UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

Facultad de Ciencias Forestales

Propiedades mecánicas de

Cedrelinga cateniformis Ducke

(Tornillo) proveniente de dos tipos de

plantaciones y diferentes edades del

Centro de Investigación Jenaro

Herrera - Loreto

Tesis para optar el Título de

INGENIERO FORESTAL

Carlos Alberto Condori Rosales

Lima – Perú 2007

RESUMEN

Determina la resistencia mecánica de *Cedrelinga cateniformis* Ducke (Tornillo) proveniente de plantaciones de tres edades del Centro de Investigación Jenaro Herrera en Loreto, remitidas por el IIAP de esa zona. El objetivo planteado fue: evaluar las propiedades mecánicas del Tornillo provenientes de dos tipos de plantaciones y diferentes edades, para proponer los usos probables a las diferentes edades con la finalidad de optimizar su aprovechamiento.

La metodología empleada fue analizar 3 árboles para cada edad, donde las edades de 15 y 29 años corresponden al tipo de plantación A campo abierto; mientras que 24 años para la plantación Fajas de enriquecimiento. Para posteriormente someter a ensayos destructivos las maderas de dichas plantaciones.

Los resultados nos demuestran para las plantaciones A campo abierto, uso netamente no estructural para ambas edades; además se recomienda aprovechar la madera de 15 años y no esperar a un turno de cosecha de 29 años, pues la clasificación por resistencia mecánica y el volumen de madera son similares. Para el caso de la plantación En faja de enriquecimiento, trabajos de mueblería orientados a la producción de persianas, ficheros, carpetas de trabajo y rondanas; debido a la muy baja resistencia.

ÍNDICE

	P	ágina
DEDICAT	ORIA	.III
AGRADEC	CIMIENTOS	. IV
RESUMEN	V	V
LISTA DE	CUADROS	. IX
LISTA DE	FIGURAS	X
1. INTR	RODUCCIÓN	1
2. REVI	ISIÓN DE LITERATURA	2
	CLASIFICACIÓN TAXONÓMICA	
	DESCRIPCIÓN BOTÁNICA	
	DISTRIBUCIÓN Y HÁBITAT	
	DESCRIPCIÓN DE LA ZONA DE ESTUDIO.	
2.4.1	CLIMA	
2.4.2	FISIOGRAFÍA	7
2.4.3	RELIEVE	
2.5	DESCRIPCIÓN DE LA MADERA	8
2.5.1	CARACTERÍSTICAS GENERALES	8
2.5.2	CARACTERÍSTICAS ANATÓMICAS	8
2.5.3	PROPIEDADES FÍSICO - MECÁNICAS	
2.5.4	CARACTERÍSTICAS DE SECADO Y DURABILIDAD	
2.5.5	PROPIEDADES DE TRABAJABILIDAD	
2.5.6	USOS	
	VARIABILIDAD DE LA MADERA	14
2.6.1	VARIABILIDAD DENTRO DEL ÁRBOL	
2.6.2	VARIABILIDAD ENTRE ÁRBOLES DE LA MISMA ESPECIE	
2.6.3	EFECTOS DE LA SILVICULTURAINTERRELACIÓN ENTRE LA ANATOMÍA Y LAS PROPIEDADES MECÁNICAS DE	1/
2.6.4	INTERRELACION ENTRE LA ANATOMIA Y LAS PROPIEDADES MECANICAS DE IADERA	
2.6.5		
	FISIOLOGÍA DEL CRECIMIENTO DEL ÁRBOL	
	CARACTERÍSTICAS DE CRECIMIENTO DE LOS ÁRBOLES	
	ERIALES Y MÉTODOS	
	LUGAR DE EJECUCIÓN	
	MATERIALES Y EQUIPOS	
	MATERIALES	29
3.2.2	EQUIPOS Y ACCESORIOS	32
	MÉTODOS Y PROCEDIMIENTO	
3.3.1 3.3.2	SELECCIÓN Y COLECCIÓN DE MUESTRAS	
3.3.3	CODIFICACIÓN DE VIGUETAS	
3.3.4	SELECCIÓN DE VIGUETAS	30
3.3.5	PREPARACIÓN Y ACONDICIONAMIENTO DE PROBETAS	38
3.3.6	PROCEDIMIENTO	
3.3.7	PROCESAMIENTO DE DATOS Y ANÁLISIS DE RESULTADOS	
	ULTADOS Y DISCUSIÓN	44
4.1	PROPIEDADES MECÁNICAS	44

