH, mayores porcentajes de hogares con al menos 2 NBI; sumados a menor presencia de programas sociales y municipalidades aisladas en sus propuestas de gestión, conllevan a que las poblaciones presenten mayores niveles de vulnerabilidad.

Tabla 14: Variables del Sub Modelo Unidades Sociales

Sub Modelo	Variable	Atributos de la Variable	Indicador	Fuentes de Información
	Pobreza Total	Población Pobre a nivel distrital	% de población pobre	INEI: Censo 2007
SOCIALES	Indicador Desarrollo Humano - IDH	Esperanza de vida al nacer, Población con Educación secundaria completa, Años de educación (Poblac. 25 y más) e Ingreso familiar per cápita	Ratios	PNUD - 2012
JNIDADES SC	Necesidades Básicas Insatisfechas – NBI	Calidad de Vida, hacinamiento y tugurización, acceso a servicios, acceso a educación.	%	INEI: Censo 2007
	Programas Sociales	Juntos, Pensión 69, Foncodes, Cuna Más, Fonie	En función a la cobertura	MIMDES
	Redes Municipales	Municipalidades asociadas	En función a la cobertura	REMUR Piura

Los criterios de valoración y ponderaciones aplicadas a las diferentes variables de este sub modelo intermedio que conforma la estructura conceptual del sub modelo de vulnerabilidad, son los siguientes:

Pobreza Total

En la Tabla 15 se presenta los criterios de valoración tomados en cuenta para determinar la incidencia de la pobreza total en el nivel de vulnerabilidad de las unidades de análisis. La lógica de esta variable es que, unidades sociales con mayores/menores niveles de pobreza, presentan mayores/menores niveles de vulnerabilidad.

Tabla 15: Criterios de Valoración para Pobreza Total

Rango de % de pobreza total	Calificación
> 44	3
25 – 43.99	2
< 25	1

Índice de desarrollo humano (IDH)

El IDH toma en cuenta tres elementos relacionados con factores de vulnerabilidad de las unidades sociales: nivel de salud, representado por la esperanza de vida al nacer; nivel de instrucción, representado por la tasa de alfabetización de adultos, el promedio de año de escolarización y finalmente, el ingreso, representado por el PIB por habitantes. El IDH es una medida no ponderada que clasifica a los países o regiones a través de una escala que va de 0 a 1 y permite establecer tres niveles de Desarrollo Humano.

La Tabla 16, presenta los criterios de valoración tomados en cuenta para determinar la influencia del IDH en el nivel de vulnerabilidad de las unidades de análisis. Se considera como lógica de esta variable el que, unidades sociales con mayores/menores ratios de IDH presentan mayores/menores niveles de vulnerabilidad.

Tabla 16: Criterios de Valoración para IDH

Rango de IDH	Calificación
0.137 - 0.341	3
0.342 - 0.451	2
0.452 - 0.555	1

Necesidades Básicas Insatisfechas (NBI)

Necesidades Básicas Insatisfechas (NBI) es un método directo para identificar carencias críticas en una población y caracterizar la pobreza.

Usualmente utiliza indicadores directamente relacionados con cuatro áreas de necesidades básicas de las personas (vivienda, servicios sanitarios, educación básica e ingreso mínimo), disponibles en los censos de población y vivienda.

Se distingue de otros indicadores relacionados con el nivel de vida de la población, como los índices de indigencia (pobreza extrema) y pobreza, en el hecho que estos últimos miden el ingreso de una persona o una familia, y deducen del mismo su nivel de vida, por lo que se los denomina métodos indirectos.

Para el análisis de la influencia de la variable NBI al nivel de vulnerabilidad de las unidades sociales, se aplican los criterios que se presentan en la Tabla 17.

La lógica de esta variable es que, unidades sociales con mayor/menor porcentaje de hogares con al menos dos NBI, presentan mayor/menor niveles de vulnerabilidad.

Tabla 17: Criterios de Valoración para NBI

Rango de Hogares con al menos 2 NBI %	Calificación
> 32	3
19 - 32	2
< 19	1

Programas Sociales

Un programa social tiene por objetivo generar iniciativas específicas que tiendan a dar apoyo a los grupos vulnerables para promover su desarrollo, crecimiento e integración a la sociedad. En este sentido, los programas sociales influencian en el nivel de vulnerabilidad de las unidades territoriales.

La Tabla 18, muestra los criterios de valoración definidos para esta variable.

Estos criterios se definen tomando en cuenta los programas sociales existentes en las unidades territoriales y corresponden al número de programas. La lógica de su influencia en los niveles de vulnerabilidad es que, a mayor o menor número de programas sociales, mayor o menor nivel de vulnerabilidad de la unidad social.

Tabla 18: Criterios de Valoración para Programas Sociales

N° de Programas Sociales	Calificación
1 - 3 programas	3
4 programas	2
5 programas	1

Redes/asociaciones de municipalidades

Las redes de municipalidades son el resultado de procesos de asociativismo municipal que conllevan a la agrupación de municipios sobre la base de objetivos comunes. Se busca así pasar de acciones aisladas y sin coordinación, que no conducían a grandes logros para el sector municipalista, a asociaciones de municipalidades, que puedan influenciar en las decisiones políticas.

Todo esto conlleva a mejorar la gobernabilidad y el ejercicio de poder de las organizaciones de la sociedad, trabajar mancomunadamente en la reducción de la pobreza y en pro del desarrollo local sostenible; reduciendo así los niveles de vulnerabilidad de las unidades sociales. Podemos decir entonces que municipalidades asociadas avanzan hacia unidades sociales menos vulnerables y aquellas que se encuentran en municipios aislados podemos considerar que su nivel de vulnerabilidad será mayor.

Tabla 19: Criterios de Valoración de Redes Municipales

Redes Municipales	Calificación
Municipalidades no Asociadas	3
Municipalidades Asociadas	1

c. Sub modelo Infraestructura

Este sub modelo está estrechamente relacionada con la protección social como factor de vulnerabilidad. La dotación de infraestructura que presentan las unidades sociales, reflejan la presencia de servicios sociales y de apoyo a la producción que brindan a las comunidades las instancias de gobierno, nacional y sub nacional.

Permite valorar, de manera indirecta, el nivel de protección social de la población, como factor de vulnerabilidad incorpora las siguientes variables:

Infraestructura de salud, infraestructura educativa, infraestructura de saneamiento, redes eléctricas, vías de comunicación, telecomunicaciones. La lógica de este sub modelo es que, a menor o mayor cantidad de infraestructura existente en las unidades sociales, estas muestran menores o mayores niveles de protección por la prestación o disponibilidad de mayor o menor número de servicios; por lo tanto, las unidades sociales presentarán mayor o menor nivel de vulnerabilidad.

Tabla 20: Variables del Sub Modelo Infraestructura

Sub Modelo	Variable	Atributo de la Variable	Indicador	Fuente de Información
URA	Infraestructura de Servicio de Salud	Categorías de Servicio	N°	MINSA
ESTRUT	Infraestructura de Educativa	Centros Educativos	N°	Ministerio Educación
INFRAE	Infraestructura de Saneamiento	Cobertura del servicio	% de población	INEI - CENSO 2007

...continuación

URA	Abastecimiento de agua potable	Cobertura del servicio	% de población	INEI - CENSO 2007
	Redes eléctricas	Servicio	Cobertura	INEI - CENSO 2007
RAESTRI	Vías de comunicación	Vías	Superficie de rodadura afirmada y/o asfaltada	Ministerio de Transporte y Telecomunicaciones
INF	Infraestructura Telecomunicaciones	Servicio	N°	INEI - CENSO 2007

Infraestructura de Servicios de Salud

Según la Norma Técnica N T Nº 0021- MINSA / DGSP V.01 sobre categorías de establecimiento del sector salud. El MINSA considera la siguiente clasificación:

Tabla 21: Clasificación de los establecimientos del sector salud

Categorías del Sector Salud	Ministerio de Salud
I – 1	Puesto de Salud
I-2	Puesto de Salud con Médica
I – 3	Centro de Salud sin Internamiento
I – 4	Centro de Salud con Internamiento
II – 1	Hospital I
II – 2	Hospital II
III – 1	Hospital III
III - 2	Instituto especializado

Por lo tanto, se definen los criterios tomando en cuenta la categoría de los establecimientos de salud existentes en las unidades territoriales. La lógica de su influencia en los niveles de vulnerabilidad es que, a mayor o menor categoría del establecimiento de salud, mayor o menor nivel de bienestar de las comunidades y por lo tanto mayor o menor nivel de vulnerabilidad de la unidad social. La Tabla 22, muestra los criterios de valoración definidos para esta variable.

Tabla 22: Criterios de Valoración de la Variable Infraestructura de Servicios de Salud

Categorías del Sector Salud	Calificación
I - 1 / I - 2	3
I – 3 / I – 4	2
II – 1	1

Infraestructura Educativa

Estos criterios se definen tomando en cuenta el nivel de las instituciones educativas existentes en las unidades territoriales. La lógica de su influencia en los niveles de vulnerabilidad es que, a mayor o menor presencia de instituciones educativas, en sus diferentes niveles, mayor o menor nivel de vulnerabilidad de la unidad social. La Tabla 23, muestra los criterios de valoración definidos para esta variable.

Tabla 23: Criterios de Valoración de la Variable Infraestructura de Servicios de Educación

Institución Educativa	Calificación
Inicial, Primaria y Secundaria	3
Inicial, Primaria, Secundaria, Especial y/o CEBA	2
Inicial Primaria, Secundaria, Especial, CEBA y Superior	1

Infraestructura de saneamiento

La lógica de esta variable es que, unidades sociales con mayor/menor cobertura del servicio de saneamiento, mayor/menor grado de bienestar de la comunidad y por lo tanto mayor/menor nivel de vulnerabilidad de la unidad social. La Tabla 24, muestra los criterios de valoración definidos para esta variable.

Tabla 24: Criterios de Valoración de la Variable Infraestructura de Saneamiento

% Viviendas con acceso al servicio de Saneamiento	Calificación
<20	3
20 - 39.99	2
>40	1

Abastecimiento de agua potable

La lógica de esta variable es que, unidades sociales con mayor/menor cobertura de abastecimiento de agua, mayor/menor grado de bienestar de la comunidad y por lo tanto mayor/menor nivel de vulnerabilidad de la unidad social. La Tabla 25 muestra los criterios de valoración definidos para esta variable.

Tabla 25: Criterios de Valoración de la Variable Abastecimiento de Agua Potable

% Viviendas con acceso de abastecimiento de agua potable	Calificación
<20	3
20 - 39.99	2
>40	1

Redes eléctricas

La lógica de esta variable es que, unidades sociales con mayor/menor cobertura del servicio de energía eléctrica, mayor/menor grado de bienestar de la comunidad y oportunidades para impulsar actividades económicas; por lo tanto, mayor/menor nivel de vulnerabilidad de la unidad social. La Tabla 26 muestra los criterios de valoración definidos para esta variable.

Tabla 26: Rango de Ponderación para la Variable de Redes eléctricas

% Viviendas con cobertura de redes eléctricas	Calificación
<20	3
20 - 39.99	2
>40	1

Vías de comunicación

La lógica de esta variable es que, unidades territoriales con mayor/menor longitud de vías asfaltadas y/o afirmada, mayor/menor conectividad territorial; por lo tanto, mayor/menor oportunidad de relacionamiento y oportunidades de inserción a mercados, lo que incide en un mayor/menor nivel de vulnerabilidad de la unidad social. La Tabla 27, muestra los criterios de valoración definidos para esta variable.

Tabla 27: Criterios de Valoración de la Variable Vías de Comunicación

Red vial Asfaltada y/o Afirmada (km)	Calificación
0 - 40	3
40 – 100	2
100 – 200	1

Telecomunicaciones

Estos criterios se definen tomando en cuenta el número de servicios disponibles en las unidades territoriales. La lógica de su influencia en los niveles de vulnerabilidad es que, a mayor o menor número de servicios, mayor o menor nivel de bienestar de las comunidades y por lo tanto mayor o menor nivel de vulnerabilidad de la unidad social. La Tabla 28, muestra los criterios de valoración definidos para esta variable.

Tabla 28: Criterios de Valoración de la Variable Infraestructura de Telecomunicaciones

Servicio de Telecomunicación	Calificación
Sin ningún servicio	3
Con un servicio	2
Con dos servicios	1

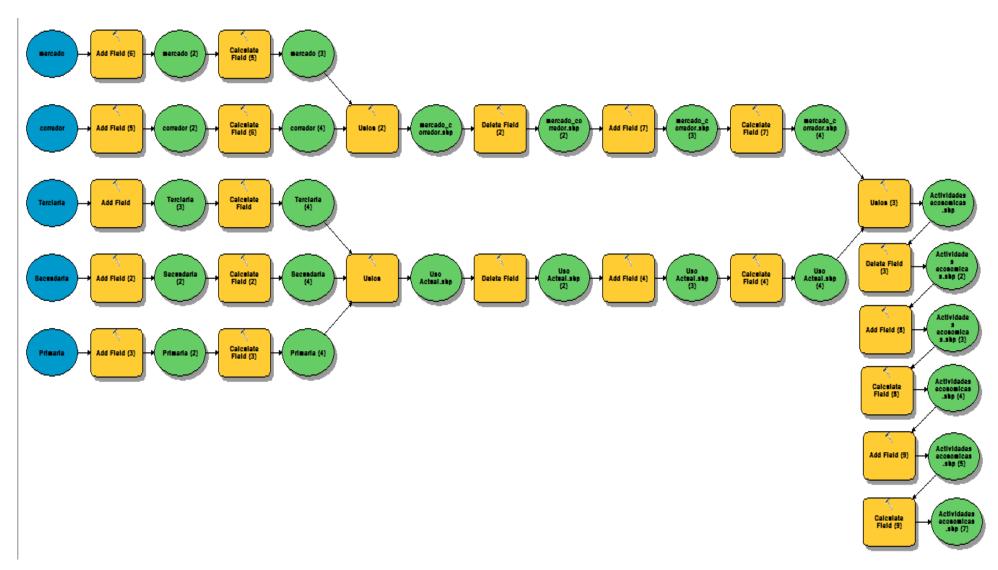


Figura 11: Modelo cartográfico para la determinación del sub modelo Actividades Económicas

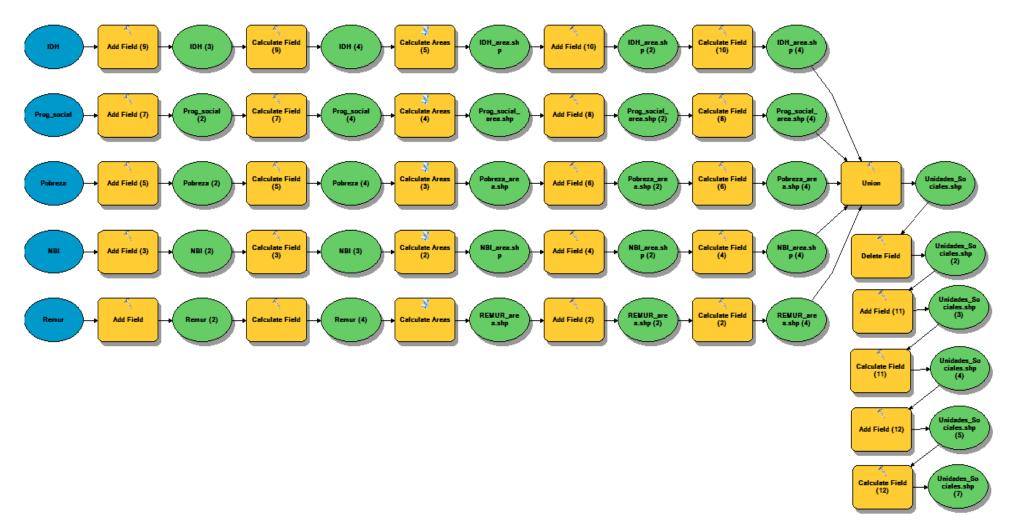


Figura 12: Modelo cartográfico para la determinación del sub modelo Unidades Sociales

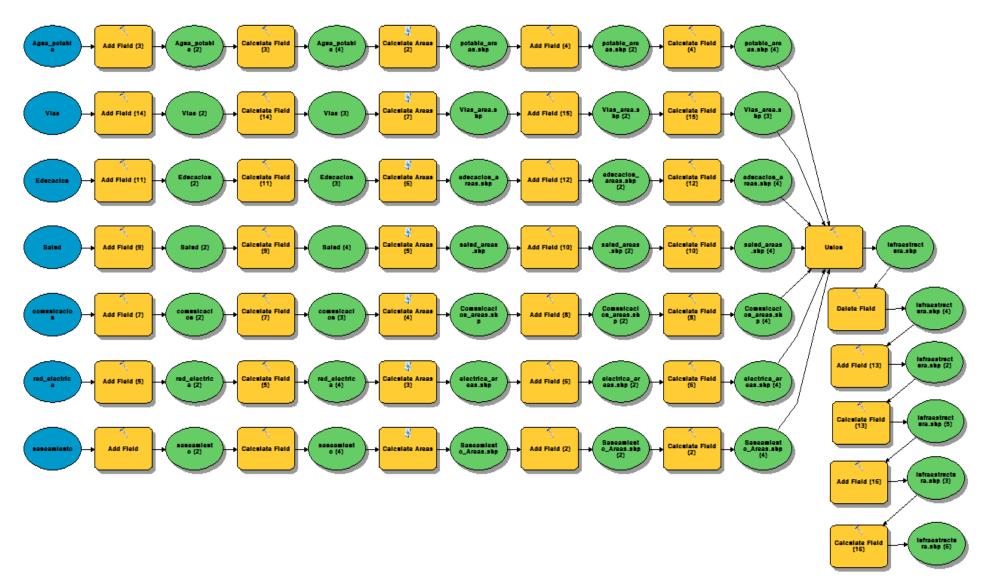


Figura 13: Modelo cartográfico para la determinación del sub modelo Infraestructura

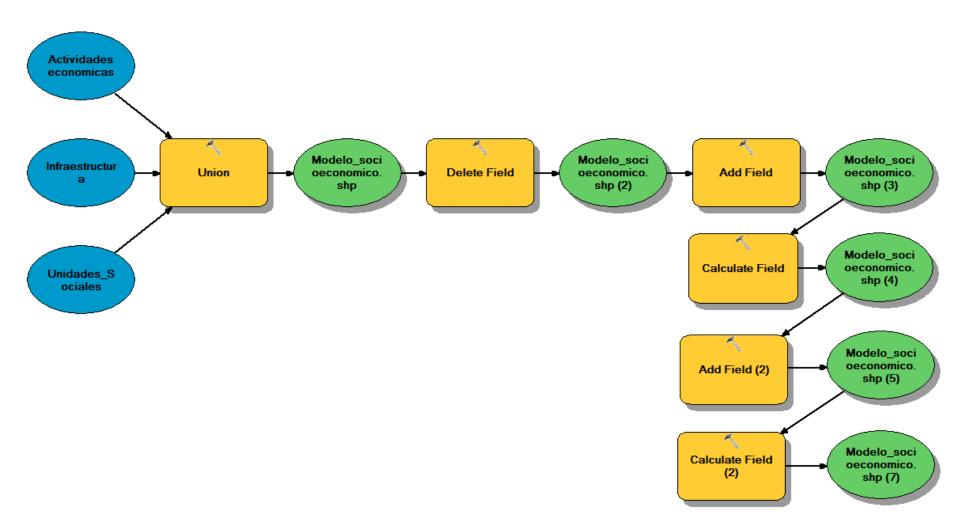


Figura 14: Modelo cartográfico propuesto para la identificación de zonas con vulnerabilidad Socioeconómica

• Generación del Sub Modelo de Conflicto de Uso

El conflicto por uso del suelo se define como la magnitud de la diferencia existente entre la oferta productiva del suelo y las exigencias del uso actual del mismo; tales diferencias se definen como conflictos. Para establecer niveles o grados de conflicto basta integrar 2 capas criterio calificadas: el mapa de capacidad de uso mayor del suelo y el uso actual de la tierra (Mapa de cobertura vegetal). Por motivo de estudios, se agregó un shape (polígono) el cual indica problemas de salinidad en la zona.

De dicha comparación pueden resultar tres situaciones:

- a. Correspondencia o equivalencia.
- b. Sub utilización del suelo.
- c. Sobre- utilización.

Tabla 29: Criterios de valorización de las variables de conflicto de uso

Situación	Valor Calificación
SOBRE USO	3
USO CONFORME	2
SUB USO	1

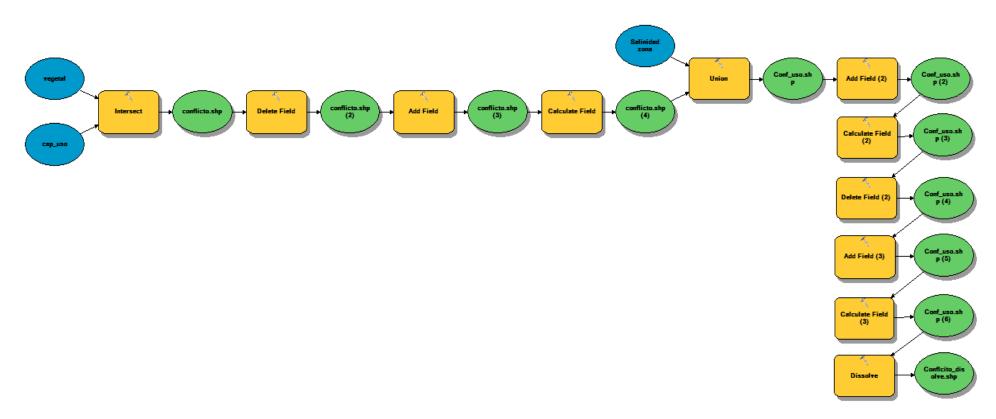


Figura 15: Modelo cartográfico propuesto para la identificación de zonas con conflicto de uso

• Generación del modelo integrado para la determinación de la Vulnerabilidad

global

Este modelo parte del objetivo principal que es determinar el grado de vulnerabilidad

causado por los fenómenos de geodinámica externa en la Unidad Hidrográfica de

Chira-Piura. Para ello se realizó una propuesta que involucra establecer un modelo

de vulnerabilidad que está orientado a las variables sociales, económicas,

infraestructura, física y conflicto de uso.