4.1.1 A campo abierto	
4.1.2 Fajas de enriquecimiento	55
ESPECIE	63
4.2.1 A campo abierto	
4.2.2 Fajas de enriquecimiento	68
4.3.1 A campo abierto	
4.3.2 Fajas de enriquecimiento	
4.4 APTITUDES DE USO	
4.4.1 A campo abierto	
5. CONCLUSIONES	
5.1 A CAMPO ABIERTO	88
5.2 FAJAS DE ENRIQUECIMIENTO	89
6. RECOMENDACIONES	91
BIBLIOGRAFÍA	93
ANEXO 1	99
VALORES PROMEDIOS Y RANGOS DE LAS PROPIEDADES MECÁNICAS DEL TORNILLO	99
ANEXO 2	100
RANGOS DE CLASIFICACIÓN DE LAS MADERAS SEGÚN SUS PROPIEDADES MECÁNICAS	100
ANEXO 3	101
Propiedades mecánicas del Tornillo de 15 años	101
ANEXO 4	102
Propiedades mecánicas del Tornillo de 15 años	102
ANEXO 5	103
PROPIEDADES MECÁNICAS DEL TORNILLO DE 24 AÑOS	103
ANEXO 6	104
PROPIEDADES MECÁNICAS DEL TORNILLO DE 24 AÑOS	
ANEXO 7	
PROPIEDADES MECÁNICAS DEL TORNILLO DE 29 AÑOS	105
ANEXO 8	
PROPIEDADES MECÁNICAS DEL TORNILLO DE 29 AÑOS	106
ANEXO 9	
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE FLEXIÓN ESTÁTICA LAS TRES EDADES DEL TORNILLO	
ANEXO 10	108
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE COMPRESIÓN PARA PARA LAS TRES EDADES DEL TORNILLO	
ANEXO 11	109
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE COMPRESIÓN PERPENDICULAR PARA LAS TRES EDADES DEL TORNILLO	109
ANEXO 12	110

COMPARACION DE VALORES PROMEDIOS DE LOS ESFUERZOS DE DUREZA PARA LAS EDADES DEL TORNILLO	
ANEXO 13	111
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE TENSIÓN PERPENDICULAR PARA LAS TRES EDADES DEL TORNILLO	
ANEXO 14	112
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE CLIVAJE PARA LAS EDADES DEL TORNILLO	
ANEXO 15	113
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE CIZALLAMIENTO I LAS TRES EDADES DEL TORNILLO	
ANEXO 16	114
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE TENACIDAD PARA TRES EDADES DEL TORNILLO	114
ANEXO 17	115
ENSAYO DE CLIVAJE PARA LAS TRES EDADES DEL TORNILLO	115
ANEXO 18	116
ENSAYO DE TENSIÓN PERPENDICULAR PARA LAS TRES EDADES DEL TORNILLO	116
ANEXO 19	117
ENSAYO DE CIZALLAMIENTO PARA LAS TRES EDADES DEL TORNILLO	117