Cada capa se reclasifico en su respectiva tabla de atributos con los valores de

ponderación y clasificación establecidas previamente. Posteriormente las capas

fueron interceptadas a través de herramientas de geo procesamiento para luego ser

evaluadas en una regla de decisión que género 3 mapas: vulnerabilidad física,

vulnerabilidad socio-económica y conflicto de uso. Estas a su vez con el mismo

criterio generaron un mapa definitivo de zonas potenciales de vulnerabilidad global

que fue finalmente clasificada de acuerdo a grados de vulnerabilidad de mayor a

menor incidencia.

Modelo de análisis de vulnerabilidad global

La integración de los factores físicos involucrando sus grados de incidencia en la

vulnerabilidad es representada mediante la siguiente formula:

$$VG = A * SF + B * SE + C * CU$$

Donde:

SF = Submodelo de vulnerabilidad física

SE = Submodelo de vulnerabilidad socioeconómica

CU = Submodelo de conflicto de uso

A,B,C, son factores de ponderación del grado de incidencia en la vulnerabilidad.

Grado de participación

Para generar el modelo de vulnerabilidad global se le asignó la participación de los

sub modelos físico, socioeconómico y conflicto de uso de acuerdo a su incidencia

sobre la vulnerabilidad en la unidad hidrográfica Chira-Piura, teniendo en cuenta los

74

resultados de los trabajos realizados en España, México, Costa Rica y juicio de expertos. En la Tabla 30 se muestran los grados de participación de los sub modelos. Modelo de vulnerabilidad física, se le asignó un valor de 50 por ciento de participación, por tener una mayor incidencia en la vulnerabilidad y representar las características físicas de los diferentes espacios del territorio.

Modelo socioeconómico, le correspondió el valor de 30 por ciento, ya que permite describir las condiciones socioeconómicas de la población que hacen que sean susceptibles a sufrir mayores daños o pérdidas de bienes materiales y vidas humanas. Finalmente, Modelo de conflicto de uso, también se la representó con un valor de 20 por ciento, por permitir identificar las áreas donde el uso actual de la tierra no está acorde a su vocación.

Tabla 30: Grado de participación de los sub modelos

Sub modelo geoespacial	Grado de Participación (%)
Vulnerabilidad Física	50
Vulnerabilidad Socioeconómica	30
Conflicto de Uso	20

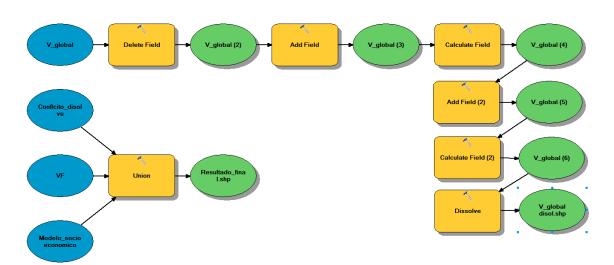


Figura 16: Modelo cartográfico propuesto para la identificación de zonas vulnerables por fenómenos de geodinámica externa (Vulnerabilidad Global)

Ajuste ponderativo de las variables

En esta fase se asignaron grados de participación a cada variable considerando la incidencia de cada uno sobre la vulnerabilidad en la unidad hidrográfica. Para ello aportaron las consultas en la literatura relacionada y el juicio del asesor con experiencia en trabajos en Zonificación Ecológica Económica y Planes de Ordenamiento Territorial. En la tabla 31 presenta los grados de participación para cada variable.

Tabla 31: Grados de participación de variables

VARIABLES FISICAS	GRADO DE PA	RTICIPACION
Precipitación	20%	
Pendientes	20%	
Cobertura Vegetal	15	%
Características del Suelo	15	%
Fisiografía y Geomorfología	20	%
Geología	10	%
VARIABLES SOCIOECONOMICAS	GRADO DE PA	RTICIPACION
Submodelo Económico		
Actividades Económicas	50%	30%
Mercados y Corredores	50%	30%
Submodelo Unidades Sociales		
Índice de Desarrollo Humano	25%	
Necesidades Básicas Insatisfechas	25%	
Programas Sociales	10%	35%
Pobreza Total	30%	
Red de Municipalidades	10%	
Submodelo Infraestructura		
Infraestructura Educativa	10%	
Infraestructura De Salud	20%	
Infraestructura de Saneamiento	5%	
Abastecimiento de Agua Potable	5%	35%
Telecomunicaciones	20%	
Cobertura Eléctrica	10%	
Red Vial	30%	

Luego de ejecutar los procesos del modelo geoespacial, los resultados fueron agrupados en categorías de vulnerabilidad, para el análisis socioeconómico ante riesgo de desastres fueron de Grado Bajo, Medio, Alto; mientras que el ámbito físico permitió estratificar en Grado Medio, Alto y Muy Alto.

IV. RESULTADOS Y DISCUSION

4.1. Información temática generada para el modelo grado de Vulnerabilidad Física

El modelamiento geoespacial para determinar el grado de vulnerabilidad física comprende las zonas donde se presentan los fenómenos de geodinámica externa en la unidad hidrográfica, para ello se procesaron siete mapas temáticos, cuyas incidencias en vulnerabilidad, se explican:

4.1.1. Variable temática de precipitaciones

La variable considerada fue la precipitación máxima de la unidad hidrográfica, este indicador es determinante para determinar en qué zonas encontramos mayor precipitación y, por consiguiente, las zonas más propensas a los derrumbes, deslizamientos y huaycos.

Se clasificó según la distribución del rango de valores máximos mensuales de precipitación, que van desde 200 hasta mayor a 1600 mm, con intervalos de 100 mm, tal como se presenta en la Tabla 32 y Figura 17. En función a la incidencia de la precipitación sobre la vulnerabilidad se le asignó pesos desde 0-100 mm, igual a uno, hasta> 1000 mm, igual a 10.

Tabla 32: Calificación de la variable temática de precipitación

MAXIMO	AREA (ha)	CALF. PpMax
1600	5026	10
1400	46308	10
1200	91876	7
1000	183527	7
800	355450	5
600	490357	5
400	757132	2
200	483370	2

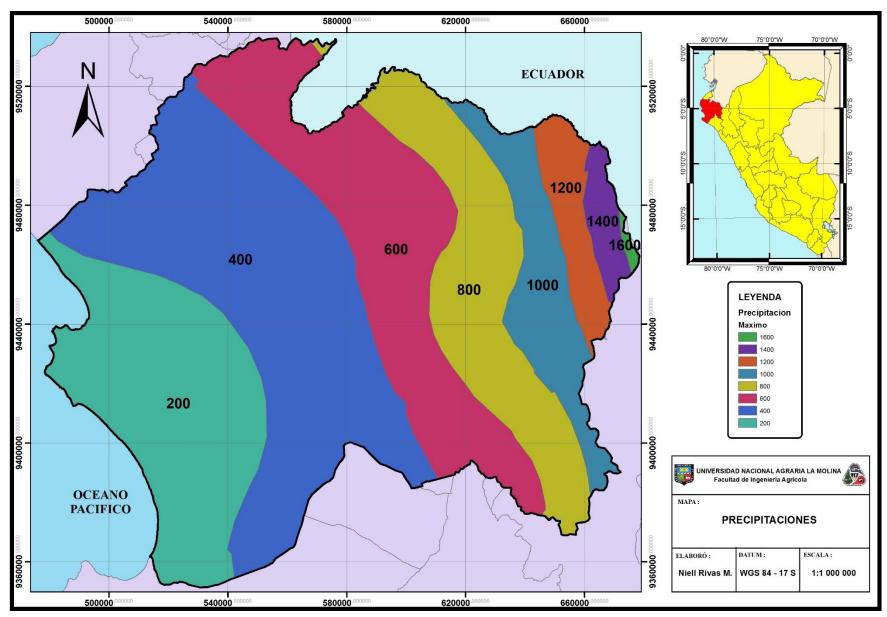


Figura 17: Mapa de Precipitación

4.1.2. Variable temática de pendientes

Para esta variable temática se clasificó en rangos que van desde cero hasta mayor de 75 por ciento (Tabla 33 y Figura 18). Resultando mayores a 75 por ciento, como extremadamente empinadas; entre 50 – 75 por ciento, muy empinadas; 25 – 50 por ciento, empinada; 15 – 25 por ciento, moderadamente empinadas; 08 – 15 por ciento, ligeramente inclinada a moderamente empinada; 04 – 08 por ciento, ligeramente inclinada y por último, de 00 – 04 por ciento, nula o casi a nivel. Así mismo, se le asignó los pesos de acuerdo a su incidencia a la vulnerabilidad, desde plana a inclinada igual a 2 hasta extremadamente empinada igual a 10.

Tabla 33: Calificación de la variable temática de pendiente

DESCRIPCION DE LA PENDIENTE	RANGO	AREA (ha)	CALF. PEND
Extremadamente empinada	>75	3214	10
Muy Empinada	50-75	63028	9
Empinada	25-50	414172	7
Moderamente empinada	15-25	204958	5
Ligeramente inclinada a moderamente empinada	08-15	178466	4
Ligeramente inclinada	04-08	203369	2
Nula o casi a nivel	00-04	1345813	1

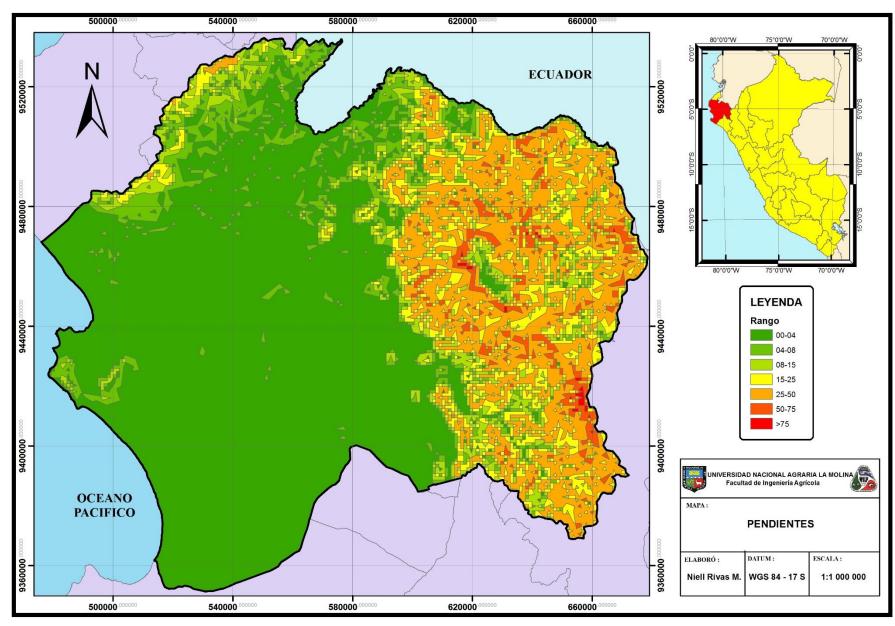


Figura 18: Mapa de pendientes

4.1.3. Variable temática de Geomorfología y Fisiografía

La variable considerable en este caso fue el paisaje dominante. Lo que predomina en la unidad hidrográfica es la vulnerabilidad media y baja por tener una geomorfología de Planicie, por lo tanto, es ocurrente las inundaciones en la parte baja de la Unidad Hidrográfica.

Tabla 34: Clasificación de la variable temática de Geomorfología y Fisiografía

DESCRIPCION	ELEMENTO DEL PAISEJE	PAISAJE DOMINANTE	CALF. FG	AREA (ha)
Centro poblado	Casco urbano	Casco urbano	99	2607
Estuario	Cuerpo de agua	Cuerpo de agua	99	51
Lagunas	Cuerpo de agua	Cuerpo de agua	99	3788
Montaña-vertiente montañosa empinada a escarpada	Pendiente 25 a 50% de vertiente semiárida subdesértica	Montañoso	10	156866
Montaña-vertiente montañosa empinada a escarpada	Pendiente de 25a 50% con superficie rocosa y material coluvial	Montañoso	10	307163
Montaña-vertiente montañosa moderadamente empinada	Pendiente mayor a 50% con numerosos escarpes	Montañoso	10	5967
Vertiente Alta Empinada a Escarpada	Pendiente 25 a 50% de vertiente húmeda y boscosa	Montañoso	10	18
Colina y montaña- vertiente montañosa colina empinada	Pendiente predominante de mayor a 50% con superficie rocosa	Montañoso- Colinoso	8	30075
Colina y montaña- vertiente montañosa moderadamente empinada	Pendiente predominante de 25 a 50% con superficie rocosa	Montañoso- Colinoso	8	15937
Colina y montaña- vertiente montañosa moderadamente empinada	Pendiente predominante de 4 a 15% con superficie de erosión local	Montañoso- Colinoso	8	13782
Colina y montaña-colina	Pendiente de 25a 50%, superficie mayoritariamente rocosa bajo una cubierta de arena y limo eólico reciente	Colinoso	6	247566

...continuación

Colina y montaña-vertiente del pacifico	Pendiente de 25 a 50%, superficie mayoritariamente rocosa bajo una cubierta de arena y limo eólico reciente		6	10744
Colina y montaña-vertiente montañosa moderadamente empinada	Pendiente mayor a 50%, superficie mayoritariamente rocosa bajo una cubierta de arena y limo eólico reciente	Colinoso	6	347745
Altiplanicie disectada	llanura de 0 a 15% de pendiente con frecuentes accidentes topográficos	Altiplanicie	3	2736
Altiplanicie ondulada	ondulada llanura de 0 a 4% de pendiente formada por acumulación lacustre, aluvial y fluvial Altiplanicie		3	4250
Planicie-llanura	planicie desértica de 0 a 4% de pendiente con recubrimiento de arena y limo eólico		2	182900
Planicie llanuras	e llanuras Acumulación fluvial reciente. Terrenos irrigados y Planicio cultivados permanentemente		2	29725
Planicie ondulada	llanura desértica muy disectada con 15 a 25% de Planicie pendiente		2	197913
Planicie ondulada a disectada-llanura disecta	Leontiguración ondulada con /LL Planicia L		2	850767
Planicie ondulada a disectada-vertiente allanada	/ I Diantota I		2	3108

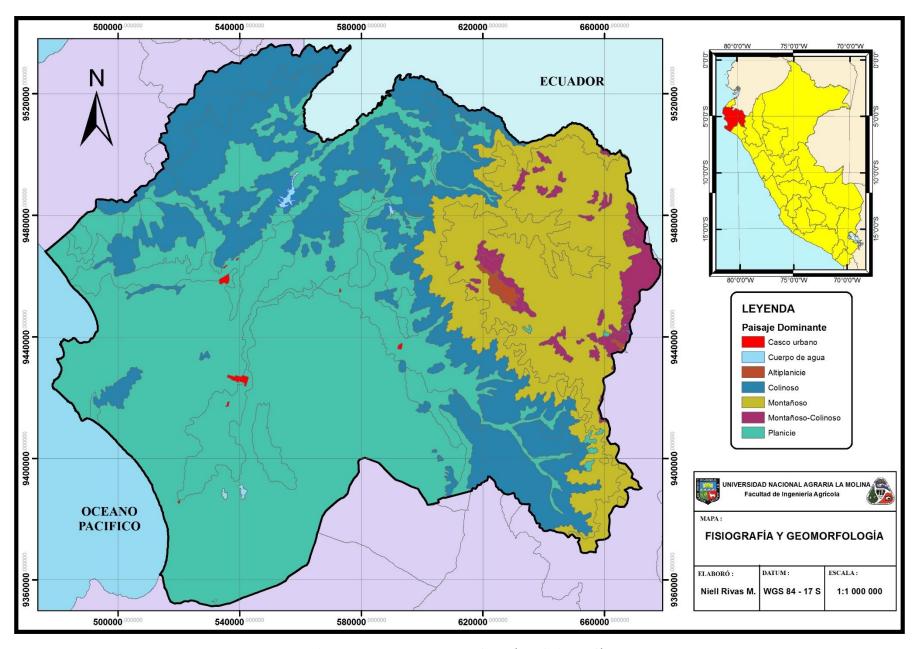


Figura 19: Mapa geomorfología y fisiografía

4.1.4. Variable temática de Geología

Se clasificó la geología de la zona de estudio en función a la era, periodo y descripción de las unidades geológicas, tal como se presenta en la Tabla 35 y Figura 20. Teniendo en cuenta la incidencia de estas características en la vulnerabilidad física del territorio, se le asignó los pesos de uno a 10. Siendo los depósitos aluviales fluviales y eólicos correspondiente a la era cenozoica y periodo cuaternario, igual a 10. Los valores menores correspondieron al granito (roca intrusiva), igual a uno; por ser material resistente a la erosión.

Tabla 35: Calificación de la variable temática de geología

DESCRIPCION GEOLOGICA	ERA	PERIODO	SERIE	AREA (ha)	CALF. GEO
Cordón litoral	Cenozoico	Cuaternario	Reciente	37	10
Deposito aluvial antiguo	Cenozoico	Cuaternario	Pleistoceno	66648	10
Deposito aluvial reciente	Cenozoico	Cuaternario	Reciente	187069	10
Deposito eólico antiguo	Cenozoico	Cuaternario	Pleistoceno	42190	10
Deposito eólico reciente	Cenozoico	Cuaternario	Reciente	525974	10
Deposito fluvial	Cenozoico	Cuaternario	Reciente	76032	10
Depósitos glaciares	Cenozoico	Cuaternario	Pleistoceno	2640	10
Depósitos lacustrinos	Cenozoico	Cuaternario	Reciente	33396	10
Deposito eólico reciente	Cenozoico	Cuaternario	Reciente	5106	10
Tablazo lobito	Cenozoico	Cuaternario	Pleistoceno	67117	10
Tablazo mancora	Cenozoico	Cuaternario	Pleistoceno	7608	10
Tablazo talara	Cenozoico	Cuaternario	Pleistoceno	99110	10
Formación Miramar	Cenozoico	Terciario	Mioceno	7897	8
Formación Tambogrande	Cenozoico	Terciario	Plioceno	37083	8
Formación Yapatera	Cenozoico	Terciario	Inferior	4942	8
Formación Zapallal	Cenozoico	Terciario	Mioceno	963	8
Formación Chignia	Mesozoico	Cretáceo	Medio	7776	7
Formación Chimu	Mesozoico	Cretáceo	Inferior	598	7
Formación Encuentros	Mesozoico	Cretáceo	Superior	50113	7
Formación Huasimal	Mesozoico	Cretáceo	Superior	13655	7
Formación Jahuay negro	Mesozoico	Cretáceo	Superior	90707	7
Formación La Leche	Mesozoico	Triá	sico	301	7
Formación La Mesa	Mesozoico	Cretáceo	Superior	1785	7
Formación Muerto	Mesozoico	Terciario	Inferior	7208	7
Formación Sarayaquillo	Mesozoico	Jurásico	Superior	620	7
Formación Tablones	Mesozoico	Cretáceo	Superior	6702	7
Formación Tortugas	Mesozoico	Cretáceo	Superior	299	7
Grupo San Pedro	Mesozoico	Cretáceo	Inferior	44114	7

...continuación

Grupo. Goyllarisquizga	Mesozoico	Cretáceo	Inferior	44681	7
Volcánico Ereo	Mesozoico	Cretáceo	Medio	11254	7
Volcánico La Bocana	Mesozoico	Cretáceo	Medio	27070	7
Volcánico Lancones	Mesozoico	Cretáceo	Medio	257370	7
Formación Chira	Cenozoico	Terciario	Eoceno	12545	5
Formación Chira Verdum	Cenozoico	Terciario	Eoceno	41025	5
Formación Mirador	Cenozoico	Terciario	Eoceno	4110	5
Formación Verdun	Cenozoico	Terciario	Eoceno	18671	5
Grupo Talara	Cenozoico	Terciario	Eoceno	4194	5
Volcánico Llama	Cenozoico	Terciario	Eoceno	68169	5
Volcánico Porculla	Cenozoico	Terciario	Eoceno	59871	5
Volcánico Shimbe	Cenozoico	Terciario	Eoceno	17092	5
Complejo de Olmos	Mes	oneo-Proteroz	zoico	73512	4
Formación Cerro Negro	Paleozoico	Devonico	Superior	13583	4
Formación Cerro Prieto	Paleozoico	Carbonifero	Pensilvanio	250	4
Formación Chaleco de Pato	Paleozoico	Carbonifero	Misisipiano	2104	4
Formación rio seco	Paleozoico	Devonico	Inferior	31368	4
Grupo salas	Paleozoico	Ordovisico	Inferior	52173	4
Gabro	Mesozoico	Cretáceo	Superior	8097	3
Granodiorita, diorita, granito, tonalita, monzogranito	Mesozoico	Cretáceo	Superior	266638	3
Indiferenciado	Paleozoico	Silúrico	Inferior	2293	3
Granito	Paleo	zoico	Inferior	4060	1
Granito	Paleo	Paleozoico		3491	1

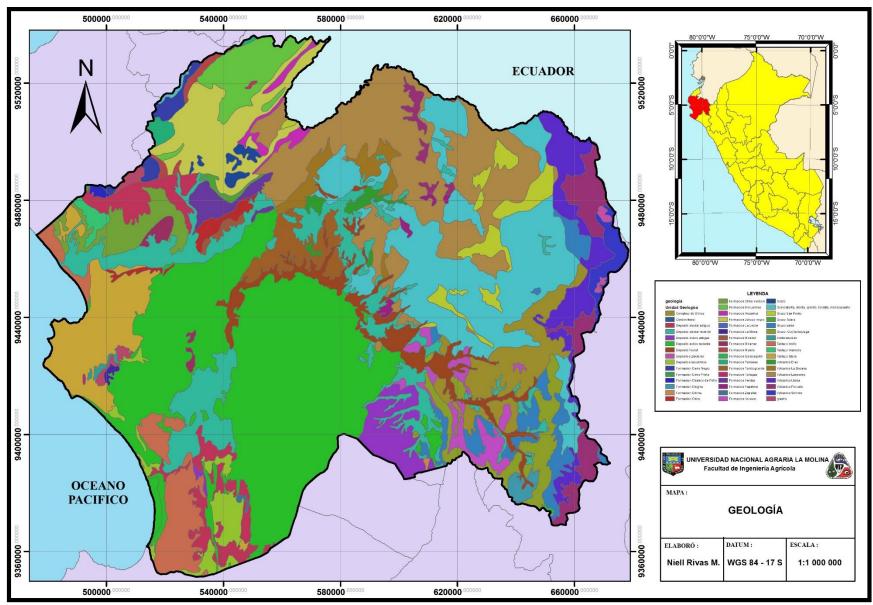


Figura 20: Mapa de geología

4.1.5. Variable temática de Suelos

En base a la información de las instituciones y la inspección in situ en la zona de estudio, se identificaron siete grandes grupos de suelo, tal como se muestra en la Tabla 36 y Figura 21. Considerando sus características, se le asignaron, pesos de acuerdo a sus condiciones a la vulnerabilidad física, siendo los más vulnerables con el peso de 10 y 9, que corresponden a las unidades taxonómicas Eutric Fluvilos y Eutric Gleysols, respectivamente; hasta el que ofrece una mayor resistencia a la erosión como Luvic Phaeozems y Luvix Kastanozems se les asignó el valor de 6 y 5 respectivamente.