Lista de cuadros

Página

	Propiedades Físicas y Características Anatómicas del Tornilllo provenienti	
PLANTA	ACIONES EXPERIMENTALES DE JENARO HERRERA DE TRES EDADES Y DE BOSQUE NATURAL	
CUADRO 2	:Características de los árboles y trozas seleccionadas para el estudio	
PROPIE	DADES FÍSICAS Y MECÁNICAS DEL TORNILLO DE PLANTACIONES	
CUADRO 3	: CARACTERÍSTICAS DE LAS PLANTACIONES DE LAS CUALES SE SELECCIONARON	LOS
ÁRBOLI	ES DE TORNILLO	
CUADRO 4	: NÚMERO DE PROBETAS PARA ENSAYOS MECÁNICOS DEL TORNILLO DE TRES EDA	MES
DIFERE	NTES	
CUADRO 5	: Propiedades Físicas según Norma Técnica Empleada	
CUADRO 6	: PROPIEDADES MECÁNICAS SEGÚN NORMA TÉCNICA EMPLEADA	
CUADRO 7	: VALORES PROMEDIO POR EDADES Y NIVELES DE CORTE DEL TORNILLO DE 15 Y 29 AÑOS	346
CUADRO 8	: VALORES PROMEDIO POR EDADES Y NIVELES DE CORTE DEL TORNILLO DE 15 Y 29 AÑOS	47
CUADRO 9	: COEFICIENTES DE VARIACIÓN ENTRE, DENTRO Y TOTALES PARA LAS PLANTACIONES D	E 15
y 29 añ	OS DE TORNILLO Y SU COMPARACIÓN SEGÚN WOOD HANDBOOK	48
CUADRO 10	: ANÁLISIS DE VARIANZA PARA LAS EDADES, NIVELES Y ENTRE ÁRBOLES, PARA	LAS
PLANTA	ACIONES DE TORNILLO DE 15 Y 29 AÑOS	49
CUADRO 11	: INFORMACIÓN SILVICULTURAL SOBRE LAS PLANTACIONES A CAMPO ABIERTO PARA	LAS
EDADES	S DE 15 Y 29 AÑOS	52
CUADRO 12	: VALORES PROMEDIO POR EDAD Y NIVELES DE CORTE DEL TORNILLO DE 24 AÑOS	56
CUADRO 13	: VALORES PROMEDIO POR EDAD Y NIVELES DE CORTE DEL TORNILLO DE 24 AÑOS	57
CUADRO 14	: COEFICIENTES DE VARIACIÓN ENTRE, DENTRO Y TOTALES PARA LA PLANTACIÓN D	E 24
AÑOS D	E TORNILLO Y SU COMPARACIÓN SEGÚN WOOD HANDBOOK	
CUADRO 15	: ANÁLISIS DE VARIANZA PARA LOS NIVELES Y ENTRE ÁRBOLES, PARA LA PLANTACIÓN	N DE
TORNII	LLO DE 24 AÑOS	59
CUADRO 16:	PRUEBA DE TUCKEY PARA LA PLANTACIÓN DE 24 AÑOS RESPECTO A LOS NIVELES DE CO	RTE
		60
CUADRO 17	: CLASIFICACIÓN DE RESISTENCIA DE PROPIEDADES MECÁNICAS DEL TORNILLO	DE
PLANTA	ACIONES DE 15 Y 29 AÑOS EN COMPARACIÓN CON EL TORNILLO PROVENIENTE DE BOS	QUE
NATUR	AL	64
CUADRO 18	: CUADRO COMPARATIVO DEL TORNILLO, LUPUNA Y CAOBA PROVENIENTES DE BOSQ	QUES
NATUR	ALES CON EL TORNILLO DE PLANTACIONES DE 15 Y 29 AÑOS	65
CUADRO 19:	CLASIFICACIÓN DE RESISTENCIA DE PROPIEDADES MECÁNICAS DEL TORNILLO	DE
PLANTA	ACIONES DE 24 AÑOS EN COMPARACIÓN CON EL TORNILLO PROVENIENTE DE BOSQUE NATU	RAL
CUADRO 20	: CUADRO COMPARATIVO DEL TORNILLO, LUPUNA Y MARUPA PROVENIENTES DE BOSQ)UES
NATUR	ALES CON EL TORNILLO DE PLANTACIONES DE 24 AÑOS	
CUADRO 21	: ECUACIONES Y COEFICIENTES DE DETERMINACIÓN Y DE CORRELACIÓN PARA REGRESIO	ONES
LINEAL	ES, CUADRÁTICAS Y CÚBICAS PARA LA PLANTACIÓN DE 15 AÑOS	76
CUADRO 22	: ECUACIONES Y COEFICIENTES DE DETERMINACIÓN Y DE CORRELACIÓN PARA REGRESIO	NES
LINEAL	ES, CUADRÁTICAS Y CÚBICAS PARA LA PLANTACIÓN DE 29 AÑOS	80
CUADRO 23	: ECUACIONES DE REGRESIÓN QUE MEJOR DESCRIBEN LA RELACIÓN DENSIDAD BÁSIC	CA -
PROPIE	DADES MECÁNICAS, PARA LAS PLANTACIONES DE 15 Y 29 AÑOS	81
CUADRO 24	: ECUACIONES Y COEFICIENTES DE DETERMINACIÓN Y DE CORRELACIÓN PARA REGRESIO	NES
LINEAL	ES, CUADRÁTICAS Y CÚBICAS PARA LA PLANTACIÓN DE 24 AÑOS	
CUADRO 25	: ECUACIONES DE REGRESIÓN QUE MEJOR DESCRIBEN LA RELACIÓN DENSIDAD BÁSIC	
PROPIEI	DADES MECÁNICAS. PARA LA PLANTACIÓN DE 24 AÑOS.	