Tabla 36: Calificación de la variable temática de Suelos

UNIDAD TAXONOMICA	CALF. SUELO	AREA (ha)
Eutric Fluvisols	10	248749
Eutric Gleysols	9	857990
Pellic Vertisols	7	602145
LITHOSOLS	6	554768
Luvic Phaeozems	6	147941
Luvic Kastanozems	5	1373

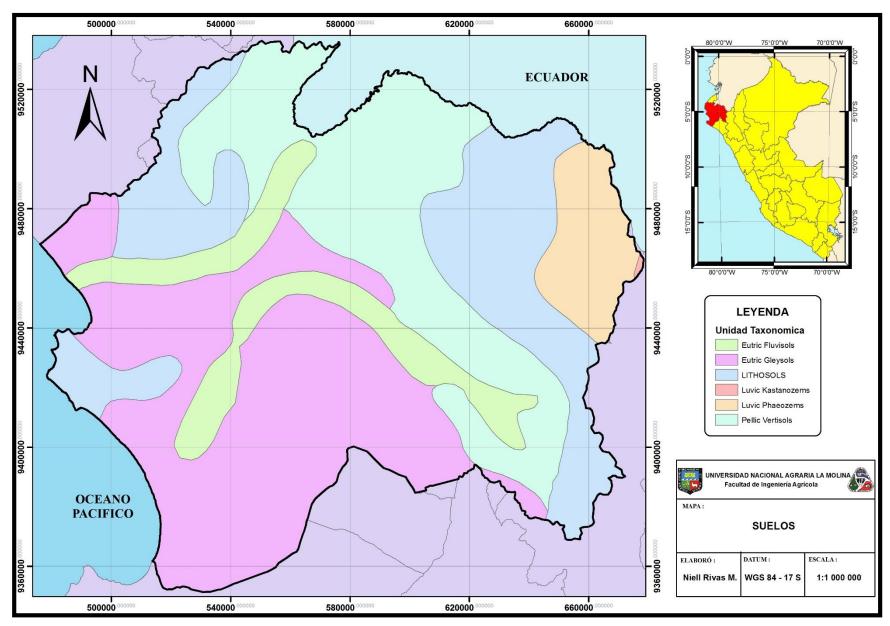


Figura 21: Mapa de Suelos

4.1.6. Variable temática de Cobertura Vegetal

La variable que se consideró en este caso fue la descripción de la cobertura vegetal. Se generó el mapa, que se presenta en la Tabla 37 y la Figura 22.

Considerando la densidad y tipo de vegetación que cumplen la función de protección del suelo a agentes erosivos, se le asignó pesos de uno a 10, siendo las Planicies costeras y estribaciones andinas sin vegetación, igual a 10, y los bosques secos igual a la unidad.

Tabla 37: Calificación de la variable temática de Cobertura Vegetal

DESCRIPCION	CALF. CV	AREA (ha)
Estuarios y Esteros	99	51
Lagos y Lagunas	99	3788
Poblados	99	2607
Casco Urbano	99	184
Planicies costeras y estribaciones andinas sin vegetación	10	209214
Cultivos agrícolas	8	284780
Pajonal	5	36029
Matorrales	4	400151
Bosque húmedo de montañas	2	30943
Bosque seco de lomadas y colinas	1	453167
Bosque seco de montañas	1	379528
Bosque seco tipo sabana	1	612511

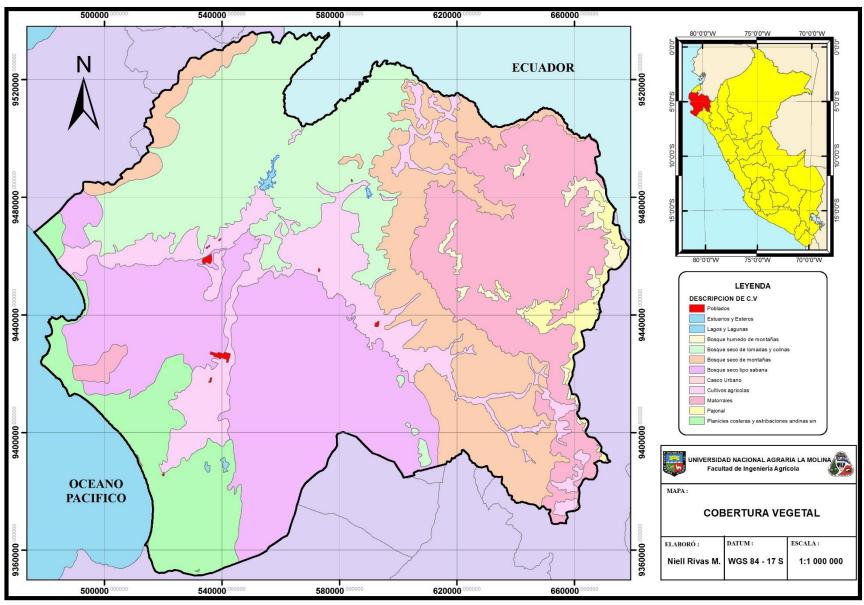


Figura 22: Mapa de cobertura vegetal

4.1.7. Modelo geoespacial de vulnerabilidad física

El modelo de vulnerabilidad física (MVF) nos permite representar y ubicar geoespacialmente el grado de vulnerabilidad de los diferentes espacios en la unidad hidrográfica Chira-Piura (adoptado de Ochoa Janampa, 2014 y Jiménez 2004). Dicho modelo fue generado utilizando las variables: pendiente (Pend), precipitación (Pp), geología (Geo), fisiografía y geomorfología (FG), suelos (Sue) y cobertura vegetal (Cv); en la que se realizó la calificación de las unidades en cada una de las variables y se le asignó el grado de participación de cada variable en el modelo de vulnerabilidad, cuya ecuación se presenta:

$$MVF = 0.20 * Pend + 0.20 * Prec + 0.15 * CV + 0.15 * Sue + 0.20 * FG + 0.10 * Geo$$

Los grados de participación de las variables fueron tomados según los siguientes criterios:

- Pendiente: Factor determinante por influir en porcentaje de infiltración, estar relacionado a los ángulos de reposo de las partículas y tener incidencia directa a los grados de erodabilidad del suelo. En tal sentido tiene un porcentaje de participación relativamente importante de 20%
- Precipitación: Agente erosivo y de importante incidencia en eventos en masa por humedecimiento y desprendimiento de los planos de falla en derrumbes y deslizamientos, o huaycos por exceso no infiltrable. De manera similar al agente de pendiente, su incidencia en los eventos es importante representada en un porcentaje de participación 20%
- Cobertura vegetal: Factor cuyo papel es relevante al modular erosividad de precipitaciones, influir en erodabilidad por pendientes y mejorar las características de los suelos en cuanto a capacidad de infiltración y cohesión. Por ello, mantiene una incidencia media en la vulnerabilidad física, expresada en un porcentaje de participación de 15%
- Características de los suelos: En él confluyen los agentes de erosividad y factores de erodabilidad dependiendo en última instancia de las características propias de cada

unidad edáfica identificada. Se corresponde un porcentaje de participación similar al de cobertura vegetal por su interacción constante y dependiente, es decir 15%

- Fisiografía y Geomorfología: La fisiografía trata al territorio por sus características como paisaje, refiere a las relaciones de los elementos antes tratados para cada unidad. Mientras que la geomorfología guarda una estrecha relación con la fisiografía explicando la formación y origen del material edáfico y sus formas, por ello corresponde un porcentaje de participación relativamente importante de 20%
- Geología: Factor del cual dependerá en gran medida de las características de las masas de tierra susceptibles. Sin embargo, su influencia se muestra en periodos largos de tiempo, por ello corresponde un porcentaje de participación relativamente bajo de 10%

En la figura 23 se presenta el grado de vulnerabilidad física, observando que la vulnerabilidad Media es la que mayor predomina en un 40.57 % de la unidad hidrográfica correspondiente a un área de 980,364 ha; así mismo le sigue una vulnerabilidad Baja en un 29.75 % de la unidad hidrográfica con un área de 718,948 ha.

La vulnerabilidad Muy Alta representa tan solo el 11. 17 % de la unidad hidrográfica y la vulnerabilidad Alta, 18.23 %; justamente son zonas donde son montañosas, las pendientes son predominantemente empinadas, algunas zonas tienen tierras desnudas, y precipitaciones medias a altas. Esto quiere decir que dicha zona es donde la unidad hidrográfica está en peligro.

Tabla 38: Nivel de vulnerabilidad física en la unidad hidrográfica Chira-Piura

Grado de Vulnerabilidad	Área (ha)	Porcentaje (%)
Muy Alta	269900	11.17
Alta	440525	18.23
Media	980364	40.57
Baja	718948	29.75

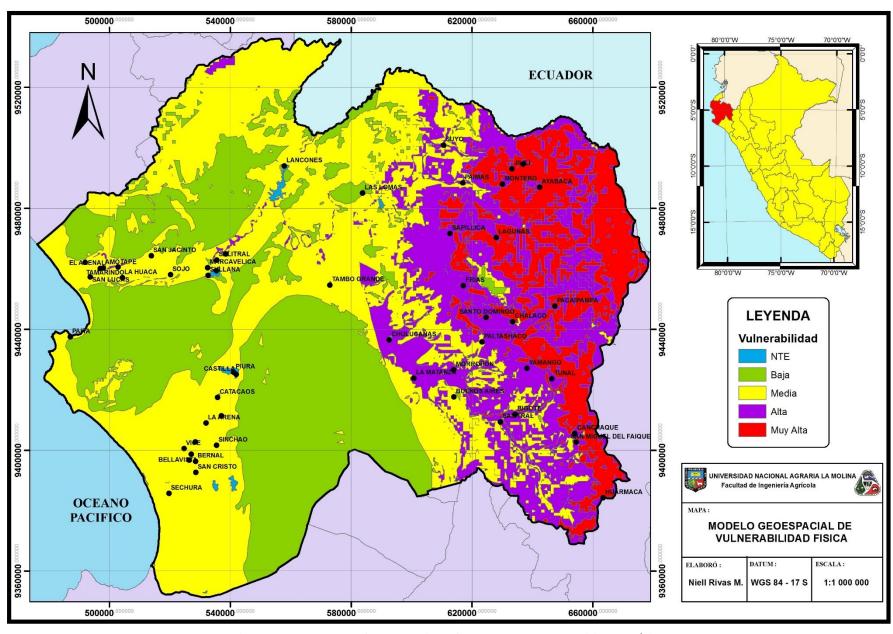


Figura 23: Modelo Geoespacial- Grado de Vulnerabilidad Física

4.2. Grado de Vulnerabilidad Socioeconómica

Se presentan los resultados de la evaluación socioeconómica de la unidad hidrográfica Chira-Piura, el modelamiento geoespacial que se realizó en este caso fue la unión de 3 sub modelos cada uno con una cantidad de información temática; ubicados espacialmente en cada distrito de la unidad hidrográfica

4.2.1. Niveles de incidencia por las Actividades Económicas

Este sub modelo económico es el resultado de la unión de dos variables, la primera es el uso actual de la tierra (ECO), donde se ve la ubicación geoespacial de las actividades económicas por distrito, y la segunda son los mercados y corredores económicos (CM), cuya ecuación se presenta:

$$SE = 0.50 * CM + 0.50 * ECO$$

La integración de las variables mercados y corredores económicos (CM) y actividades económicas (ECO) se encuentran explicado en la metodología previo a la valoración de cada unidad. En general se tomó en consideración que, Ante un posible evento desastroso, un determinante clave de vulnerabilidad será la situación del sistema de sustento, independiente de qué actividad proporcione más o menos ingresos (Pérez de Armiño 2000). Por ello, los porcentajes de participación aplicados a cada variable son similares (50%), responde a la opción de analizar en igual medida cada actividad desarrollada y consolida en el territorio.

Como resultado se tiene que la vulnerabilidad alta es la que predomina en la unidad hidrográfica abarcado un área de 1186029 ha, representando el 49.15 % del territorio. En esta zona se encuentran los menores porcentajes de actividades económicas (primaria, secundaria y terciaria) con mercados locales en su mayoría y corredores locales.

Tabla 39: Características de las actividades económicas

VULNERABILIDAD	AREA (ha)	%
Alta	1186029	49.15
Media	551943	22.87
Baja	674997	27.97

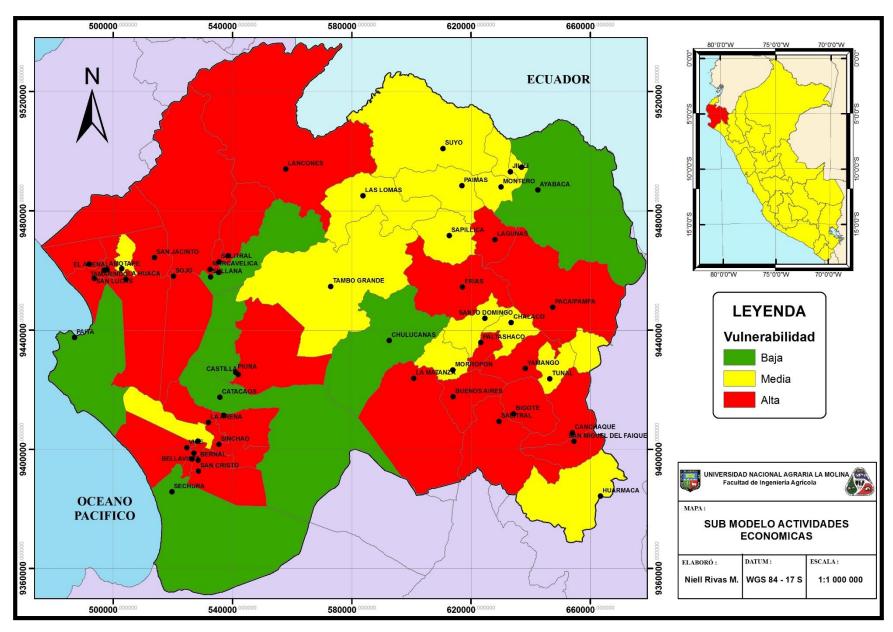


Figura 24: Sub modelo de Niveles de Incidencia por las Actividades Económicas a la Vulnerabilidad

4.2.2. Niveles de incidencia por las unidades sociales

Este sub modelo es el resultado de la integración de 5 mapas con información temática correspondiente a los factores y sus valorizaciones en el grado de incidencia, tomando en cuenta la aplicación de factores ponderativos. Dicho submodelo nos indicara el grado de bienestar de las unidades sociales.

• Variable temática de pobreza total

La pobreza es una situación social y económica que se caracteriza por la carencia de satisfacción de las necesidades básicas. Considerando el porcentaje de pobreza por distrito, se le asignaron pesos, de acuerdo a sus condiciones a la vulnerabilidad, como se explica cómo se presenta en la Tabla 40 y la Figura 25. Siendo el más vulnerable el distrito de Lagunas con una población de 89.9 % en situación de pobreza; con el valor de tres y el menos vulnerable Piura con valor de 1, siendo un 16.9 % de su población pobre.

Tabla 40: Clasificación de la variable temática de pobreza total

DISTRITO	POB. TOTAL 09 (%)	AREA (ha)	CALF. POB TOTAL
LAGUNAS	89.9	19587	3
PACAIPAMPA	88.2	96765	3
HUARMACA	86.8	57064	3
SAPILLICA	82.7	27060	3
LALAQUIZ	80.8	14585	3
EL TALLAN	79.9	10569	3
SONDORILLO	77.8	69	3
FRIAS	72.6	55885	3
LANCONES	72.5	197126	3
SALITRAL	71.1	56754	3
SAN MIGUEL DE EL FAIQUE	69.7	17986	3
AYABACA	69.4	154336	3
ARENAL	69.2	823	3
HUANCABAMBA	67.9	11637	3
VICHAYAL	67	15790	3
YAMANGO	65.7	21716	3
CHALACO	65.2	14924	3
PAIMAS	65	32443	3

CAN HIAN DE DICOTE	63	25025	3
SAN JUAN DE BIGOTE			
SANTA CATALINA DE MOSSA	62.5	8016	3
CURA MORI	62.3	19619	3
CRISTO NOS VALGA	61.9	26161	3
MORROPON	61.6	17061	3
CANCHAQUE	61.1	31028	3
SICCHEZ	61	3408	3
SANTO DOMINGO	60.6	18961	3
TAMARINDO	60	6625	3
LA ARENA	58	16808	3
JILILI	57.9	10225	3
SUYO	57.6	108514	3
MONTERO	55.9	12964	3
LA MATANZA	55	98980	3
CATACAOS	54.9	144083	3
BUENOS AIRES	52.6	24632	3
AMOTAPE	50.8	6142	3
LAS LOMAS	49.6	50990	3
IGNACIO ESCUDERO	48.1	18258	3
LA UNION	45.7	20904	3
CHULUCANAS	43.9	86136	2
TAMBO GRANDE	43.8	144578	2
VICE	41.8	33418	2
BERNAL	39.7	6944	2
MARCAVELICA	38.5	120272	2
QUERECOTILLO	38.1	28158	2
BELLAVISTA DE LA UNION	37.3	1464	2
MIGUEL CHECA	34.2	45497	2
SECHURA	34.1	136867	2
LA BREA	33.7	39083	2
SALITRAL	33.6	3108	2
COLAN	33.5	12291	2
RINCONADA LLICUAR	31.4	1911	2
SULLANA	30.2	48705	2
BELLAVISTA	28.1	189	2
LA HUACA	28.1	59552	2
PAITA	27	73022	2
CASTILLA	20.7	65920	1
PARIÑAS	18	483	1
PIURA	16.9	31848	1
110101	10.7	31010	<u> </u>

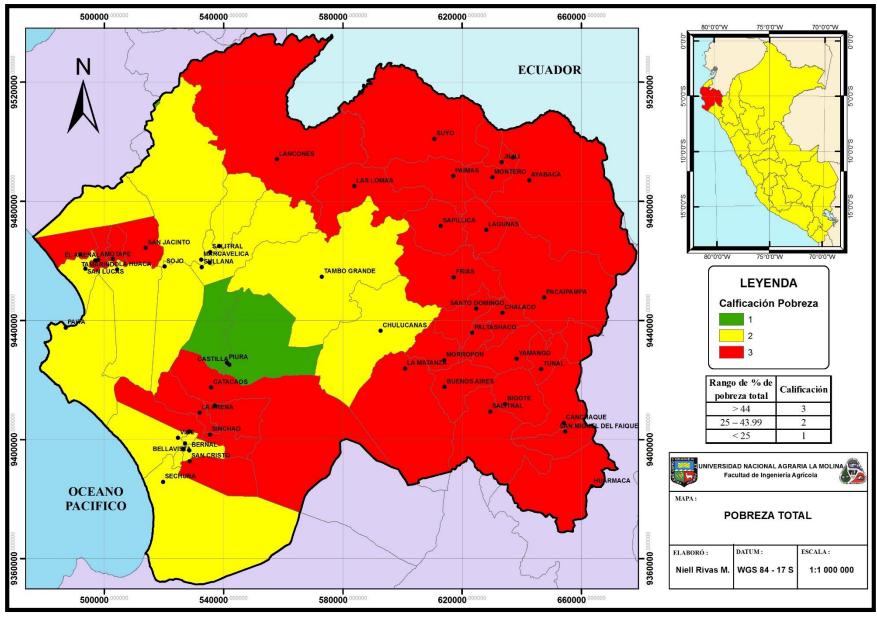


Figura 25: Mapa de Pobreza Total

• Variable temática Índice de Desarrollo Humano

Este mapa temático tiene la variable de IDH, el cual es un indicador del desarrollo humano, en este caso se tiene el dato por distrito de la unidad hidrográfica Chira-Piura; a pesar que a nivel mundial el Perú tiene un IDH alto, en la unidad hidrográfica Chira-Piura se tiene valores que van de bajo a medio; sin embargo, para la calificación de estas según el criterio de vulnerabilidad se tomaron otros rangos de acuerdo a los datos. Considerando al distrito de Pacaipampa con un valor de 3, siendo su IDH de 0.126 y al distrito de Castilla un valor de 1, siendo su IDH de 0.555.

Tabla 41: Calificación de a variable temática de IDH

DISTRITO	IDH 2012	AREA (ha)	CALF. IDH
PACAIPAMPA	0.126	96765	3
LAGUNAS	0.136	19587	3
SAPILLICA	0.14	27060	3
HUARMACA	0.146	57064	3
FRIAS	0.154	55885	3
SONDORILLO	0.162	69	3
LALAQUIZ	0.187	14585	3
PAIMAS	0.209	32443	3
SAN MIGUEL DE EL FAIQUE	0.21	17986	3
YAMANGO	0.229	21716	3
AYABACA	0.232	154336	3
CHALACO	0.247	14924	3
HUANCABAMBA	0.247	11637	3
CANCHAQUE	0.25	31028	3
JILILI	0.255	10225	3
SUYO	0.263	108514	3
CURA MORI	0.27	19619	3
LA MATANZA	0.273	98980	3
SICCHEZ	0.28	3408	3
MONTERO	0.283	12964	3
SANTO DOMINGO	0.288	18961	3
LANCONES	0.297	197126	3
EL TALLAN	0.306	10569	3
LA ARENA	0.307	16808	3
SAN JUAN DE BIGOTE	0.307	25025	3
VICHAYAL	0.322	15790	3

SANTA CATALINA DE MOSSA	0.323	8016	3
LAS LOMAS	0.328	50990	3
CRISTO NOS VALGA	0.342	26161	2
SALITRAL	0.349	56754	2
VICE	0.355	33418	2
BUENOS AIRES	0.372	24632	2
CHULUCANAS	0.377	86136	2
BERNAL	0.393	6944	2
TAMBO GRANDE	0.4	144578	2
TAMARINDO	0.405	6625	2
IGNACIO ESCUDERO	0.408	18258	2
COLAN	0.409	12291	2
MORROPON	0.412	17061	2
CATACAOS	0.414	144083	2
ARENAL	0.416	823	2
MIGUEL CHECA	0.422	45497	2
SECHURA	0.423	136867	2
LA UNION	0.425	20904	2
MARCAVELICA	0.429	120272	2
LA HUACA	0.435	59552	2
AMOTAPE	0.437	6142	2
BELLAVISTA	0.442	189	2
BELLAVISTA DE LA UNION	0.445	1464	2
QUERECOTILLO	0.445	28158	2
RINCONADA LLICUAR	0.448	1911	2
SULLANA	0.486	48705	1
SALITRAL	0.489	3108	1
PARIÑAS	0.517	483	1
LA BREA	0.526	39083	1
PAITA	0.533	73022	1
PIURA	0.538	31848	1
CASTILLA	0.555	65920	1

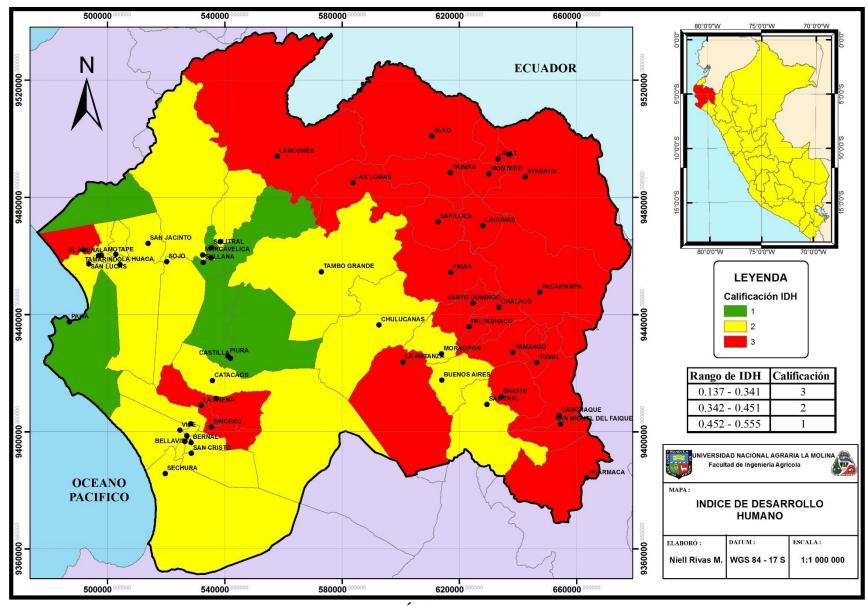


Figura 26: Mapa de Índice de Desarrollo Humano

• Variable temática Necesidades Básicas Insatisfechas

La variable que se consideró para la elaboración de este mapa fue los rangos de hogares en los distritos de la unidad hidrográfica Chira-Piura, que al menos cuenten con 2 necesidades básicas insatisfechas las cuales pueden ser: Vivienda, servicios sanitarios, educación básica e ingreso mínimo.

Considerando al distrito de El Tallan con un valor de 3, siendo el 76.79% de hogares con al menos 2 NBI. Y al distrito Buenos Aires con un valor de 1, siendo el 5.5 % de horages con al menos 2 NBI.

Tabla 42: Calificación de la variable temática de NBI

DISTRITO	AL MENOS 2 NBI (%)	AREA (ha)	CALF. NBI
EL TALLAN	76.79	10569	3
CURA MORI	73.14	19619	3
LANCONES	65.7	197126	3
LAGUNAS	53.29	19587	3
LA ARENA	52.31	16808	3
PACAIPAMPA	45.67	96765	3
CRISTO NOS VALGA	45.38	26161	3
LA UNION	40.81	20904	3
HUARMACA	40.09	57064	3
VICHAYAL	38.69	15790	3
CATACAOS	38.27	144083	3
SAPILLICA	35.6	27060	3
TAMARINDO	34.29	6625	3
BERNAL	34.26	6944	3
SECHURA	33.3	136867	3
ARENAL	32.4	823	3
SONDORILLO	32.19	69	3
MIGUEL CHECA	31.97	45497	2
AMOTAPE	31.24	6142	2
FRIAS	29.9	55885	2
HUANCABAMBA	29.48	11637	2
VICE	29.24	33418	2
AYABACA	29.06	154336	2

TAMBO GRANDE	28.67	144578	2
LA HUACA	27.72	59552	2
MARCAVELICA	27.57	120272	2
LA MATANZA	26.49	98980	2
BELLAVISTA DE LA UNION	24.21	1464	2
COLAN	24.11	12291	2
LALAQUIZ	22.2	14585	2
RINCONADA LLICUAR	21.86	1911	2
YAMANGO	20.96	21716	2
MONTERO	18.22	12964	1
LAS LOMAS	18.04	50990	1
SALITRAL	17.81	3108	1
PAIMAS	17.66	32443	1
SUYO	17.51	108514	1
QUERECOTILLO	16.37	28158	1
SAN MIGUEL DE EL FAIQUE	15.74	17986	1
PAITA	15.65	73022	1
CHALACO	14.4	14924	1
IGNACIO ESCUDERO	14.31	18258	1
CHULUCANAS	13.83	86136	1
BELLAVISTA	13.62	189	1
PARIÑAS	12.3	483	1
CANCHAQUE	11.95	31028	1
SALITRAL	10.61	56754	1
PIURA	10.35	31848	1
SULLANA	10.29	48705	1
SAN JUAN DE BIGOTE	9.7	25025	1
JILILI	9.63	10225	1
CASTILLA	9.05	65920	1
SICCHEZ	8.36	3408	1
SANTO DOMINGO	8.11	18961	1
LA BREA	8.08	39083	1
MORROPON	6.22	17061	1
SANTA CATALINA DE MOSSA	5.97	8016	1
BUENOS AIRES	5.5	24632	1

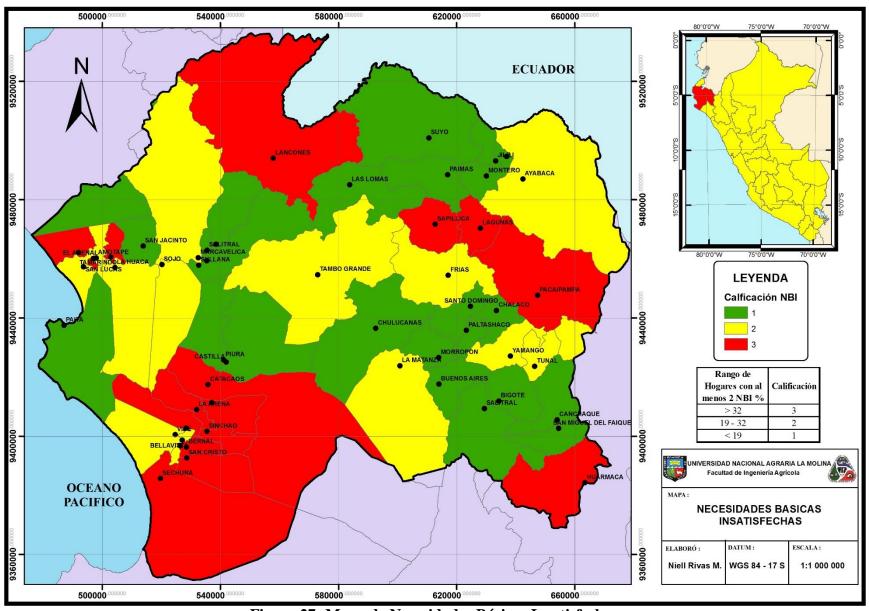


Figura 27: Mapa de Necesidades Básicas Insatisfechas

• Variable temática de Programas Sociales

Para realizar este mapa se tomó como variable la cantidad de programas sociales que hay por distritos dentro de la unidad hidrográfica. La vulnerabilidad se dará mientras menos programas existan.

Tabla 43: Calificación de la variable temática de Programas Sociales

DISTRITO	TOTAL PROG. SOCIAL	AREA (ha)	CALF. PS
FRIAS	5	55885	3
SONDORILLO	5	69	3
AYABACA	4	154336	2
CHALACO	4	14924	2
HUARMACA	4	57064	2
ЛLILI	4	10225	2
LAGUNAS	4	19587	2
SAPILLICA	4	27060	2
CATACAOS	3	144083	1
CHULUCANAS	3	86136	1
CURA MORI	3	19619	1
HUANCABAMBA	3	11637	1
IGNACIO ESCUDERO	3	18258	1
LA ARENA	3	16808	1
LA UNION	3	20904	1
LALAQUIZ	3	14585	1
LANCONES	3	197126	1
MONTERO	3	12964	1
MORROPON	3	17061	1
SAN MIGUEL DE EL FAIQUE	3	17986	1
SICCHEZ	3	3408	1
SUYO	3	108514	1
TAMBO GRANDE	3	144578	1
VICE	3	33418	1
AMOTAPE	2	6142	1
ARENAL	2	823	1
BELLAVISTA	2	189	1
BERNAL	2	6944	1
BUENOS AIRES	2	24632	1

2	31028	1
	31020	1
2	65920	1
2	12291	1
2	26161	1
2	10569	1
2	59552	1
2	98980	1
2	50990	1
2	96765	1
2	32443	1
2	31848	1
2	6625	1
2	15790	1
2	21716	1
1	1464	1
1	39083	1
1	120272	1
1	45497	1
1	73022	1
1	483	1
1	28158	1
1	1911	1
1	56754	1
1	3108	1
1	25025	1
1	8016	1
		1
		1
1	48705	1
	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	2 12291 2 26161 2 10569 2 59552 2 98980 2 50990 2 96765 2 32443 2 31848 2 6625 2 15790 2 21716 1 1464 1 39083 1 120272 1 45497 1 73022 1 483 1 28158 1 1911 1 56754 1 3108 1 25025 1 8016 1 18961 1 136867

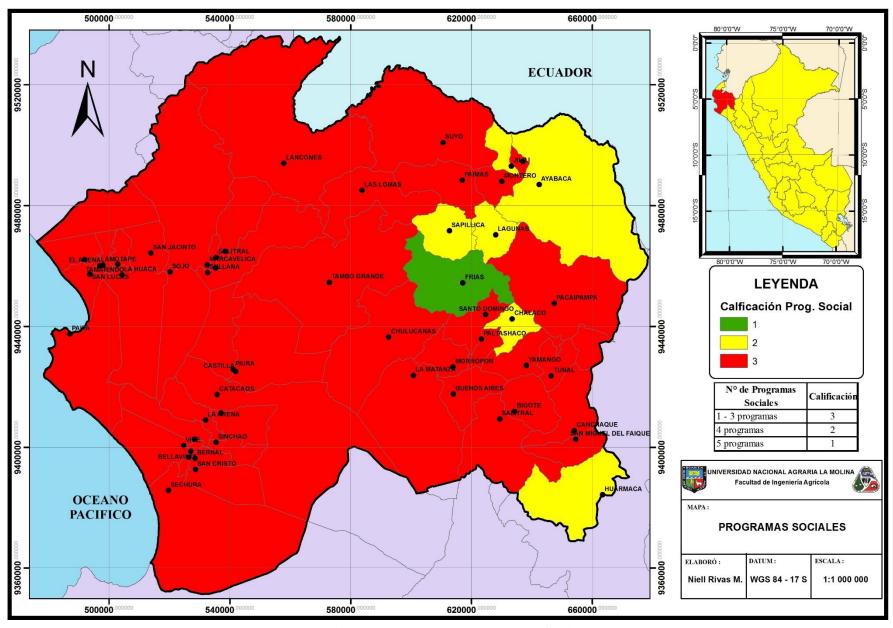


Figura 28: Mapa de Programas Sociales

• Variable temática de Redes de Municipalidades

La variable que se utilizo fue si existía en los distritos redes de municipalidades asociadas (REMUR) o no, como resultado se obtuvo 28 distritos están asociados a la Red de Municipalidades de Piura (REMUPI) y 30 distritos que no están asociados a ninguna red de municipalidades.

Tabla 44: Calificación de la variable temática de REMUR

DISTRITO	REMUR	AREA (ha)	CALF. REMUR
AMOTAPE	NO REMUR	6142	3
BELLAVISTA	NO REMUR	189	3
BELLAVISTA DE LA UNION	NO REMUR	1464	3
BERNAL	NO REMUR	6944	3
CATACAOS	NO REMUR	144083	3
CRISTO NOS VALGA	NO REMUR	26161	3
CURA MORI	NO REMUR	19619	3
HUARMACA	NO REMUR	57064	3
IGNACIO ESCUDERO	NO REMUR	18258	3
JILILI	NO REMUR	10225	3
LA BREA	NO REMUR	39083	3
LA HUACA	NO REMUR	59552	3
LA UNION	NO REMUR	20904	3
LAGUNAS	NO REMUR	19587	3
LANCONES	NO REMUR	197126	3
MARCAVELICA	NO REMUR	120272	3
MIGUEL CHECA	NO REMUR	45497	3
PAIMAS	NO REMUR	32443	3
PARIÑAS	NO REMUR	483	3
PIURA	NO REMUR	31848	3
QUERECOTILLO	NO REMUR	28158	3
RINCONADA LLICUAR	NO REMUR	1911	3
SALITRAL	NO REMUR	3108	3
SAPILLICA	NO REMUR	27060	3
SONDORILLO	NO REMUR	69	3
SULLANA	NO REMUR	48705	3
SUYO	NO REMUR	108514	3
TAMARINDO	NO REMUR	6625	3
VICE	NO REMUR	33418	3

YAMANGO	NO REMUR	21716	3
ARENAL	SI REMUPI	823	1
AYABACA	SI REMUPI	154336	1
BUENOS AIRES	SI REMUPI	24632	1
CANCHAQUE	SI REMUPI	31028	1
CASTILLA	SI REMUPI	65920	1
CHALACO	SI REMUPI	14924	1
CHULUCANAS	SI REMUPI	86136	1
COLAN	SI REMUPI	12291	1
EL TALLAN	SI REMUPI	10569	1
FRIAS	SI REMUPI	55885	1
HUANCABAMBA	SI REMUPI	11637	1
LA ARENA	SI REMUPI	16808	1
LA MATANZA	SI REMUPI	98980	1
LALAQUIZ	SI REMUPI	14585	1
LAS LOMAS	SI REMUPI	50990	1
MONTERO	SI REMUPI	12964	1
MORROPON	SI REMUPI	17061	1
PACAIPAMPA	SI REMUPI	96765	1
PAITA	SI REMUPI	73022	1
SALITRAL	SI REMUPI	56754	1
SAN JUAN DE BIGOTE	SI REMUPI	25025	1
SAN MIGUEL DE EL FAIQUE	SI REMUPI	17986	1
SANTA CATALINA DE MOSSA	SI REMUPI	8016	1
SANTO DOMINGO	SI REMUPI	18961	1
SECHURA	SI REMUPI	136867	1
SICCHEZ	SI REMUPI	3408	1
TAMBO GRANDE	SI REMUPI	144578	1
VICHAYAL	SI REMUPI	15790	1

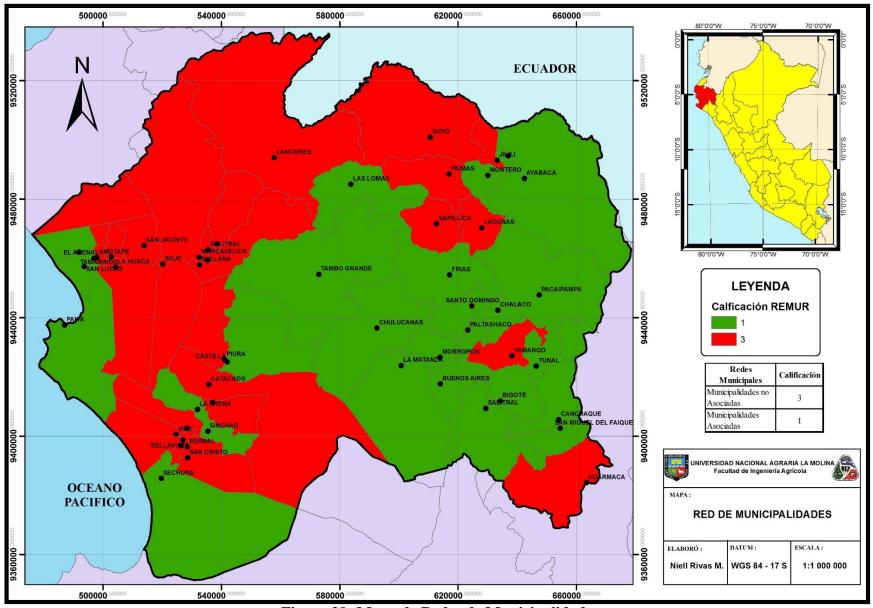


Figura 29: Mapa de Redes de Municipalidades

Este modelamiento geo espacial, ese el resultado de la unión de la información temática de las siguientes variables: Índice de Desarrollo Humano (IDH), Necesidades Básicas Insatisfechas (NBI), Programas Sociales (PS), Pobreza Total (Po) y Red de Municipalidades (REMUR); en la cual se realizó la calificación de las unidades en cada una de las variables y se le asignó el grado de participación de cada variable en el sub modelo, cuya ecuación se presenta:

$$SUS = 0.25 * IDH + 0.25 * NBI + 0.10 * PS + 0.30 * Po + 0.10$$
* REMUR

Como lo indica Ochoa Janampa (2014), los porcentajes de participación responden al siguiente criterio:

- Ó Índice de Desarrollo Humano: por ser un indicador que informa sobre el nivel de desarrollo humano en función de tres parámetros: esperanza de vida, acceso a educación y nivel de ingresos. Se le asigna un porcentaje de participación de 25%
- Necesidades Básicas Insatisfechas: La situación actual de insatisfacción en calidad de vivienda, servicios sanitarios, educación y capacidad económica son las características que inciden en gran medida en la capacidad de reacción antes y después de la amenaza; esta situación se ve representada en un porcentaje de participación de 25%
- Programas Sociales: Representa la capacidad del gobierno local, regional y central de asistir al ciudadano en su recuperación frente a desastres. Se le asigna un porcentaje de participación de 10%
- Pobreza Total: La pobreza el componente más importante de la vulnerabilidad, ya que hace más vulnerable a las personas que tienen menos

recursos materiales para defenderse ante cualquier amenaza. Se le asigna un porcentaje de participación de 30%

Red de Municipalidades: Un REMUR Es una organización representativa gremial de todos los gobiernos locales, especialmente rurales, que trabaja en red, promoviendo la gobernabilidad democrática y descentralizada. Es decir, hay más comunicación entre municipales dentro de la red. Se le asigna un porcentaje de participación de 10%

Se obtuvieron tres tipos de vulnerabilidad alta, media y baja según las calificaciones. La vulnerabilidad Alta es la que predomina en la unidad hidrográfica con un área de 1114350 ha (46.18%); esto debido a que en esta zona tenemos los porcentajes altos de pobreza, NBI, bajo nivel de IDH, existen pocos programas sociales y no hay redes de municipalidades.