Lista de figuras

Página

FIGURA 1	,	
	VA FOLIAR, C. FRUTO, D. FLOR Y E. PARTE DE LA INFLORESCENCIA	
Figura 2	: Planos de corte de <i>Cedrelinga cateniformis</i> D ucke. A. Corte Radial y B. Cor	
TANGI	ENCIAL	10
FIGURA 3	: SECCIONES MICROSCÓPICAS DE <i>CEDRELINGA CATENIFORMIS</i> DUCKE . A. SECCIÓN	
Trans	SVERSAL, B. SECCIÓN RADIAL Y C. SECCIÓN TANGENCIAL.	11
Figura 4	: Transición de madera juvenil a madura en Coníferas	
Figura 5	: ESTRUCTURA CELULAR DE MADERA MADURA, JUVENIL Y DE REACCIÓN	24
Figura 6	: DISTRIBUCIÓN DE MADERA JUVENIL Y MADURA EN EL FUSTE	25
Figura 7	: UBICACIÓN DEL C. I. JENARO HERRERA	
FIGURA 8	: UBICACIÓN GEOGRÁFICA DEL CENTRO DE INVESTIGACIONES DE JENARO HERRERA	34
FIGURA 9	: UBICACIÓN DE PARCELAS EXPERIMENTALES A CAMPO ABIERTO DEL CENTRO DE	
INVEST	TIGACIONES DE JENARO HERRERA	35
Figura 10	: NIVELES DE CORTE. DONDE: A. NIVEL BASAL, B. NIVEL MEDIO Y C. NIVEL APICAL	39
Figura 11	: FONDO DE PROBETA DE FLEXIÓN ESTÁTICA DE 29 AÑOS. EN T33A-B SE OBSERVA LA PRES	SENCIA
DE LAS	S ASTILLADURA PRODUCTOS DEL ENSAYO	53
FIGURA 12	: VISTA DE LADOS DE PROBETAS DE FLEXIÓN ESTÁTICA PARA LA EDAD DE 15 AÑOS. EN PRO	OBETA
T13B-	B, ASTILLADURA Y EN LA PROBETA T13B-A, QUEBRADURA	53
FIGURA 13	: Probetas T11A-2 radial y tangencial de Tenacidad, de 15 años. En ambas se pu	JEDE
APREC	IAR FALLAS DEL TIPO QUEBRADURA	54
Figura 14	: PROBETAS DE TENACIDAD, T31B-1 RADIAL Y TANGENCIAL. EN LAS QUE SE OBSERVAN FA	ALLAS
DEL TI	PO ASTILLADURA CORTA, CORRESPONDIENTES A LA EDAD DE 29 AÑOS	54
Figura 15	: FALLAS DEL TIPO QUEBRADURA EN LAS PROBETAS T21A-1 RADIAL Y TANGENCIAL PARA	
ENSAY	O DE TENACIDAD, CORRESPONDIENTES A LA EDAD DE 24 AÑOS	62
Figura 16	: VISTAS DE LADOS. EN T21B-A SE OBSERVA QUEBRADURA Y EN T21B-B LA PRESENCIA DI	Ε
QUEBR	ADURA; PERO EN DIFERENTE GRADO, ASÍ COMO, LA FALLA DE LA COMPRESIÓN EN LA ZONA	
SUPERI	IOR DE LA PROBETA	62
Figura 17	GRÁFICO COMPARATIVO DE PROPIEDADES MECÁNICAS DEL TORNILLO, LUPUNA Y CAOBA	
PROVE	NIENTES DE BOSQUES NATURALES CON EL TORNILLO DE PLANTACIONES DE 15 Y 29 AÑOS	66
Figura 18	: GRÁFICO COMPARATIVO DE PROPIEDADES MECÁNICAS DEL TORNILLO, LUPUNA Y MARUI	PA
PROVE	NIENTES DE BOSOUES NATURALES CON EL TORNILLO DE PLANTACIONES DE 24 AÑOS	72

1. INTRODUCCIÓN

Con las crecientes restricciones ambientales para realizar aprovechamientos maderables en bosques naturales, las plantaciones forestales constituyen una alternativa principal como fuente de abastecimiento para la industria forestal a mediano plazo, pues, además de la mayor productividad asociada a una mayor tasa de crecimiento de los árboles, pueden ofrecer otras ventajas a la industria forestal, como mayor uniformidad y mejor calidad de la materia prima y menores costos de producción y procesamiento industrial. Sin embargo, la reducción del turno de cosecha como consecuencia de la mayor tasa de crecimiento, ocasiona un aumento en la proporción de madera juvenil de los árboles que implican tratamientos y procesos especiales.

En la realidad forestal, normalmente se han considerado los aspectos silviculturales, y no se han realizado un control simultáneo de las características y propiedades tecnológicas durante la etapa de desarrollo del árbol; lo cual hace que en la actualidad se disponga de plantaciones de diferentes edades que no se conoce en que momento han alcanzado la madurez tecnológica ni calidad de la madera que se produce.

En esta situación se encuentran las plantaciones de Tornillo provenientes de la Unidad Experimental Jenaro Herrera; especie considerada como el tercer árbol maderable más importante por sus características tecnológicas y comerciales apreciadas en los mercados; destacando su buen comportamiento al secado natural y artificial, buena trabajabilidad con maquinas de carpintería y por su alta durabilidad natural.

El presente estudio tiene por objeto evaluar las propiedades mecánicas de *Cedrelinga cateniformis* **Ducke** (Tornillo) provenientes de dos tipos de plantaciones y diferentes edades del Centro de Investigación Jenaro Herrera, para determinar los usos probables a diferentes edades con la finalidad de optimizar su aprovechamiento.

2. REVISIÓN DE LITERATURA

2.1 CLASIFICACIÓN TAXONÓMICA

Familia:

Fabaceae (Brako, 1993)

Nombre Científico:

Cedrelinga cateniformis Ducke

Sinonimia:

- Piptadenia caeniformis Ducke
- Pithecellobium cateniformis Ducke (Chichignoud, et al, 1990)

Nombres Regionales:

- Aguano (Cuzco, Puno)
- Cedro Mayna (Pozuzo, Oxapampa)
- Huairacaspi (Iquitos, Satipo)
- Tornillo (Tingo María, Pucallpa) (JUNAC, 1981)

Nombres Internacionales:

- Brasil: Seique, Seiqui, Tsaik, Chuncho. (Chichignoud, et al, 1990), Cedrorana (JUNAC, 1981)
- Colombia: Achapo
- Ecuador: Seique, Sesqui, Tsaik chuncho
- Guyana Francesa: Don cede (JUNAC, 1981)

 Perú: Tornillo, Huayra caspi, Aguano, Cedro Mayna. (López, 1970), Pino Peruano (Reynel, et al, 2003)