La menor extensión es la vulnerabilidad baja abarcando un área de 348305 ha (14.43 %), esta zona tiene un bajo porcentaje de pobreza, bajo NBI, etc. La vulnerabilidad alta abarca un porcentaje del área de 39.38% esto debido a que en estas zonas tenemos los porcentajes medios de pobreza, NBI, buen nivel de IDH, existen programas sociales y hay redes de municipalidades.

Tabla 45: Clasificación de las Unidades Sociales

DISTRITTO	Calf IDH	Calf Pohre	Calf NRI	Calf. REMUR	Calf PS	SM IIS	Vul IIs
CURA MORI	3	3	3	3	3	3.00	Alta
LANCONES	3	3	3	3	3	3.00	Alta
HUARMACA	3	3	3	3	2	2.90	Alta
LAGUNAS	3	3	3	3	2	2.90	Alta
SAPILLICA	3	3	3	3	2	2.90	Alta
EL TALLAN	3	3	3	1	3	2.80	Alta
LA ARENA	3	3	3	1	3	2.80	Alta
PACAIPAMPA	3	3	3	1	3	2.80	Alta
SONDORILLO	3	3	3	3	1	2.80	Alta
VICHAYAL	3	3	3	1	3	2.80	Alta
CATACAOS	2	3	3	3	3	2.75	Alta
CRISTO NOS VALGA	2	3	3	3	3	2.75	Alta
LA UNION	2	3	3	3	3	2.75	Alta
TAMARINDO	2	3	3	3	3	2.75	Alta
YAMANGO	3	3	2	3	3	2.75	Alta
ARENAL	2	3	3	1	3	2.55	Alta
HUANCABAMBA	3	3	2	1	3	2.55	Alta
LA MATANZA	3	3	2	1	3	2.55	Alta
LALAQUIZ	3	3	2	1	3	2.55	Alta
AMOTAPE	2	3	2	3	3	2.50	Alta
PAIMAS	3	3	1	3	3	2.50	Alta
SUYO	3	3	1	3	3	2.50	Alta
AYABACA	3	3	2	1	2	2.45	Alta
BERNAL	2	2	3	3	3	2.45	Alta
JILILI	3	3	1	3	2	2.40	Media
FRIAS	3	3	2	1	1	2.35	Media
CANCHAQUE	3	3	1	1	3	2.30	Media
LAS LOMAS	3	3	1	1	3	2.30	Media
MONTERO	3	3	1	1	3	2.30	Media
SAN JUAN DE BIGOTE	3	3	1	1	3	2.30	Media
SAN MIGUEL DE EL FAIQUE	3	3	1	1	3	2.30	Media
SANTA CATALINA DE MOSSA	3	3	1	1	3	2.30	Media
SANTO DOMINGO	3	3	1	1	3	2.30	Media
SICCHEZ	3	3	1	1	3	2.30	Media
IGNACIO ESCUDERO	2	3	1	3	3	2.25	Media
SECHURA	2	2	3	1	3	2.25	Media
BELLAVISTA DE LA UNION	2	2	2	3	3	2.20	Media
CHALACO	3	3	1	1	2	2.20	Media
LA HUACA	2	2	2	3	3	2.20	Media
MARCAVELICA	2	2	2	3	3	2.20	Media
MIGUEL CHECA	2	2	2	3	3	2.20	Media
RINCONADA LLICUAR	2	2	2	3	3	2.20	Media
VICE	2	2	2	3	3	2.20	Media
BUENOS AIRES	2	3	1	1	3	2.05	Media
MORROPON	2	3	1	1	3	2.05	Media
SALITRAL	2	3	1	1	3	2.05	Media
COLAN	2	2	2	1	3	2.00	Media
TAMBO GRANDE	2	2	2	1	3	2.00	Media
BELLAVISTA	2	2	1	3	3	1.95	Media
QUERECOTILLO	2	2	1	3	3	1.95	Media
CHULUCANAS	2	2	1	1	3	1.75	Ваја
LA BREA	1	2	1	3	3	1.70	Baja
SALITRAL	1	2	1	3	3	1.70	Baja
SULLANA	1	2	1	3	3	1.70	Baja
PAITA	1	2	1	1	3	1.50	Baja
PARIĐAS	1	1	1	3	3	1.40	Baja
PIURA	1	1	1	3	3	1.40	Baja
CASTILLA	1	1	1	1	3	1.20	Baja

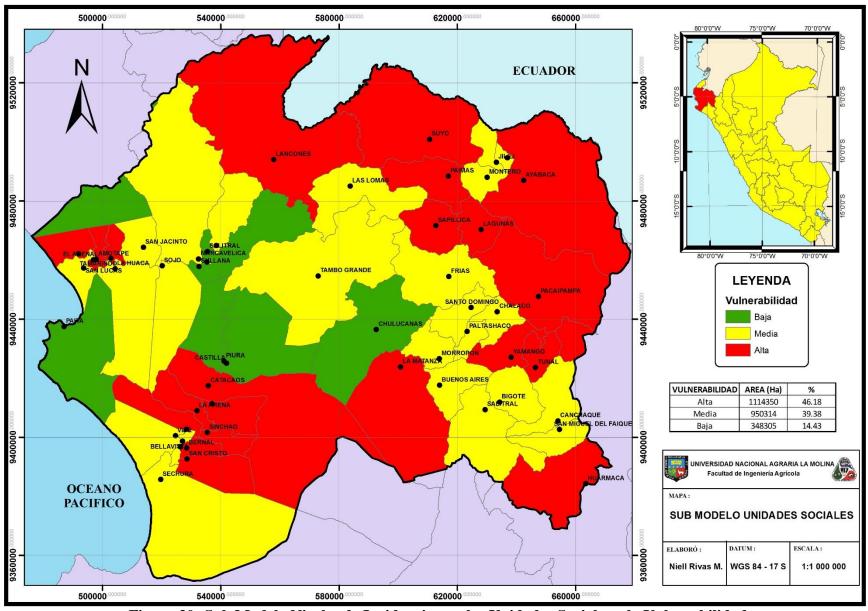


Figura 30: Sub Modelo Niveles de Incidencia por las Unidades Sociales a la Vulnerabilidad

4.2.3. Niveles de incidencia por la Infraestructura a la Vulnerabilidad

Este submodelo es generado la integración de 7 mapas con información temática correspondiente a los factores y sus valorizaciones en el grado de incidencia, tomando en cuenta la aplicación de factores ponderativos. Dicho submodelo nos indicara el grado de protección social de la población.

Variable temática de Infraestructura de Salud

La variable que se tomó en cuenta es el nivel de servicio de salud según lo normativa técnica de Categorías de Establecimientos de Sector Salud y de acuerdo a ello se calificó para determinación de su grado de vulnerabilidad.

El nivel de servicio bajo se presenta en distritos como Amopate, Cristo nos valga y Tambo Grande en esta zona solo hay Puestos de Salud de categoría I-1 y/o I-2, es la que menos presencia tiene ya que solo albarca un área de 33418 ha. El nivel de servicio medio lo presenta en distritos como El Tallán, Huancabamba, Lagunas, Lancones, Paicapampa, Rinconada Llicuar, Santa Catalina de Mossa y Vice en un área total de 1649196 ha esta zona cuenta con Puesto de Salud de categoría I-3 e I-4; por último, el nivel de servicio muy alto por tener hospitales de categoría II-1 ésta presente en tres distritos Chulucanas, Paita y Sullana en un área total de 207863 ha.

Tabla 46: Calificación de la variable temática de Infraestructura de Salud

DISTRITO	NIVEL DE SERVICIO	AREA (ha)	CALF. NS
AMOTAPE	Bajo	6142	3
CRISTO NOS VALGA	Bajo	26161	3
TAMBO GRANDE	Bajo	144578	3
EL TALLAN	Bajo	10569	3
HUANCABAMBA	Bajo	11637	3
LAGUNAS	Bajo	19587	3
LANCONES	Bajo	197126	3
PACAIPAMPA	Bajo	96765	3
RINCONADA LLICUAR	Bajo	1911	3
SANTA CATALINA DE MOSSA	Bajo	8016	3
VICE	Bajo	33418	3
ARENAL	Medio	823	2

BELLAVISTA Medio 189 2 BELLAVISTA DE LA UNION Medio 1464 2 BERNAL Medio 6944 2 BUENOS AIRES Medio 24632 2 CANCHAQUE Medio 31028 2 CASTILLA Medio 65920 2 CATACAOS Medio 144083 2 CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA HUACA Medio 39083 2 LA HUACA Medio 98980 2 LA UNION Medi
BERNAL Medio 6944 2 BUENOS AIRES Medio 24632 2 CANCHAQUE Medio 31028 2 CASTILLA Medio 65920 2 CATACAOS Medio 144083 2 CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 16808 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA UNION Medio 14585 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 120272 2 MARCAVELICA Medio
BUENOS AIRES Medio 24632 2 CANCHAQUE Medio 31028 2 CASTILLA Medio 65920 2 CATACAOS Medio 144083 2 CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 19619 2 HUARMACA Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA LAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio
CANCHAQUE Medio 31028 2 CASTILLA Medio 65920 2 CATACAOS Medio 144083 2 CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 14585 2 LAS LOMAS Medio 14585 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 12964 2 MORROPON Medio
CASTILLA Medio 65920 2 CATACAOS Medio 144083 2 CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA UNION Medio 98980 2 LA UNION Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 17061 2
CATACAOS Medio 144083 2 CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 17061 2
CHALACO Medio 14924 2 COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA WATANZA Medio 98980 2 LA UNION Medio 14585 2 LAS LOMAS Medio 14585 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 17061 2
COLAN Medio 12291 2 CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA WATANZA Medio 98980 2 LA UNION Medio 14585 2 LAS LOMAS Medio 14585 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
CURA MORI Medio 19619 2 FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 17061 2
FRIAS Medio 55885 2 HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA UNION Medio 98980 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
HUARMACA Medio 57064 2 IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
IGNACIO ESCUDERO Medio 18258 2 JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
JILILI Medio 10225 2 LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LA ARENA Medio 16808 2 LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LA BREA Medio 39083 2 LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LA HUACA Medio 59552 2 LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LA MATANZA Medio 98980 2 LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LA UNION Medio 20904 2 LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LALAQUIZ Medio 14585 2 LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
LAS LOMAS Medio 50990 2 MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
MARCAVELICA Medio 120272 2 MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
MIGUEL CHECA Medio 45497 2 MONTERO Medio 12964 2 MORROPON Medio 17061 2
MONTERO Medio 12964 2 MORROPON Medio 17061 2
MORROPON Medio 17061 2
PAIMAS Medio 32443 2
171111111111111111111111111111111111111
PARIÑAS Medio 483 2
PIURA Medio 31848 2
QUERECOTILLO Medio 28158 2
SALITRAL Medio 56754 2
SALITRAL Medio 3108 2
SAN JUAN DE BIGOTE Medio 25025 2
SAN MIGUEL DE EL FAIQUE Medio 17986 2
SANTO DOMINGO Medio 18961 2
SAPILLICA Medio 27060 2
SECHURA Medio 136867 2
SICCHEZ Medio 3408 2
SONDORILLO Medio 69 2
SUYO Medio 108514 2

TAMARINDO	Medio	6625	2
VICHAYAL	Medio	15790	2
YAMANGO	Medio	21716	2
CHULUCANAS	Alto	86136	1
PAITA	Alto	73022	1
SULLANA	Alto	48705	1

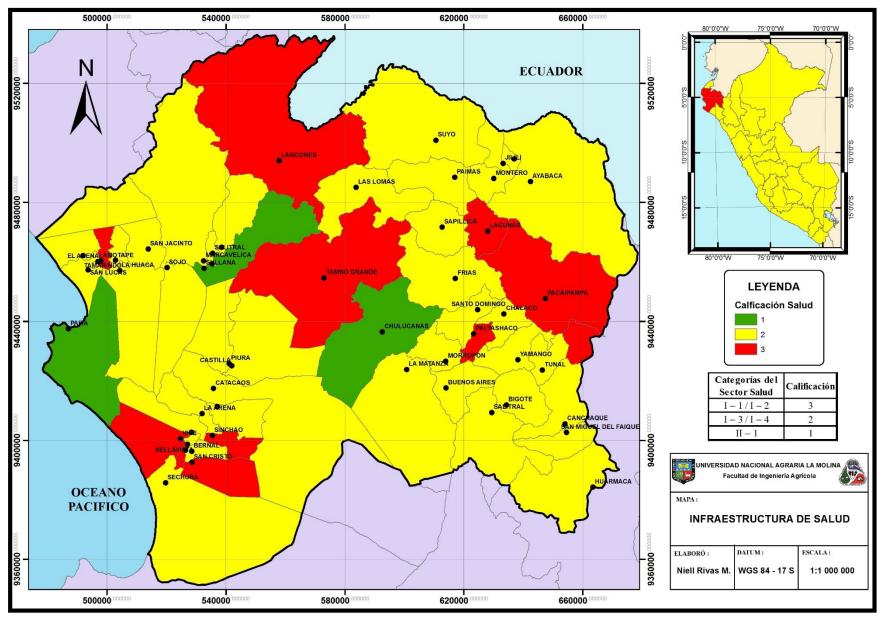


Figura 31: Mapa de Infraestructura de Salud

Información temática de Infraestructura Educativa

La variable que se consideró fue el nivel de las instituciones educativas con la que cuenta cada distrito de la unidad hidrográfica Chira-Piura. El nivel educativo muy alto es la más predominante en la unidad hidrográfica afectando a treinta y tres distritos en un área total de 1610315 ha como se indica en la Tabla 47 y Figura 32, en estas zonas existen centros de educación a nivel Inicial, Primaria y Secundaria, centros de educación Especial, los CEBA (Centros de Educación Básica Alternativa) e instituciones de educación Superior. El nivel medio se encuentra en diecinueve distritos de la unidad hidrográfica, en estas zonas el nivel educativo es medio ya que solo cuenta con centro educativos a nivel Inicial, Primaria y Secundaria en un área total de 561663 ha. Por último, el nivel de los centros educativos en los distritos de Buenos Aires, Chalaco, Paimas, Sapillica, Suyo y Vice poseen una educación de nivel alto ya que tienen Inicial, Primaria, Secundaria, Educación Especial y/o CEBA, con un área de 240991 ha.

Tabla 47: Clasificación de la Infraestructura de Educación

DISTRITO	NIVEL CE	AREA (ha)	CAL F. CE
ARENAL	Medio	823	3
CRISTO NOS VALGA	Medio	26161	3
CURA MORI	Medio	19619	3
EL TALLAN	Medio	10569	3
JILILI	Medio	10225	3
LAGUNAS	Medio	19587	3
LALAQUIZ	Medio	14585	3
LANCONES	Medio	197126	3
MIGUEL CHECA	Medio	45497	3
PACAIPAMPA	Medio	96765	3
RINCONADA LLICUAR	Medio	1911	3
SALITRAL	Medio	56754	3
SALITRAL	Medio	3108	3
SAN JUAN DE BIGOTE	Medio	25025	3
SANTA CATALINA DE MOSSA	Medio	8016	3
SICCHEZ	Medio	3408	3
SONDORILLO	Medio	69	3
TAMARINDO	Medio	6625	3
VICHAYAL	Medio	15790	3
BUENOS AIRES	Alto	24632	2
CHALACO	Alto	14924	2

PAIMAS	Alto	32443	2
SAPILLICA	Alto	27060	2
SUYO	Alto	108514	2
VICE	Alto	33418	2
AMOTAPE	Muy Alto	6142	1
AYABACA	Muy Alto	154336	1
BELLAVISTA	Muy Alto	189	1
BELLAVISTA DE LA UNION	Muy Alto	1464	1
BERNAL	Muy Alto	6944	1
CANCHAQUE	Muy Alto	31028	1
CASTILLA	Muy Alto	65920	1
CATACAOS	Muy Alto	144083	1
CHULUCANAS	Muy Alto	86136	1
COLAN	Muy Alto	12291	1
FRIAS	Muy Alto	55885	1
HUANCABAMBA	Muy Alto	11637	1
HUARMACA	Muy Alto	57064	1
IGNACIO ESCUDERO	Muy Alto	18258	1
LA ARENA	Muy Alto	16808	1
LA BREA	Muy Alto	39083	1
LA HUACA	Muy Alto	59552	1
LA MATANZA	Muy Alto	98980	1
LA UNION	Muy Alto	20904	1
LAS LOMAS	Muy Alto	50990	1
MARCAVELICA	Muy Alto	120272	1
MONTERO	Muy Alto	12964	1
MORROPON	Muy Alto	17061	1
PAITA	Muy Alto	73022	1
PARIÑAS	Muy Alto	483	1
PIURA	Muy Alto	31848	1
QUERECOTILLO	Muy Alto	28158	1
SAN MIGUEL DE EL FAIQUE	Muy Alto	17986	1
SANTO DOMINGO	Muy Alto	18961	1
SECHURA	Muy Alto	136867	1
SULLANA	Muy Alto	48705	1
TAMBO GRANDE	Muy Alto	144578	1
YAMANGO	Muy Alto	21716	1

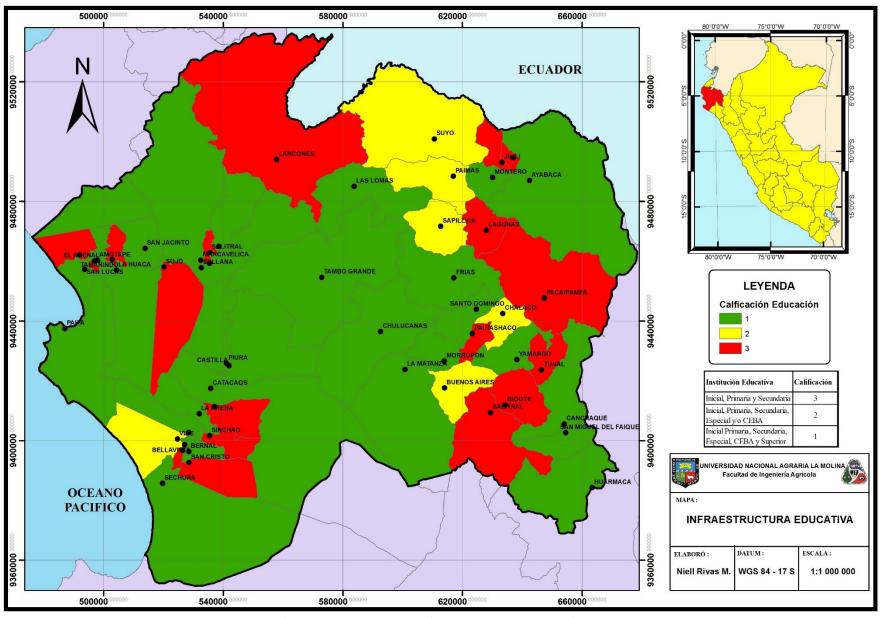


Figura 32: Mapa de Infraestructura Educativa

• Variable temática de Infraestructura de Saneamiento

La variable considerada fue el porcentaje de acceso a saneamiento con la que cuenta la población de los distritos de la unidad hidrográfica Chira-Piura, es así que los valores (pesos) altos serán cuando el porcentaje sea menor.

Tabla 48: Calificación de la variable temática de Infraestructura de Saneamiento

DISTRITO	PORC. SANEA	AREA (ha)	CALF. SANEA
AMOTAPE	3.12	6142	3
EL TALLAN	3.74	10569	3
LAGUNAS	4.48	19587	3
SAPILLICA	7.61	27060	3
PACAIPAMPA	8.62	96765	3
CURA MORI	9.12	19619	3
VICHAYAL	12.19	15790	3
VICE	13.12	33418	3
FRIAS	14.52	55885	3
HUARMACA	17.38	57064	3
SALITRAL	19.28	56754	3
CRISTO NOS VALGA	19.43	26161	3
IGNACIO ESCUDERO	21.3	18258	2
LA MATANZA	22.98	98980	2
LAS LOMAS	24.42	50990	2
BERNAL	24.53	6944	2
LA HUACA	24.65	59552	2
MARCAVELICA	24.73	120272	2
SECHURA	25.97	136867	2
AYABACA	26.03	154336	2
LA UNION	26.16	20904	2
YAMANGO	26.98	21716	2
SAN JUAN DE BIGOTE	30.43	25025	2
LALAQUIZ	30.96	14585	2
MIGUEL CHECA	32.33	45497	2
LANCONES	33.61	197126	2
LA ARENA	36.48	16808	2
CATACAOS	36.59	144083	2
MONTERO	37.45	12964	2
HUANCABAMBA	37.8	11637	2
CHALACO	38.28	14924	2

QUERECOTILLO	40.68	28158	1
RINCONADA LLICUAR	41.6	1911	1
COLAN	42.83	12291	1
CHULUCANAS	44.83	86136	1
SICCHEZ	46.73	3408	1
TAMBO GRANDE	48.17	144578	1
BELLAVISTA DE LA UNION	49.32	1464	1
TAMARINDO	49.58	6625	1
PAITA	50.07	73022	1
PAIMAS	50.37	32443	1
SONDORILLO	50.5	69	1
SANTO DOMINGO	50.84	18961	1
BUENOS AIRES	50.95	24632	1
SALITRAL	51.98	3108	1
SUYO	52.89	108514	1
SANTA CATALINA DE MOSSA	54.98	8016	1
ARENAL	56.16	823	1
MORROPON	56.83	17061	1
JILILI	60.49	10225	1
CANCHAQUE	63.27	31028	1
SAN MIGUEL DE EL FAIQUE	65.16	17986	1
CASTILLA	65.89	65920	1
PIURA	68.81	31848	1
SULLANA	71.52	48705	1
BELLAVISTA	76.99	189	1
PARIÑAS	82.53	483	1
LA BREA	89.03	39083	1

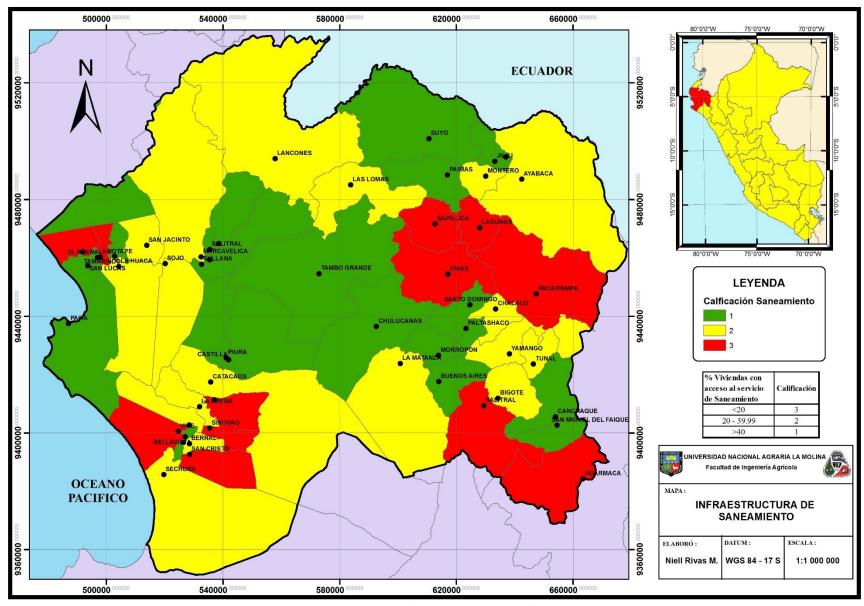


Figura 33: Mapa de Infraestructura de Saneamiento

• Variable temática Cobertura del abastecimiento de agua potable

La variable que se considero fue el porcentaje de viviendas que cuentan con el servicio de agua potable que tiene la población, es así que los valores (pesos) más altos se encuentran donde menor porcentaje.

Tabla 49: Calificación de la variable temática de Cobertura de Abastecimiento de agua potable

DISTRITO	PORC. AGUA	AREA (ha)	CALF. AGUA
SICCHEZ	0.71	3408	3
JILILI	3.37	10225	3
MONTERO	5.05	12964	3
SAPILLICA	10.55	27060	3
SONDORILLO	11.85	69	3
LAGUNAS	12.27	19587	3
PAIMAS	15.35	32443	3
SAN MIGUEL DE EL FAIQUE	21.81	17986	2
PACAIPAMPA	24.94	96765	2
HUARMACA	27.54	57064	2
LAS LOMAS	29.48	50990	2
AYABACA	31.35	154336	2
HUANCABAMBA	32.63	11637	2
TAMBO GRANDE	34.64	144578	2
MIGUEL CHECA	37.95	45497	2
YAMANGO	41.25	21716	1
QUERECOTILLO	48.64	28158	1
LA HUACA	48.8	59552	1
LALAQUIZ	50.41	14585	1
FRIAS	53.71	55885	1
LANCONES	56.93	197126	1
SANTA CATALINA DE MOSSA	58.9	8016	1
MARCAVELICA	61.88	120272	1
TAMARINDO	62.05	6625	1
LA ARENA	62.83	16808	1
CANCHAQUE	63.94	31028	1
VICHAYAL	64.1	15790	1
COLAN	64.33	12291	1
IGNACIO ESCUDERO	65.08	18258	1
LA UNION	71.37	20904	1

CHALACO 71.59 14924 1 CHULUCANAS 71.98 86136 1 SULLANA 72.69 48705 1 ARENAL 72.83 823 1 AMOTAPE 74.45 6142 1 CRISTO NOS VALGA 74.71 26161 1 SALITRAL 75.95 3108 1 PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1<				
SULLANA 72.69 48705 1 ARENAL 72.83 823 1 AMOTAPE 74.45 6142 1 CRISTO NOS VALGA 74.71 26161 1 SALITRAL 75.95 3108 1 PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.67 189 <td< td=""><td>CHALACO</td><td>71.59</td><td>14924</td><td>1</td></td<>	CHALACO	71.59	14924	1
ARENAL 72.83 823 1 AMOTAPE 74.45 6142 1 CRISTO NOS VALGA 74.71 26161 1 SALITRAL 75.95 3108 1 PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIDAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	CHULUCANAS	71.98	86136	1
AMOTAPE CRISTO NOS VALGA 74.71 26161 1 SALITRAL 75.95 3108 1 PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA MORROPON 86.67 17061 1 PIURA LA BREA BELLAVISTA DE LA UNION 87.47 1464 1	SULLANA	72.69	48705	1
CRISTO NOS VALGA 74.71 26161 1 SALITRAL 75.95 3108 1 PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES BUENOS AIRES BUENOS AIRES BUENOS AIRES BELLAVISTA 86.67 17061 1 PIURA BORNOPON 86.67 17061 1 PIURA BELLAVISTA DE LA UNION 87.47 1464 1	ARENAL	72.83	823	1
SALITRAL 75.95 3108 1 PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 <td>AMOTAPE</td> <td>74.45</td> <td>6142</td> <td>1</td>	AMOTAPE	74.45	6142	1
PAITA 76.18 73022 1 SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	CRISTO NOS VALGA	74.71	26161	1
SUYO 76.22 108514 1 RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	SALITRAL	75.95	3108	1
RINCONADA LLICUAR 77.08 1911 1 SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 17061 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	PAITA	76.18	73022	1
SALITRAL 78.08 56754 1 SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIÐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	SUYO	76.22	108514	1
SAN JUAN DE BIGOTE 78.84 25025 1 SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	RINCONADA LLICUAR	77.08	1911	1
SECHURA 78.84 136867 1 CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	SALITRAL	78.08	56754	1
CASTILLA 79.96 65920 1 EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	SAN JUAN DE BIGOTE	78.84	25025	1
EL TALLAN 81.58 10569 1 CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	SECHURA	78.84	136867	1
CATACAOS 81.59 144083 1 BERNAL 81.88 6944 1 PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	CASTILLA	79.96	65920	1
BERNAL 81.88 6944 1 PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	EL TALLAN	81.58	10569	1
PARIĐAS 84.49 483 1 SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	CATACAOS	81.59	144083	1
SANTO DOMINGO 84.5 18961 1 VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	BERNAL	81.88	6944	1
VICE 84.92 33418 1 BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	PARIĐAS	84.49	483	1
BUENOS AIRES 85.38 24632 1 LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	SANTO DOMINGO	84.5	18961	1
LA MATANZA 86.35 98980 1 BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	VICE	84.92	33418	1
BELLAVISTA 86.67 189 1 MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	BUENOS AIRES	85.38	24632	1
MORROPON 86.67 17061 1 PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	LA MATANZA	86.35	98980	1
PIURA 86.94 31848 1 LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	BELLAVISTA	86.67	189	1
LA BREA 87.08 39083 1 BELLAVISTA DE LA UNION 87.47 1464 1	MORROPON	86.67	17061	1
BELLAVISTA DE LA UNION 87.47 1464 1	PIURA	86.94	31848	1
	LA BREA	87.08	39083	1
CURA MORI 93.05 19619 1	BELLAVISTA DE LA UNION	87.47	1464	1
	CURA MORI	93.05	19619	1

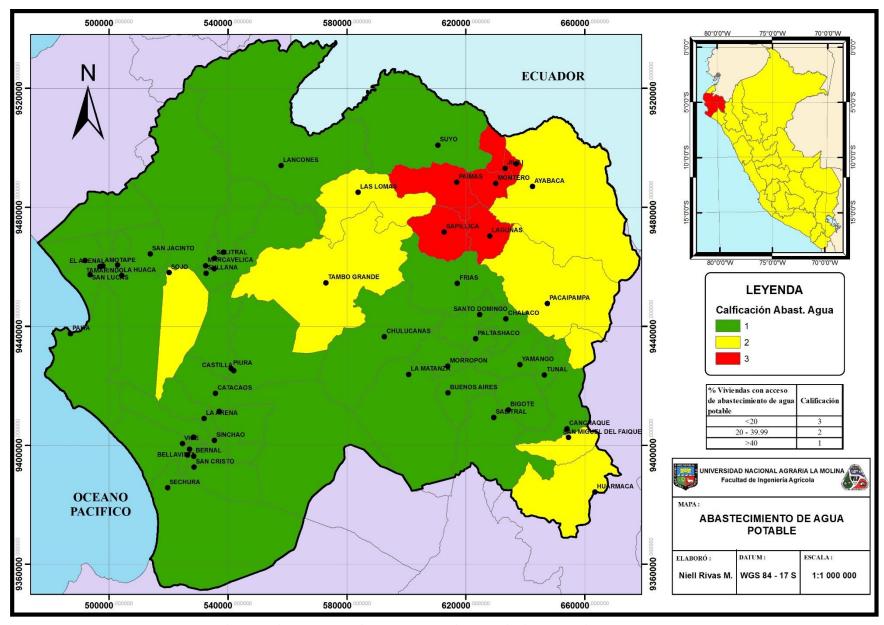


Figura 34: Mapa de Cobertura de Abastecimiento de Agua Potable

• Variable temática de Cobertura de Red Eléctrica

La variable que se considero fue el porcentaje de viviendas alumbradas que tiene la población, es así que los valores (pesos) más altos se encontraran donde haya menor porcentaje.

Tabla 50: Calificación de la variable temática Cobertura de red eléctrica

DISTRITO	PORC. ELEC	AREA (Ha)	CALF. ELEC
LA BREA	89.27	39083	1
QUERECOTILLO	88.73	28158	1
PARIĐAS	87.27	483	1
BELLAVISTA	86.75	189	1
PIURA	83.96	31848	1
BUENOS AIRES	82.99	24632	1
CASTILLA	82.57	65920	1
SULLANA	82.41	48705	1
PAITA	80.98	73022	1
IGNACIO ESCUDERO	80.59	18258	1
MIGUEL CHECA	79.9	45497	1
MORROPON	79.55	17061	1
CHULUCANAS	77.64	86136	1
CATACAOS	76.68	144083	1
MARCAVELICA	75.59	120272	1
VICE	74.11	33418	1
SALITRAL	73.5	3108	1
ARENAL	72.83	823	1
LA HUACA	71.97	59552	1
ЛLILI	71.21	10225	1
BELLAVISTA DE LA UNION	69.3	1464	1
RINCONADA LLICUAR	68.76	1911	1
BERNAL	67.67	6944	1
COLAN	67.56	12291	1
AMOTAPE	66.73	6142	1
LA UNION	66.42	20904	1
TAMARINDO	66.14	6625	1
SALITRAL	65.53	56754	1
SECHURA	64.45	136867	1
SICCHEZ	64.07	3408	1
CRISTO NOS VALGA	61.29	26161	1

SANTA CATALINA DE MOSSA	50.92	8016	1
	59.82		1
SAN JUAN DE BIGOTE	59.16	25025	1
VICHAYAL	59.04	15790	1
LA MATANZA	58.06	98980	1
LAS LOMAS	48.05	50990	1
PAIMAS	47.18	32443	1
SUYO	46.7	108514	1
LA ARENA	45.95	16808	1
SAN MIGUEL DE EL FAIQUE	44.47	17986	1
CURA MORI	40.89	19619	1
TAMBO GRANDE	37.38	144578	2
LANCONES	36.29	197126	2
HUARMACA	31.78	57064	2
SANTO DOMINGO	29.51	18961	2
YAMANGO	28.71	21716	2
MONTERO	28.69	12964	2
LALAQUIZ	28.58	14585	2
CHALACO	28.33	14924	2
AYABACA	28.18	154336	2
CANCHAQUE	26.81	31028	2
EL TALLAN	26.21	10569	2
FRIAS	21.37	55885	2
HUANCABAMBA	19.24	11637	3
PACAIPAMPA	11.99	96765	3
SONDORILLO	11.93	69	3
LAGUNAS	10.31	19587	3
SAPILLICA	10.2	27060	3

Figura 35: Mapa de Cobertura de Red Eléctrica

• Variable temática de Vías de Comunicación

La variable que se considero fue la cantidad de Km de red vial asfaltada y/o afirmada que tienen los distritos de la unidad hidrográfica Chira-Piura. Los valores altos (pesos) es la que más predomina abarcando cuarenta y cinco distritos.

Tabla 51: Calificación de la variable temática Red Vial

DISTRITO	RED VIAL (Km)	Área (ha)	CALF. RV
BELLAVISTA	0	189	3
EL TALLAN	0	10569	3
HUANCABAMBA	0	11637	3
JILILI	0	10225	3
LALAQUIZ	0	14585	3
PARIÑAS	0	483	3
SONDORILLO	0	69	3
YAMANGO	0	21716	3
SAN MIGUEL DE EL FAIQUE	1.15	17986	3
SICCHEZ	2.19	3408	3
LAGUNAS	3.09	19587	3
SALITRAL	4.78	3108	3
ARENAL	4.82	823	3
SANTA CATALINA DE MOSSA	6.19	8016	3
BELLAVISTA DE LA UNION	7.3	1464	3
BERNAL	7.78	6944	3
RINCONADA LLICUAR	8.55	1911	3
CURA MORI	8.97	19619	3
TAMARINDO	9.38	6625	3
PACAIPAMPA	9.63	96765	3
CRISTO NOS VALGA	11.29	26161	3
HUARMACA	12.37	57064	3
MONTERO	12.55	12964	3
AMOTAPE	13.39	6142	3
CHALACO	13.76	14924	3
LA ARENA	15.52	16808	3
LA UNION	16.63	20904	3
MARCAVELICA	17.77	120272	3
SAPILLICA	19.58	27060	3
BUENOS AIRES	22.39	24632	3
SAN JUAN DE BIGOTE	22.75	25025	3

...continuación

FRIAS	23.32	55885	3
MIGUEL CHECA	24.22	45497	3
IGNACIO ESCUDERO	24.9	18258	3
SANTO DOMINGO	26.12	18961	3
CANCHAQUE	27.44	31028	3
QUERECOTILLO	28.68	28158	3
LA BREA	30.11	39083	3
SALITRAL	31.88	56754	3
PAIMAS	32.34	32443	3
VICHAYAL	33.97	15790	3
COLAN	34.85	12291	3
MORROPON	38.2	17061	3
CATACAOS	39.18	144083	3
VICE	46.98	33418	2
AYABACA	47.6	154336	2
CASTILLA	54.13	65920	2
PIURA	60.8	31848	2
PAITA	63.24	73022	2
LA MATANZA	69.11	98980	2
LA HUACA	69.47	59552	2
SECHURA	70.54	136867	2
SULLANA	75.44	48705	2
CHULUCANAS	77.46	86136	2
LAS LOMAS	82.59	50990	2
SUYO	83.18	108514	2
TAMBO GRANDE	139.55	144578	3
LANCONES	148.36	197126	3

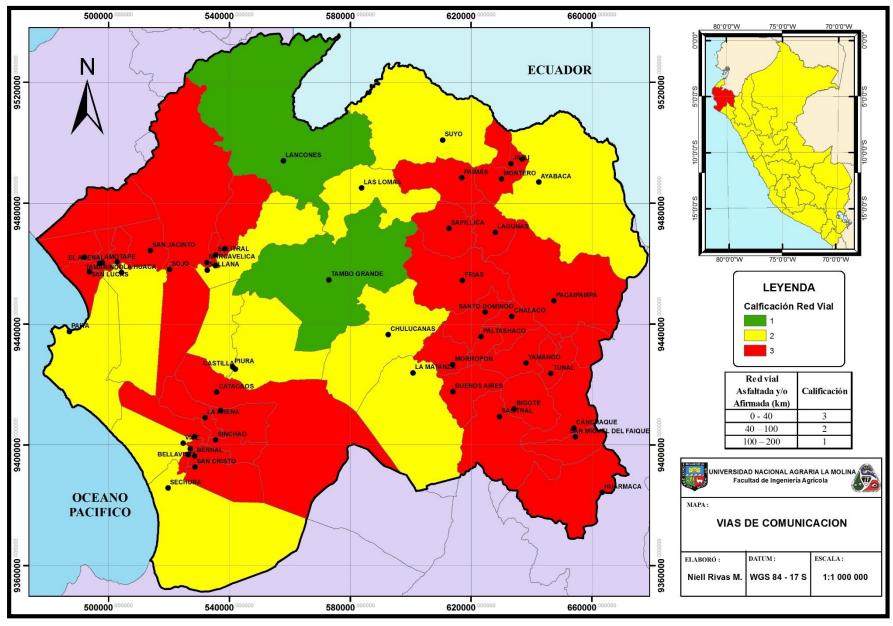


Figura 36: Mapa de Vías de Comunicación

• Variable temática de Telecomunicaciones a la vulnerabilidad

La variable que se considero fue si tiene o no los servicios de telecomunicaciones y las calificaciones están explicados en la metodología.

Tabla 52: Calificación de la variable temática de Telecomunicaciones

DISTRITO	N° SERVICIOS	AREA (ha)	CALF. RV
AMOTAPE	Sin Servicios	6142	3
ARENAL	Sin Servicios	823	3
AYABACA	Sin Servicios	154336	3
CANCHAQUE	Sin Servicios	31028	3
CHALACO	Sin Servicios	14924	3
COLAN	Sin Servicios	12291	3
CRISTO NOS VALGA	Sin Servicios	26161	3
CURA MORI	Sin Servicios	19619	3
EL TALLAN	Sin Servicios	10569	3
FRIAS	Sin Servicios	55885	3
HUANCABAMBA	Sin Servicios	11637	3
HUARMACA	Sin Servicios	57064	3
JILILI	Sin Servicios	10225	3
LA ARENA	Sin Servicios	16808	3
LA HUACA	Sin Servicios	59552	3
LA MATANZA	Sin Servicios	98980	3
LA UNION	Sin Servicios	20904	3
LAGUNAS	Sin Servicios	19587	3
LALAQUIZ	Sin Servicios	14585	3
LANCONES	Sin Servicios	197126	3
LAS LOMAS	Sin Servicios	50990	3
MIGUEL CHECA	Sin Servicios	45497	3
MONTERO	Sin Servicios	12964	3
PACAIPAMPA	Sin Servicios	96765	3
PAIMAS	Sin Servicios	32443	3
QUERECOTILLO	Sin Servicios	28158	3
SALITRAL	Sin Servicios	56754	3
SALITRAL	Sin Servicios	3108	3
SAN JUAN DE BIGOTE	Sin Servicios	25025	3
SAN MIGUEL DE EL FAIQUE	Sin Servicios	17986	3
SANTA CATALINA DE MOSSA	Sin Servicios	8016	3
SANTO DOMINGO	Sin Servicios	18961	3

...continuación

SAPILLICA	Sin Servicios	27060	3
SICCHEZ	Sin Servicios	3408	3
SONDORILLO	Sin Servicios	69	3
SUYO	Sin Servicios	108514	3
TAMARINDO	Sin Servicios	6625	3
TAMBO GRANDE	Sin Servicios	144578	3
VICHAYAL	Sin Servicios	15790	3
YAMANGO	Sin Servicios	21716	3
BELLAVISTA	1 Servicio	189	2
BELLAVISTA DE LA UNION	1 Servicio	1464	2
BERNAL	1 Servicio	6944	2
BUENOS AIRES	1 Servicio	24632	2
CASTILLA	1 Servicio	65920	2
CATACAOS	1 Servicio	144083	2
CHULUCANAS	1 Servicio	86136	2
IGNACIO ESCUDERO	1 Servicio	18258	2
MARCAVELICA	1 Servicio	120272	2
MORROPON	1 Servicio	17061	2
PAITA	1 Servicio	73022	2
RINCONADA LLICUAR	1 Servicio	1911	2
SECHURA	1 Servicio	136867	2
SULLANA	1 Servicio	48705	2
VICE	1 Servicio	33418	2
LA BREA	2 Servicios	39083	1
PARIÑAS	2 Servicios	483	1
PIURA	2 Servicios	31848	1