2.2 DESCRIPCIÓN BOTÁNICA

Árbol que forma parte del estrato dominante del bosque donde se desarrolla, su altura varía entre 25 y 40 m, dependiendo de la "calidad de sitio". Su altura comercial se halla comprendida entre los 15 y 25 m y el DAP 60 a 150 cm; mientras que el ahusamiento presenta una diferencia de 22 a 24 cm entre el diámetro máximo y mínimo; así mismo, presenta raíces tablares, tronco generalmente recto (López, 1970) aunque los árboles sobremaduros tienen el inconveniente de presentar "huecos" en la parte central. (El Castañero, 1998)

Corteza fisurada con grietas longitudinales y profundas, color pardo oscuro en los árboles maduros y más claro en los árboles jóvenes de 2 a 3 cm de espesor; parecidas a las de Cedro de donde adopta el nombre genérico de Cedrelinga, cuyo aspecto rugoso da origen a la denominación más usada en Brasil "Cedro rana" (López, 1970). Ritidoma coriáceo que se desprende en placas rectangulares, sabor dulce y textura fibrosa. (Aróstegui, 1974)

Se ramifica en el tercio superior con ramas gruesas (Aróstegui, 1974), y en número reducido cuyos diámetros alcanzan dimensiones del fuste comercial. Copa globosa irregular poco compacta, especialmente en los árboles maduros. (López, 1970)

Hojas compuestas bipinnadas, alternas y dispuestas en espiral, de unos 30 a 40 cm de longitud, el pecíolo de unos 6 a 30 cm de longitud, las hojas usualmente con 4 pinas, las zonas de articulación de las pinas con una glándula de unos 2 a 5 mm de diámetro, las

láminas foliares ovadas, asimétricas, de unos 4 a 15 cm de longitud y 2 a 9 cm de ancho, enteras, el ápice acuminado, la base aguda e inequilátera, la nervación pinnada con 5 a 7 pares de nervios secundarios, los nervios terciarios muy paralelos y transversales al nervio central, las hojas glabras.

Inflorescencias en pániculas de 12 a 30 cm de longitud conteniendo numerosas cabezuelas agrupadas en manojos, las cabezuelas de 2,5 a 3,5 cm de longitud con pedúnculos de 1 a 2 de longitud.

Flores pequeñas, hermafrodita, de unos 1 a 1.5 cm de longitud, actinomorfas, con cáliz y corola presentes, el cáliz pequeño, de 1 a 2 mm de longitud, la corola blanquecina, de 4 a 5 mm de longitud, tubular, con 5 dientes; androceo de con muy numerosos estambres de 1 a 1.5 mm de longitud, el pistilo único con un largo y estigma obsoleto.

Frutos legumbres muy largas y aplanadas, de 30 a 40 cm de longitud y 2 a 3 cm de ancho, con 6 a 15 semillas, la legumbre estrechada entre las semillas y revirada helicoidalmente, que al ser vistos de lejos, semejan grandes tornillos, y de allí el nombre común de esta especie. (Reynel, et al, 2003).

La descripción botánica se observa en la Figura Nº 1.

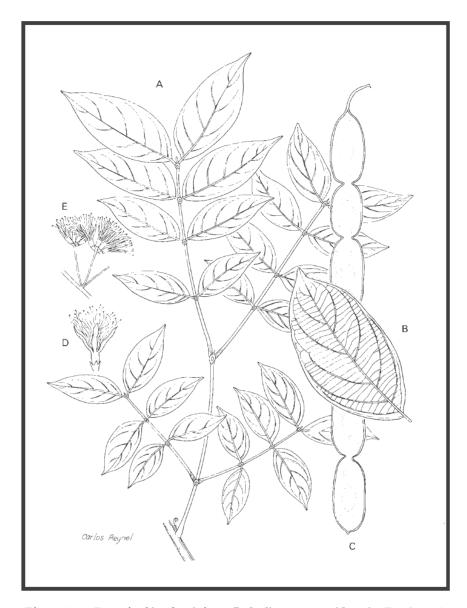


Figura 1 : Descripción botánica *Cedrelinga cateniformis* **Ducke**. **A.** Ramita con hoja, **B.** Lámina foliar, **C.** Fruto, **D.** Flor y **E.** Parte de la inflorescencia.

Fuente: Reynel, et al. (2003)

2.3 DISTRIBUCIÓN Y HÁBITAT

Se encuentran en los departamentos de Loreto (Iquitos, Yurimaguas), Ucayali (Pucallpa), Huanuco (Tingo María), Cuzco (Urubamba), San Martín y Madre de Dios; en formaciones ecológicas de bosque húmedo sub tropical (bh-ST), asociada con *Schweilera sp*, *Anthodiscus sp*, *Manilkara sp*, *Hevea sp*, *Lecythis sp* y otras. (Aróstegui, 1973)

López (1970), señala que posee una amplia distribución ecológica, encontrándose además en las formaciones de bosque húmedo tropical (bh-T), bosque muy húmedo subtropical (bmh-ST) y bosque seco tropical (bs-T), dentro de una gran variedad de suelos y clima. Es una especie que tiene la ventaja de poder crecer en suelos ácidos y de baja fertilidad, siempre que tengan buen drenaje. (El Castañero, 1998)

2.4 DESCRIPCIÓN DE LA ZONA DE ESTUDIO

2.4.1 CLIMA

Claussi, et. al. (1982), menciona que la región de Jenaro Herrera posee un clima típicamente ecuatorial. Las temperaturas medias mensuales oscilan muy poco a lo largo del año (25,0 °C en Julio y 26,2 °C en Noviembre y Marzo), con un promedio de 26,4 °C; las temperaturas absolutas más elevadas se registran de Enero a Marzo y de Agosto a Octubre, las más bajas ocurren generalmente en Julio. La precipitación media anual es de 2687 mm, y puede variar entre 1700 y 4000 mm, con precipitaciones mensuales entre 54 y 758 mm.

Marengo (1983), añade que la temporada menos pluviosa es de Junio a Setiembre, correspondiente a la temporada más soleada con 170 horas / mes de sol. Marmillod (1982), indica que un segundo periodo seco más corto ocurre entre los meses de Diciembre a Marzo, ubicándola en la zona subclimática oeste amazónica, cercana al límite con el subclima de Manaus, caracterizado por una sola estación seca.

2.4.2 FISIOGRAFÍA

López – Parodi y Freitas (1990), refieren que la región de Jenaro Herrera muestra dos paisajes: la planicie aluvial fluviátil, inundada estacionalmente durante el periodo de creciente del río Ucayali; y la llanura interfluvial o zona de altura "tierra firme", no influenciada por las variaciones estaciónales del nivel de agua del río principal. Este último paisaje tiene tres unidades fisiográficas: la terraza alta (la mayor parte de las plantaciones forestales han sido instaladas exclusivamente en este tipo de relieve), y la colina baja.

2.4.3 RELIEVE

Según Marmillod (1982), la terraza alta se presenta como una extensa llanura ubicada a unos 30 m sobre el máximo nivel de aguas del río Ucayali, al Sureste del pueblo de Jenaro Herrera. Es entallada por valles de 6 a 12 m de profundidad y de 10 a 300 m de ancho y estos se caracterizan por fondos muy llanos (bajiales) recorridos por quebradas que forman meandros, y laderas con pendientes de 10 a 20%.

Los bajiales ocupan un 25 a 30% de la superficie total de la terraza alta, cuando caen lluvias fuertes se producen inundaciones en todo el fondo y esto sucede cada 20 días durante un par de horas. Determinando de esta forma un desarrollo de tipo especial de bosque, rico en palmeras, marcando la diferencia con la vegetación del resto de terraza.

2.5 DESCRIPCIÓN DE LA MADERA

2.5.1 CARACTERÍSTICAS GENERALES

Acevedo y kikata (1994), señalan que en condición seca al aire, la albura es de color rosado claro y el duramen rosado oscuro (Figura Nº 2). Anillos de crecimiento poco diferenciados limitados por bandas oscuras en forma irregular. Grano recto a ligeramente entrecruzado, textura gruesa y brillo medio. Veteado ausente. Madera con peso específico básico de 0,45. Aróstegui (1974) añade que no tiene olor ni sabor característico; pero cuando se trabaja, produce un olor picante.

2.5.2 CARACTERÍSTICAS ANATÓMICAS

Según Acevedo y Kikata (1994); JUNAC (1981)

- Madera patrón: Madera de porosidad difusa. Poros visibles a simple vista, solitarios de forma redonda y múltiples radiales escasos de 2 a 4; con 1 a 5 poros/mm². Parénquima, visible con lupa 10x, paratraqueal vasicéntrico. Radios visibles con lupa 10x, con 5 a 11/mm, no estratificados.
- Vasos: El diámetro tangencial varía de 293 a 333 μm. y la longitud entre 412 y 430 μm. Platina de perforación horizontal con perforación simple. Punteado intervascular alterno con punteaduras redondas y abertura inclusa. Punteado radiovascular similar al intervascular. Presencia de inclusiones gomosas.

- Parénquima: Paratraqueal vasicéntrico, no estratificadas. Presencia de inclusiones gomosas.
- Radios: Homogéneos uniseriados, no estratificados. Altura entre 240 y 345 μm. De 1 a 2 células de ancho y 4 a 16 células de altura. presencia abundante de gomas.
- **Fibras:** Libriformes, no estratificada. El diámetro total es 24 μ m, el grosor de pared celular 3 μ m y la longitud varía entre 1443 y 1454 μ m.

Estas características se visualizan en la Figura Nº 3.