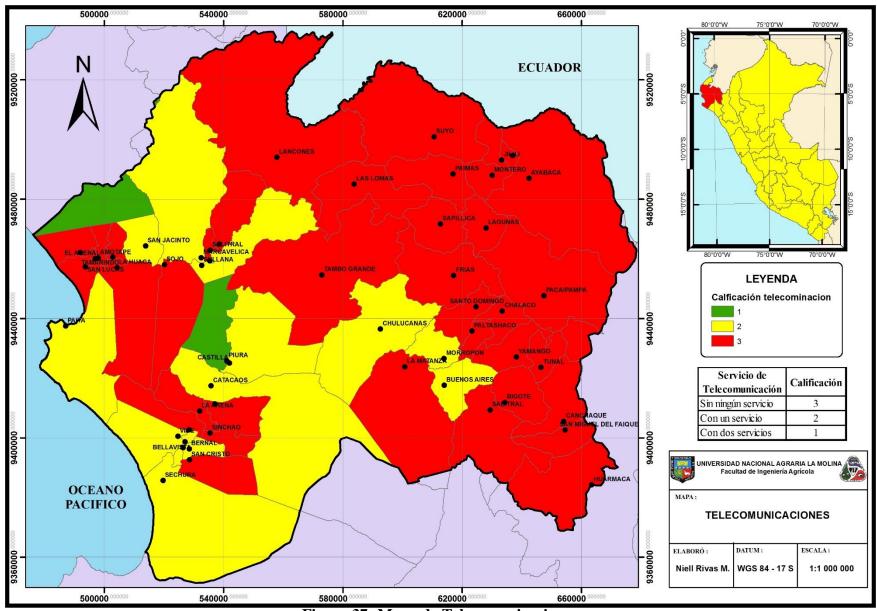


Figura 37: Mapa de Telecomunicaciones

Este modelo de Niveles de Incidencia por la Infraestructura a la Vulnerabilidad Este modelo geo espacial, es el resultado de la unión de los 7 mapas descritos anteriormente: Infraestructura Educativa (Edu), Infraestructura de Salud (Salud), Infraestructura de Saneamiento (Sanea), Abastecimiento de Agua Potable (Agua), Servicio de Telecomunicaciones (Comu), Cobertura Eléctrica (Elec), Red Vial (Vía); en la que se realizó una suma de sus respectivas calificaciones y un promedio de esta como se indica en la metodología, cuya ecuación se presenta:

$$SI = 0.1 * Edu + 0.2 * Salud + 0.05 * Sanea + 0.05 * Agua + 0.2 *$$
 $Comu + 0.1 * Elec + 0.3 * Via$

De manera resumida, como indica la SUBDERE (2011), se incluyen el análisis de los denominados "sistemas estratégicos" por ser necesarios para el bienestar de las comunidades incidiendo en las consecuencias negativas que podrían generarse en un evento en masa. Dicho grado de vulnerabilidad fue representado en los porcentajes de participación mostrados tomando en consideración:

- Infraestructura de educación: Su incidencia corresponde a que gran parte del año alberga un número considerable de personas, es decir un número considerable de afectados en un mismo punto; sin embargo, representa a su vez la capacidad de ser usado como refugio para damnificados. Por estas funciones se le asigna un porcentaje de participación baja, factor de 10%
- Infraestructura de salud: Involucra por una parte la atención de emergencias y la asistencia a la población damnificada y, por otra parte, la capacidad de brindar refugio a personas afectadas. Por esta razón se le asigna un porcentaje de participación de 20%
- Infraestructura de Saneamiento: Su participación obedece al abastecimiento del servicio de saneamiento, sin embargo, se considera las características del área de estudio donde su porcentaje de participación como factor social no es ampliamente significativa otorgándole un factor de 5%

- Abastecimiento de Agua Potable: El servicio de agua potable es una variable que contribuye al grado de vulnerabilidad de una población, puesto que determina en gran medida la seguridad alimentaria y por ende la salud humana. Pero su porcentaje de participación como factor social no es ampliamente significativa otorgándole un factor de 5%
- Telecomunicaciones: Este sistema permite conocer la situación de distintos distritos en la unidad hidrográfica, comunicar e intercambiar información para priorizar zonas críticas, entre otras tareas. Por estas razones su porcentaje de participación es de 20%
- Cobertura Eléctrica: Si bien corresponde a un servicio no difundido ampliamente en toda la unidad hidrográfica, aplica tomar en consideración su participación como posible causa de accidentes para caída de postes y a su vez indicar que en centros de salud será de importancia su empleo para una serie de equipos posiblemente usados en la situación de riesgo. Se le asigna un factor bajo de 10%
- Red vial: Abarcando las vías asfaltadas y/o afirmadas, tienen un alto grado de participación sobre la vulnerabilidad en la medida que a través de ellas se movilizará asistencia médica, ayuda social, asistencia técnica, repartición de donaciones, entre otras tareas. Dicha importancia se ve reflejada en un porcentaje de participación de 30%

Como resultado se obtuvieron tres tipos de vulnerabilidad alta, media, baja según las calificaciones. La vulnerabilidad media es la que predomina con gran presencia en la unidad hidrográfica, abarca un área total de 1077693 ha (44.7%) ya que en esta zona de la unidad hidrográfica cuenta con altos porcentajes de cobertura eléctrica, poseen 2 a 3 servicios de telecomunicaciones, porcentajes regulares de acceso a saneamiento y abastecimiento de agua potable, una infraestructura educativa y de salud media, y vías asfaltadas y/o afirmadas en una cantidad regular de Km. Con una extensión considerable también está presente la vulnerabilidad alta con un área de 371884 ha (15.4 %). Por último, la vulnerabilidad baja abarca un área de 963392 ha (39.9%).

Tabla 53: Clasificación del Sub modelo Infraestructura

DISTRITO	Calf. Edu	Calf. Comu	Calf. Elec	Calf. Agua	Calf. Sanea	Calf. via	Calf. Salud	SM Infra	Vul Infra
LAGUNAS	3	3	3	3	3	3	3	3.00	Alta
PACAIPAMPA	3	3	3	2	3	3	3	2.95	Alta
EL TALLAN	3	3	2	1	3	3	3	2.80	Alta
CRISTO NOS VALGA	3	3	1	1	3	3	3	2.70	Alta
HUANCABAMBA	1	3	3	2	2	3	3	2.70	Alta
SAPILLICA	2	3	3	3	3	3	2	2.70	Alta
SONDORILLO	3	3	3	3	1	3	2	2.70	Alta
SANTA CATALINA DE MOSSA	3	3	1	1	1	3	3	2.60	Alta
LALAQUIZ	3	3	2	1	2	3	2	2.55	Alta
AMOTAPE	1	3	1	1	3	3	3	2.50	Alta
CURA MORI	3	3	1	1	3	3	2	2.50	Alta
JILILI	3	3	1	3	1	3	2	2.50	Alta
MIGUEL CHECA	3	3	1	2	2	3	2	2.50	Alta
SALITRAL	3	3	1	1	3	3	2	2.50	Alta
SICCHEZ	3	3	1	3	1	3	2	2.50	Alta
VICHAYAL	3	3	1	1	3	3	2	2.50	Alta
CHALACO	2	3	2	1	2	3	2	2.45	Media
HUARMACA	1	3	2	2	3	3	2	2.45	Media
MONTERO	1	3	2	3	2	3	2	2.45	Media
SAN JUAN DE BIGOTE	3	3	1	1	2	3	2	2.45	Media
ARENAL	3	3	1	1	1	3	2	2.40	Media
FRIAS	1	3	2	1	3	3	2	2.40	Media
PAIMAS	2	3	1	3	1	3	2	2.40	Media
RINCONADA LLICUAR	3	2	1	1	1	3	3	2.40	Media
SALITRAL	3	3	1	1	1	3	2	2.40	Media
TAMARINDO	3	3	1	1	1	3	2	2.40	Media
YAMANGO	1	3	2	1	2	3	2	2.35	Media
CANCHAQUE	1	3	2	1	1	3	2	2.30	Media
SANTO DOMINGO	1	3	2	1	1	3	2	2.30	Media
LA ARENA	1	3	1	1	2	3	2	2.25	Media
LA UNION	1	3	1	1	2	3	2	2.25	Media
SAN MIGUEL DE EL FAIQUE	1	3	1	2	1	3	2	2.25	Media
COLAN	1	3	1	1	1	3	2	2.20	Media
QUERECOTILLO	1	3	1	1	1	3	2	2.20	Media
LANCONES	3	3	2	1	2	1	3	2.15	Media
AYABACA	1	3	2	2	2	2	2	2.10	Media
BUENOS AIRES	2	2	1	1	1	3	2	2.10	Media
VICE	2	2	1	1	3	2	3	2.10	Media
BERNAL	1	2	1	1	2	3	2	2.05	Media
CATACAOS	1	2	1	1	2	3	2	2.05	Media
IGNACIO ESCUDERO	1	2	1	1	2	3	2	2.05	Media
MARCAVELICA	1	2	1	1	2	3	2	2.05	Media
BELLAVISTA	1	2	1	1	1	3	2	2.00	Baja
BELLAVISTA DE LA UNION	1	2	1	1	1	3	2	2.00	Baja
LAS LOMAS	1	3	1	2	2	2	2	2.00	Baja
MORROPON	1	2	1	1	1	3	2	2.00	Baja
SUYO	2	3	1	1	1	2	2	2.00	Baja
LA HUACA	1	3	1	1	2	2	2	1.95	Baja
LA MATANZA	1	3	1	1	2	2	2	1.95	Baja
TAMBO GRANDE	1	3	2	2	1	1	3	1.95	Baja
LA BREA	1	1	1	1	1	3	2	1.80	Baja
PARIÑAS	1	1	1	1	1	3	2	1.80	Baja
SECHURA	1	2	1	1	2	2	2	1.75	Baja
CASTILLA	1	2	1	1	1	2	2	1.70	Baja
CHULUCANAS	1	2	1	1	1	2	1	1.50	Baja
PAITA	1	2	1	1	1	2	1	1.50	Baja
PIURA	1	1	1	1	1	2	2	1.50	Baja
SULLANA	1	2	1	1	1	2	1	1.50	Baja
JOLLANA					1 1			1.50	Daja

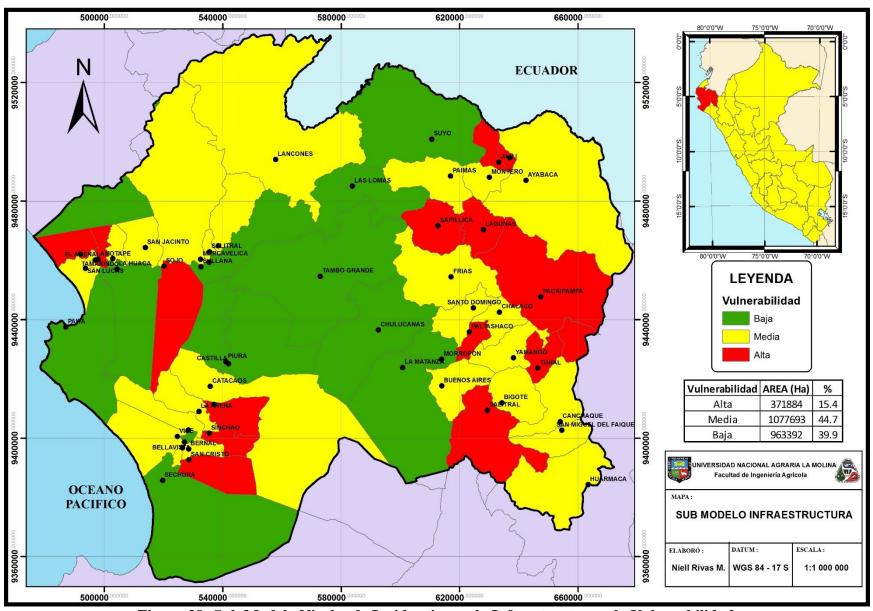


Figura 38: Sub Modelo Niveles de Incidencia por la Infraestructura a la Vulnerabilidad

4.2.4. Modelo geoespacial del Vulnerabilidad Socioeconómica

El modelo de vulnerabilidad socioeconómica (MSE) fue generado utilizando los tres son modelos: Sub Modelo de Unidades Sociales (SUS), Sub modelo Económico (SE) y Sub modelo de Infraestructura (SI); en la que se realizó la calificación de las unidades en cada una de las variables y se le asignó el grado de participación de cada variable en el modelo de vulnerabilidad, cuya ecuación se presenta:

$$MVSE = 0.35 * SUS + 0.30 * SE + 0.35 * SI$$

Los porcentajes de participación responden al siguiente criterio:

- O Submodelo Unidades Sociales: Corresponden a la incidencia que tienen las características de la sociedad involucrada en situaciones de riesgo. Lógicamente la calidad de necesidades que logren alcanzar tendrá una relación directa importante con la susceptibilidad ante desastres. Así, se aplica un porcentaje de participación de 35%
- Submodelo Económico: Las características de las actividades económicas que se vienen desarrollando y consolidando en la unidad hidrográfica tiene similar incidencia en la vulnerabilidad. Se representa con un porcentaje de participación de 30%
- O Submodelo de Infraestructura: Guarda una relación importante en la vulnerabilidad de la sociedad al dotarla de las herramientas para afrontar adecuadamente el evento de riesgo. Por ello, se aplica un porcentaje de participación de 35%

En la figura se presenta el grado de vulnerabilidad socioeconómica, observando que la vulnerabilidad Media es la que mayor predomina en un 48.27 % de la unidad hidrográfica correspondiente a un área de 1164755 ha; está presente en 27 distritos de la unidad hidrográfica. La vulnerabilidad Alta representa el 40.25 % de la unidad hidrográfica; justamente son zonas donde tienen altos porcentajes de pobreza, el tipo de mercado predominante es local, el nivel de salud es media, hay pocos servicios de telecomunicaciones, así como el acceso de la población a saneamiento, agua potable y red eléctrica, su actividad principal es la ganadería, agricultura, etc.

Por ultimo a vulnerabilidad baja abarca un área de 442981 ha, solo representa el 18.36% de toda la unidad hidrográfica. Es decir, los distritos de Sechura, Pariñas, Castilla, Chulucanas, Paita, Sullana y Piura tienen una probabilidad de superación socioeconómica buena ante la presencia de un fenómeno.

Tabla 54: Nivel de vulnerabilidad socioeconómica en la unidad hidrográfica Chira-Piura

Vulnerabilidad	AREA (ha)	%
Alta	805233	33.37
Media	1164755	48.27
Baja	442981	18.36

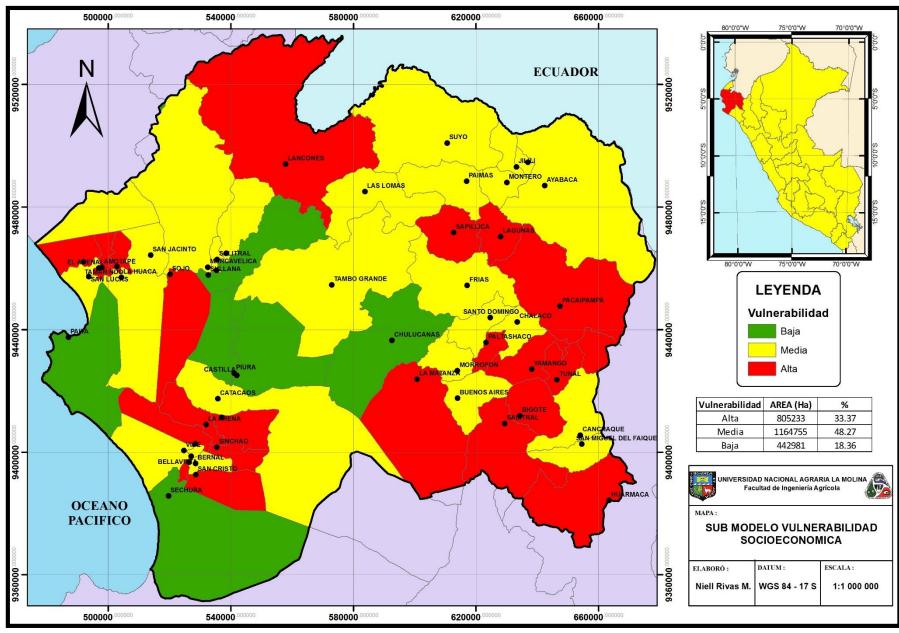


Figura 39: Modelo Geoespacial - Grado de Vulnerabilidad Socioeconómica

4.3. GENERACION DEL SUB MODELO DE CONFLICTO DE USO

4.3.1. Información temática del sub modelo geoespacial de conflicto de uso

La integración lógica entre la información temática de capacidad de uso de suelos y el uso actual (Cobertura Vegetal) como se describe en la metodología permitió generar el submodelo de conflicto de uso. Sobre él se valoraron las situaciones de sobre-uso, uso conforme o sub-uso en relación con la incidencia en la vulnerabilidad que cada situación aportaría. En total se identificaron 1304301 ha en uso conforme, mientras que 1006288 ha fueron identificados en sobre utilización causado por la deforestación de las regiones boscosas (bosques secos y bosques húmedos) sobre actividades agropecuarias.

Tabla 55: Situación de conflicto de uso

SITUACION	AREA (ha)	%
SOBRE USO	1006288	41.71
SUB USO	94109	3.90
USO CONFORME	1304301	54.06

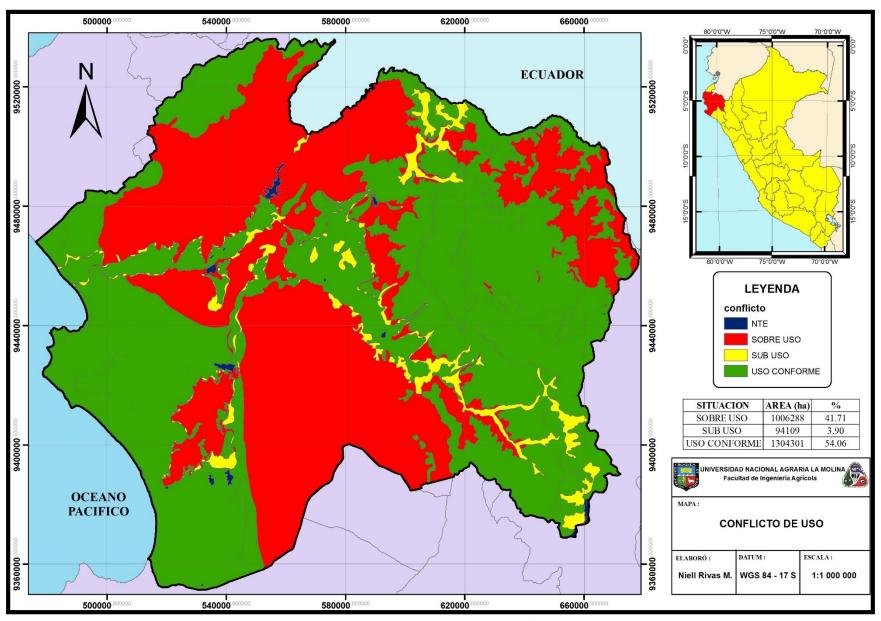


Figura 40: Modelo Geoespacial – Modelo Conflicto de Uso

4.4. VULNERABILIDAD GLOBAL

Con el fin de determinar un modelo de vulnerabilidad global (MVG) de las diferentes variables, se ha realizado la unión de los sub modelos de vulnerabilidad física (SF), vulnerabilidad socioeconómica (SE) y conflicto de uso (CU), con su calificación respectiva de las unidades que conforman cada uno de ellos y con el coeficiente de ajuste que representa el grado de participación de cada modelo de vulnerabilidad en el modelo integrado. La ecuación matemática se expresa:

$$VG = 0.50 * SF + 0.30 * SE + 0.2 * CU$$

Los porcentajes de participación en el modelo asignados en el modelo, tanto factores físicos (50%) como socioeconómicos (30%) y conflicto de uso (20%). Fueron tomando en cuenta la metodología descrita y la consideración de la incidencia de cada submodelo en el grado de vulnerabilidad global.

En la Tabla 55 y Figura 41 se presentan los resultados de la vulnerabilidad global de la unidad hidrográfica Chira-Piura, analizando los resultados se identificaron los siguientes patrones:

- Se ha determinado predominantemente un grado de vulnerabilidad global Muy Alta que abarca un área de 106373 Ha, dicha zona representa el 4.40 % de la unidad hidrográfica Chira-Piura. Debido a la interacción entre terrenos susceptibles a peligros físicos, como altas precipitaciones, pendientes moderadamente empinadas a muy empinadas y zonas montañosas; con condiciones sociales bajas, como altos niveles de pobreza, vías de acceso en mal estado, infraestructuras de salud y educación mal implementadas, entre otras; que les dificulta prevenir, responder y recuperarse ante situaciones de riesgo; y zonas en situaciones de conflicto de uso. Encontrándose 168 centros poblados en situación extrema.
- La vulnerabilidad global Alta abarca un área de 544732 Ha; representando el 22.55% de la unidad hidrográfica Chira-Piura. Tiene condiciones físicas malas ya que son zonas montañosas, precipitación media, poca cobertura vegetal, etc. Sin embargo, la

condición social es del todo mala ya que tienen nivel de pobreza altos, nivel de salud y educación medios, etc. Encontrándose 913 centros poblados en situación critica

- La vulnerabilidad global Media es que más área abarca en la unidad hidrográfica, siendo un área de 1378530 Ha; representando un 57.06 %. Tiene condiciones físicas medias a bajas. Debido que son zonas planas, precipitaciones bajas. Pero tierras en sobre uso. Sin embargo, sus condiciones sociales y económicas son mucho más favorable con lo cual podría tener apoyo y mejores respuestas ante los desastres de las autoridades y población. Encontrándose 956 centros poblados en situación grave.
- La vulnerabilidad global Baja abarca un área de 377802 Ha; representando el 15.64% de la unidad hidrográfica. Sus condiciones físicas son buenas no hay muchos peligros y en lo social y económico también es favorable, lo cual indica que son zonas donde tienen condiciones favorables para un buen desarrollo. Encontrándose 124 centros poblados en situación regular.