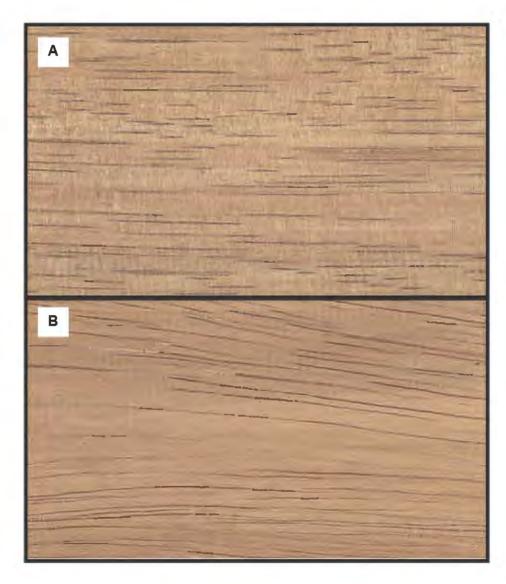


Figura 2 : Planos de corte de *Cedrelinga cateniformis* **Ducke**. **A.** Corte Radial y **B.** Corte Tangencial

Fuente: Laboratorio de Anatomía de la Madera

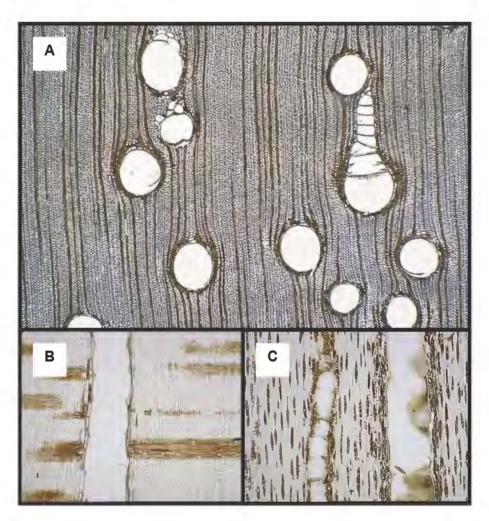


Figura 3 : Secciones microscópicas de *Cedrelinga cateniformis* Ducke. A. Sección Transversal, B. Sección Radial y C. Sección Tangencial.

Fuente: http://insidewood.lib.ncsu.edu

2.5.3 PROPIEDADES FÍSICO - MECÁNICAS

Aróstegui (1982) determinó las propiedades físico-mecánicas del Tornillo (*Cedrelinga cateniformis* Ducke) proveniente del bosque natural y Silva (2005), las propiedades físicas y características anatómicas de esta especie proveniente de plantaciones experimentales de Jenaro Herrera, de tres edades. El Cuadro Nº 1 incluye dicha información. Este último estudio concluye que la densidad básica se incrementa significativamente entre las edades de 15 y 29 años, que la variación dimensional se incrementa significativamente en contracción radial y volumétrica mientras que en sentido tangencial y longitudinal disminuyen entre dichas edades.

Soudre (1999) y Durán (2003), evaluaron la influencia de cuatro factores de crecimiento en las propiedades físicas y mecánicas de *Cedrelinga cateniformis* Ducke en plantaciones provenientes del Bosque Alexander Von Humboldt. La primera, señala, que el factor de mayor influencia en los resultados de la densidad básica y contracción radial es la edad seguida del suelo, fisiografía y tipo de regeneración. Mientras Durán (2003), concluye que el mejor factor asociado con las propiedades mecánicas es la fisiografía seguido del tipo de suelo y tipo de regeneración; no habiéndose demostrado, para el intervalo de edades (9 a 15 años), que la edad tenga un efecto significativo sobre las propiedades mecánicas. Para fines de la presente investigación sólo se ha considerado la información relacionada con la fisiografía (plana), suelo (acrisoles), tipo de regeneración (natural, 14 años y campo abierto, 10 años).

Cuadro 1 : Propiedades Físicas y Características Anatómicas del Tornilllo proveniente de plantaciones experimentales de Jenaro Herrera de tres edades y de bosque natural

EDAD (Años)	ESTADÍSTICO	PROPIEDADES FÍSICAS						CARACTERÍSTICAS ANATÓMICAS									
			CONTRACCIÓN (%)				POROS			RADIOS			FIBRAS				
		DENSIDAD	RADIAL	TANGENCIAL	LONGITUDINAL	VOLUMÉTRICA	DIÁMETRO TANGENCIAL (µm)	N° / mm2	LONGITUD (µm)	ALTURA (µm)	ANCHO (µm)	N° / mm	DIÁMETRO (µm)	ESPESOR (µm)	LONGITUD (µm)	LÜMEN (µm)	
	Prom.	0.41	3.80	7.75	0.38	9.86	236.65	1.55	314.76	201.83	12.99	6.61	28.77	2.35	1317.90	24.10	
15	Rango	0.58 - 0.33	5.67 - 2.81	9.60 - 6.80	1.01 - 0.08	13.25 - 7.65	408.0 - 92.1	8.0 - 0.0	537.6 - 153.6	436.8 - 43.2	33.6 - 4.8	13.0 - 2.0	62.0 - 12.5	3.8-1.3	1740.0 - 844.8	60.0 - 7.5	
	C.V.	12.8	12.7	8.1	54.4	11.2	12.7	25.6	7.5	11.1	13.7	11.9	11.6	10.3	9.7	14.1	
24	Prom.	0.30	3.99	7.20	0.23	9.42	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	
	Rango	0.45 - 0.16	6.50 - 2.40	9.99 - 5.03	0.54 - 0.01	15.77 - 7.57	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	
	C.V.	25.5	20.0	11.8	43.0	15.7	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	
29	Prom.	0.43	4.61	7.55	0.33	10.33	266.50	1.33	306.33	175.92	14.57	6.79	25.37	2.28	1264.60	20.80	
	Rango	0.56 - 0.30	7.12-3.18	10.26 - 4.27	0.86 - 0.08	13.09 - 6.87	460.6 - 105.3	19.0 - 0.0	537.6 - 153.6	398.4 - 9.6	28.8 - 9.6	13.0 - 2.0	50.0 - 12.5	10.0 - 1.3	1705.2 - 384.0	45.0 - 2.5	
	C.V.	15.2	15.20	14.20	56.80	12.20	11.30	37.00	8.00	13.90	26.70	9.60	12.50	10.20	8.20	15.10	
BOSQUE NATURAL	Prom.	0.45	3.17	6.90	-	10.65	S.I.	S.I.	S.I.	S.I.	S.I.	S.I.	24	3	S.I.	18	
	Rango	S.I.	S.I.	S.I.	S.I.	S.I.	333.0 - 293.0	5.0 - 1.0	430.0 - 412.0	345.0 - 240.0	S.I.	11.0 - 5.0	S.I.	S.I.	1454.0 - 1443.0	S.I.	