Tabla 56: Nivel de vulnerabilidad global en la unidad hidrográfica Chira - Piura

VULNERABILIDAD	AREA (ha)	%
Muy Alto	106373	4.40
Alto	544732	22.55
Medio	1378530	57.06
Bajo	377802	15.64

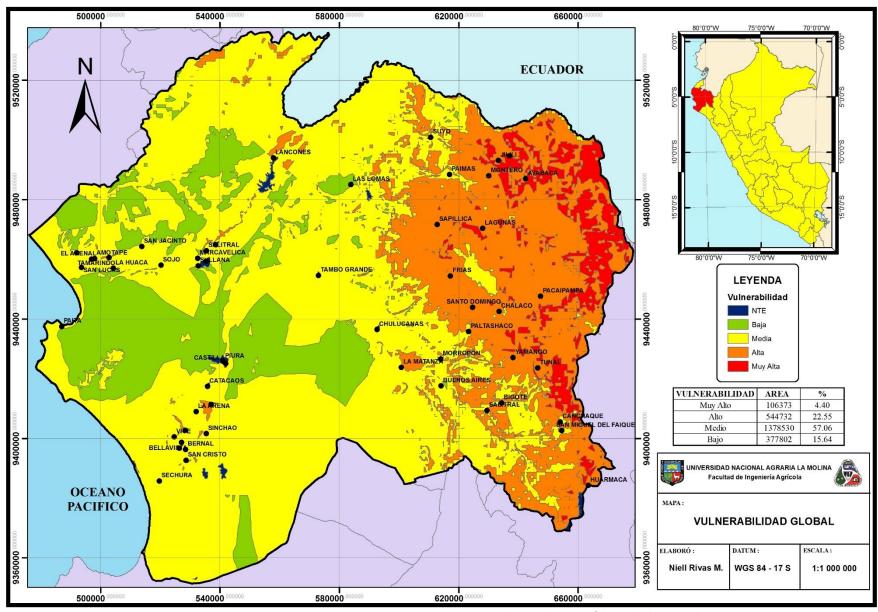


Figura 41: Mapa de vulnerabilidad global de la unidad hidrográfica Chira - Piura

V. CONCLUSIONES

- Mediante la identificación del grado de vulnerabilidad global en la unidad hidrográfica Chira Piura, producto de la integración de las variables físicas, socioeconómicas y conflicto de uso, permitió determinar las zonas críticas de vulnerabilidad por fenómenos de geodinámica externa. Siendo 106373 ha de vulnerabilidad Muy Alta; 544732 ha de vulnerabilidad Alta; 1378530 ha de vulnerabilidad Media y 377802 ha de vulnerabilidad Baja.
- Se implementó la base de datos geoespaciales, constituido por 20 mapas temáticos, en 6 sub modelos y un modelo integrado, que tiene sus respectivos atributos principales, rangos, intensidades, áreas, etc.
- Considerando el análisis de las variables físicas se determinó cuatro niveles de vulnerabilidad física: muy alta (269,900 ha); alta (440,525 ha); media (980,364 ha); y baja (718,948 ha). Siendo las zonas críticas aquellas que presentan una vulnerabilidad física muy alta, ya que se caracterizan por las altas pendientes, intensas precipitaciones y escasa cobertura vegetal; ubicándose 157 centros poblados.
- La integración de las variables temáticas socioeconómicas permitió identificar tres niveles de vulnerabilidad socioeconómica: alta (805233 ha), media (1164755 ha) y baja (442981 ha). Siendo el nivel de vulnerabilidad alta el más crítico por presentar condiciones de alta pobreza, mala conectividad, deficiente infraestructura de salud y bajos niveles de educación; encontrándose los distritos de Arenal, Cristo Nos Valga, Cura Mori, El Tallan, Frias, Huancabamba, Huarmaca, La Arena, La Matanza, La Unión, Lagunas, Lalaquiz, Lancones, Miguel Checa, Pacaipampa, Rinconada Llicuar, Salitral, San Juan De Bigote, Santa Catalina de Mossa, Sapillica, Sondorillo, Tamarindo, Vichaval y Yamango.

• Se determinó que 1006288 ha se encuentran sobre utilizados, debido a que las actividades agrícolas y pecuarias se vienen desarrollando en zonas de aptitud forestal y protección, Mientras 1304301 ha están utilizados de acuerdo a su capacidad de uso, como agrícola, pastos y forestal en zonas de acuerdo a su potencial natural de uso. Y solamente 94109 ha presenta una situación de sub-utilización.

VI. RECOMENDACIONES

- En las zonas de muy alta y alta vulnerabilidad se propone realizar proyectos de carácter conservacionista con el fin de proteger el suelo y cosecha de agua, como: terrazas, barreras vivas, zanjas de infiltración y prácticas agrosilvopastoriles. Priorizando los 1057 centros poblados ubicados en los distritos de Ayabaca, Jilili, Montero, Lagunas, Pacaipampa, entre otros.
- En las zonas de media vulnerabilidad se debe proponer medidas de prevención a fin de que no se incremente la vulnerabilidad, se evite la erosión y deslizamientos, como reforestación, uso adecuado de los suelos y capacitación a la población. Es decir, disminuir el impacto de los fenómenos de geodinámica externa.
- Considerando los resultados del presente trabajo de investigación del análisis de las variables físicas y socioeconómicas de la presente investigación, se recomienda realizar estudios a mayor detalle, a fin de implementar proyectos y ejecución de obras que conlleven a la valoración de alternativas de protección o control de peligros.
- De acuerdo a la utilización del sistema de información geográfica en el presente trabajo de investigación se recomienda utilizar sus bondades en la generación de modelos geoespaciales, para la caracterización física y socioeconómica de una unidad hidrográfica; con fines de implementación de proyectos y acciones para mitigar los fenómenos de geodinámica externa buscando ser sostenibles.

VII. REFERENCIAS BIBLIOGRAFICAS

- BARREDO, J. I; Sistemas de Información Geográfica y evaluación multicriterio. Ra-Ma. Madrid, 1996.
- COSTA, DC 2007. Introducción al diseño de base de datos. Disponible en: http://ocw.uoc.edu/computer-science-technology-and-multimedia/bases-de-datos/bases-de-datos/P06_M2109_02150.pdf
- DATE, CJ. 2001. Introducción a los sistemas de base de datos. Trad. S Ruiz; S Kourchenko. 7 ed. México, Pearson Educación p.p 1-438
- ELMASRI, R; NAVATHE S.B (2007) Fundamentos de Sistemas de Base de Datos
 5ed. España, Pearson Educación p.p 3-48
- Estrategia Internacional para la Reducción de Desastres (EIRD) de las Naciones Unidas (2009). Terminología sobre Reducción del Riesgo de Desastres. Ginebra: EIRD-ONU.
 - Disponible en: http://www.unisdr.org/files/7817_UNISDRTerminologySpanish.pdf
- Federación de Municipios del Istmo Centroamericano (FEMICA). Libro de texto.
 Programa de capacitación municipal: "Prácticas exitosas sobre manejo de servicios ambientales para poblaciones vulnerables a desastres ambientales en ciudades de América Central" 64p.
- GONZALÉZ, N. E; Áreas críticas y vulnerabilidad a desastres naturales en las subcuencas Molino Norte y San Francisco, Matagalpa, Nicaragua 2001
- IGAC (Instituto Geográfico Agustín Codazzi) 1995. Conceptos Básicos sobre Sistemas de Información Geográfica y Aplicaciones en Latinoamérica. Graficas Colorama. Santa Fe de Bogotá, D.C, Colombia 100 p
- IPROGA (Instituto de Promoción para la Gestión del Agua). Metodología para la elaboración de planes maestros de cuencas. 1996. Disponible en: http://www.cepes.org.pe/pdf/OCR/Partidos/metodologia_planes_maestros/metodol ogia_elaboracion_planes_maestros_cuencas.pdf

- JIMÉNEZ. F; FAUSTINO. G; VELÁSQUEZ. S.2004. Análisis integral de la vulnerabilidad de amenazas naturales en cuencas hidrográficas de América Latina. CATIE.
- LAVELL, A. (s.f.). Apuntes para una reflexión institucional en países de la Subregión Andina sobre el Enfoque de la Gestión del Riesgo. Lima: PREDECAN.
 Disponible en: http://www.riesgoycambioclimatico.org/archivos/allanlavell.pdf
- LAVELL, A. (2008). Relationships between Local and Community Disaster Risk Management & Poverty Reduction: A Preliminary Exploration. A Contribution to the 2009 ISDR Global Assessment Report on Disaster Risk Reduction.
- Mesa de Concertación para la Lucha contra la Pobreza (MCLP) 2009. Gestión del Riesgo de Desastres para la Planificación del Desarrollo Local. Lima, Perú.
- Ministerio de Economía y Finanzas (MEF), Dirección General de Programación Multianual, (DGPM). (2006). Conceptos asociados a la gestión del riesgo de desastres en la planificación e inversión para el desarrollo. Serie Sistema Nacional de Inversión Pública y la Gestión del Riesgo de Desastres. Lima: DGPM, MEF.
- Ministerio de Vivienda, Construcción y Saneamiento. Plan de gestión de la oferta de agua en las cuencas del ámbito del proyecto Chira-Piura. 2002
- MORALES XIQUE, A. 2001. Base de Datos Geográficos para el Soporte de Toma de Decisiones en la Zona del Volcan Popocatepetl. Lic. En Ingeniería en Sistemas Computacionales. MX, Universidad de las Américas Puebla. 126 p. Disponible en: http://catarina.udlap.mx/u_dl_a/tales/documentos/lis/morales_x_a/portada.html
- OCHOA JANAMPA, JM 2014. Modelamiento geoespacial para la determinación del grado de vulnerabilidad – cuenca hidrográfica Jequetepeque. Ing. Agrícola. Lima, PE, Universidad Nacional Agraria La Molina. 195 p.
- OCOLA, L Peligro, Vulnerabilidad, Riesgo y la Posibilidad de desastres sísmicos en el Perú. Revista Geofísica, 61, 82–125. 2007.
- PEREZ DE ARMIÑO, K 2000. Vulnerabilidad Diccionario de acción humanitaria y cooperación al desarrollo. Barcelona, ES, Instituto de Estudios sobre Desarrollo y Cooperación Internacional. Disponible en: http://www.dicc.hegoa.ehu.es/listar/mostrar/228
- PORTUGUES M. 2011 Fundamento teorico-practico de percepción remota y sistema de información geográfica. Universidad Nacional Agraria La Molina

- Proyecto Apoyo a la Prevención de Desastres en la Comunidad Andina (PREDECAN). La gestión del riesgo de desastres: Un enfoque basado en procesos.
 2009. Disponible en:
 - http://www.comunidadandina.org/predecan/doc/libros/procesos_ok.pdf
- RODGERS, K. 1993. Manual sobre el manejo de peligros naturales en la planificación para el desarrollo regional. Departamento de Desarrollo Regional y Medio Ambiente. Organización de Estados Americanos. Washington, D.C.
- RODRIGUEZ. M. ANDREA. Apuntes del curso Introducción a Base de Datos.
 Universidad de Concepción, Chile 2007. Disponible en:
 http://www.inf.udec.cl/~andrea/cursos/Database/introduccion.pdf
- SABORIO. J. 2003. Estudio del riesgo integral en la cuenca del Río Savegre. ICE proyectos y servicios asociados. CR. 78p.
- SUBDERE (Subsecretaría de Desarrollo Regional y Administrativo, CL). 2011.
 Guía de análisis de riesgo naturales para el ordenamiento territorial. 1° ed. 147 p.
 Disponible en:
 - http://www.cepal.org/dmaah/noticias/paginaa/6/44966/guia_gestion_riegos_natural es.pdf
- UNITED NATIONS INTERNATIONAL STRATEGY FOR DISASTER REDUCTION (UNISDR) 2004. Let's learn to prevent disasters.
 Disponible en: http://www.unisdr.org/2004/campaign/bookleteng/Booklet-english.pdf
- VÁSQUEZ VILLANUEVA, A. 2000. Manejo de cuencas Altoandinas, Tomo I, capitulo IV: Conservación de suelo en el Manejo de Cuencas. 257 p. Perú. Capítulo I: Elementos básicos sobre cuencas hidrográficas. 26 p.

VIII. ANEXOS

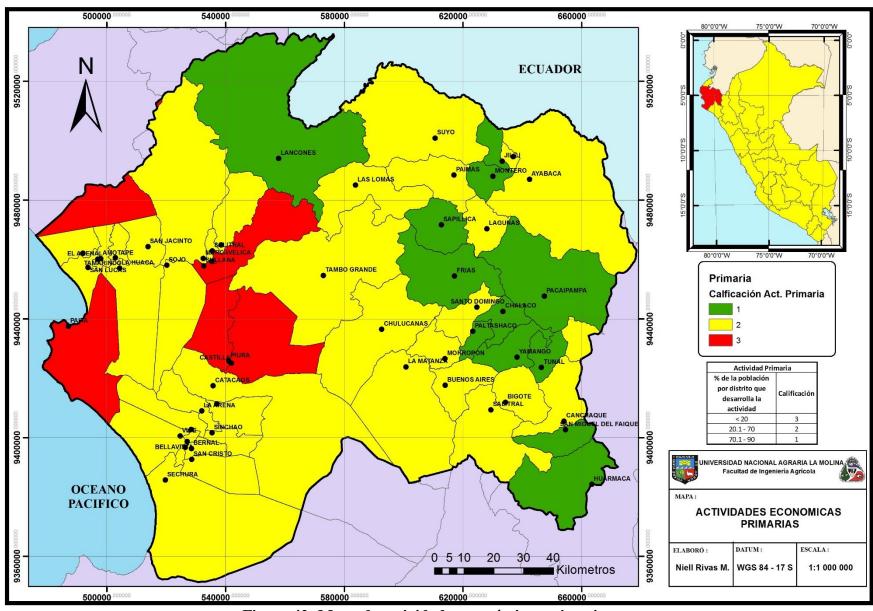


Figura 42: Mapa de actividades económicas primarias

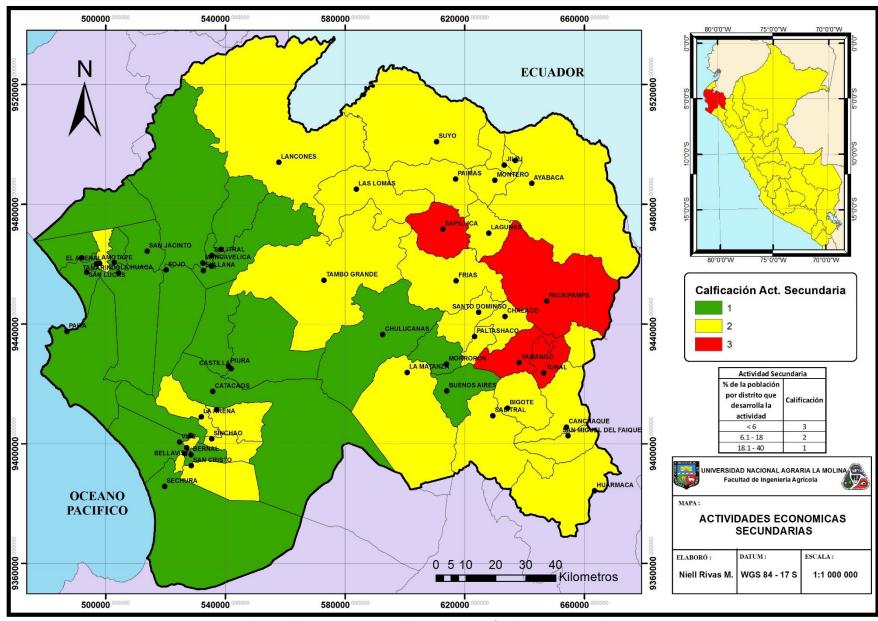


Figura 43: Mapa de actividades económicas secundarias

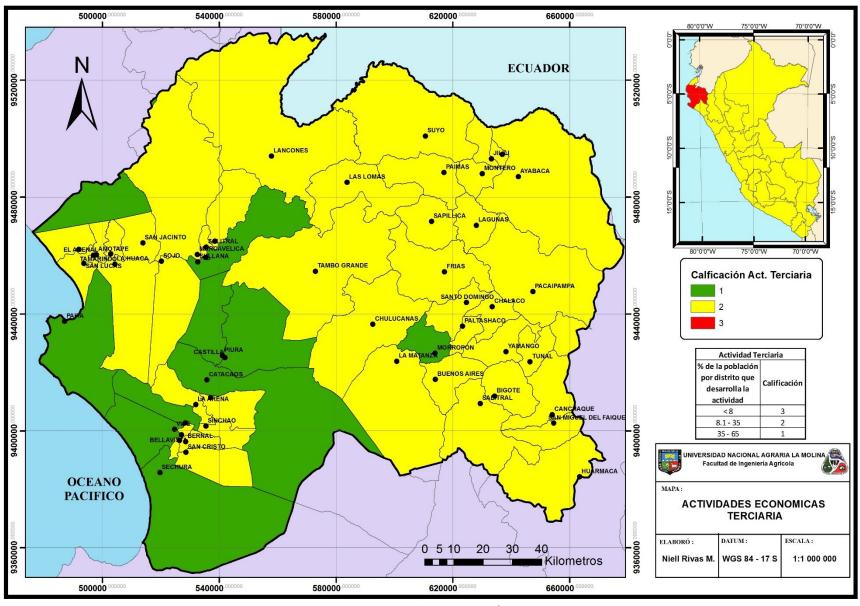


Figura 44: Mapa de actividades económicas terciarias

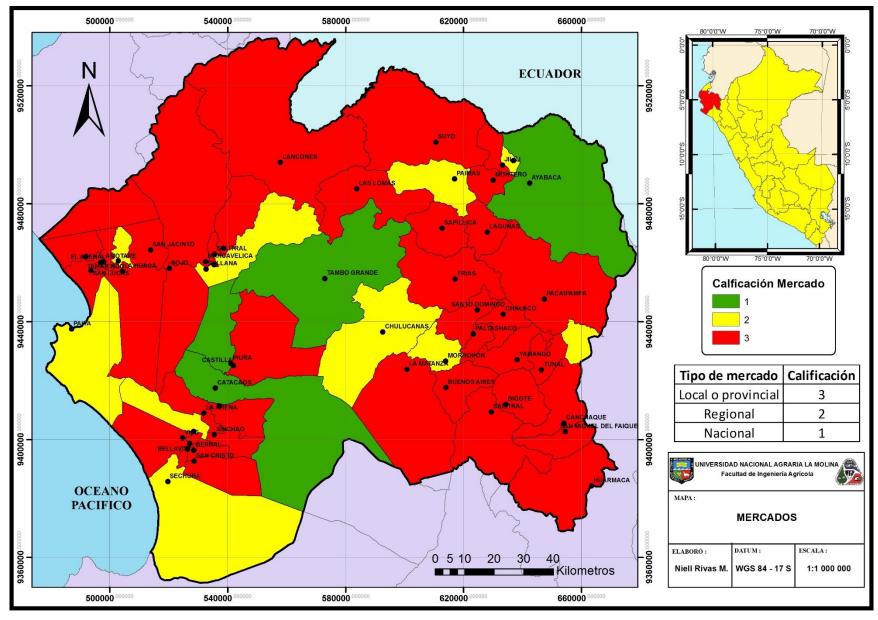


Figura 45: Mapa de mercados

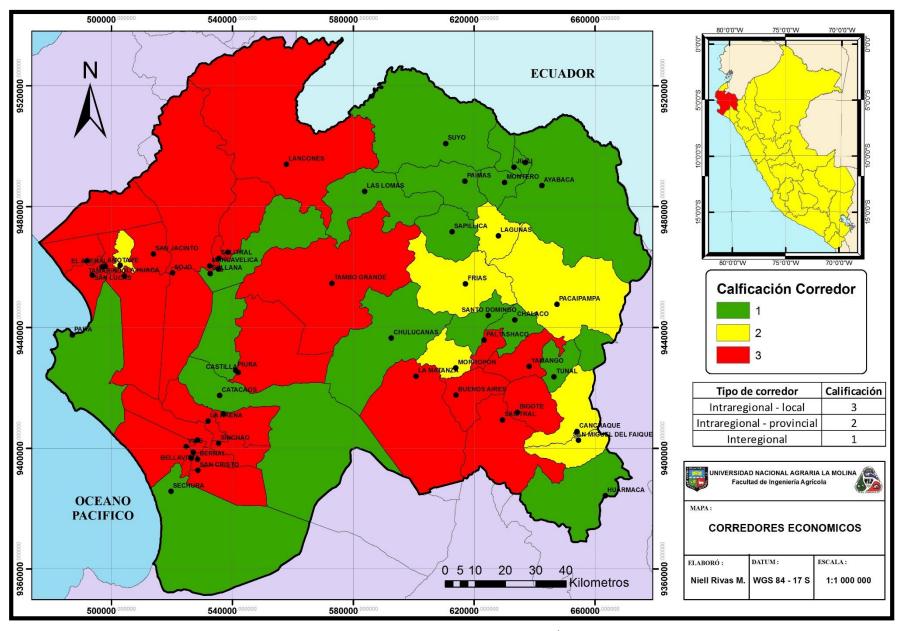


Figura 46: Mapa de corredores económicos