Fuente: Aróstegui (1982), Acevedo y Kikata (1994) y Silva (2005).

Donde:

S.I.: Sin Información

2.5.4 CARACTERÍSTICAS DE SECADO Y DURABILIDAD

Tiene buen comportamiento al secado al aire libre, no sufre alabeos ni rajaduras si se apilan las maderas correctamente. Respecto a la durabilidad el duramen es muy poco susceptible al ataque de hongos e insectos, por contener ciertas sustancias repelentes. Aróstegui (1974).

2.5.5 PROPIEDADES DE TRABAJABILIDAD

Puede trabajarse con toda clase de herramientas a mano y máquina. En las operaciones de cepillado, torneado y taladrado se comporta de forma buena, regular al moldurado y fácil al aserrío. Aróstegui (1982).

2.5.6 USOS

Aróstegui (1970) señala que esta especie posee un amplio mercado en el Perú para construcción, carpintería y ebanistería; menciona que también se usa en carrocerías y en la elaboración de tableros de partículas.

2.6 VARIABILIDAD DE LA MADERA

Pashin y De Zeeuw (1980) señalan que la calidad de la madera, es decir, su adaptabilidad para un uso particular, es juzgada por uno o más factores variables los cuales afectan su estructura y a su vez sus propiedades físicas. Por ejemplo, leves cambios en longitud de células, espesor de pared celular, diámetros de células, ángulo de fibrillas de la pared

celular, porcentaje de los tipos de células y relación de celulosa / lignina, son importantes para la calidad de la pulpa y son reflejados en cambios en la densidad, con todos los cambios en las propiedades físicas relacionadas con dicha propiedad. Estas variaciones en la madera aparecen por el hecho de que la actividad físiológica del cambium es afectada por varios sistemas:

- Cambios por la edad o maduración del cambium, el cual esta asociado con la variación dentro de árboles de una especie.
- Factores genéticos que es una de las causas básicas para la variación entre árboles.
- Factores ambientales tales como lluvias, temperatura y tratamientos silviculturales, los cuales afectan la disponibilidad de agua y nutrientes para el cambium. Este tipo de influencia afectan tanto la variación dentro y entre árboles.

2.6.1 VARIABILIDAD DENTRO DEL ÁRBOL

Arroyo (1983) señala que los patrones de variación de los elementos estructurales y de las propiedades físicas están bien establecidos para árboles normales que han crecido bajo condiciones naturales en el bosque y hace referencia a la variabilidad de los elementos fíbrosos y del peso específico de la madera; características que tienen primordial importancia como índices de las propiedades mecánicas. Thibaut (1988), a los factores estructurales mencionado por Arroyo, agrega los factores físico-químicos y factores históricos.

Respecto al primero, señala a tres principales factores físicos: densidad humedad y temperatura interna de la madera que dependen frecuentemente de las condiciones experimentales; añade que la naturaleza química es compleja y propone que sea abordada en tres niveles de acuerdo al tipo de estudio: nivel macro, presencia de elementos de base

(carbono, hidrógeno, oxígeno y minerales), por ejemplo para carbonización; nivel intermedio, porcentaje de celulosa, hemicelulosa, lignina, principales extractivos y compuestos minerales; nivel micro, naturaleza de los extractivos, descripciones de las principales macromoléculas, tasa de cristalinidad de la celulosa, localización forma y dimensiones de inclusiones minerales. Ilustra, que en un estudio de fricción la presencia localizada de ácidos grasos perturbara el análisis; y que la presencia de almidón y azucares pueden tener un impacto considerable sobre la resistencia a la degradación biológica.

2.6.2 VARIABILIDAD ENTRE ÁRBOLES DE LA MISMA ESPECIE

Arroyo (1983), menciona, la variabilidad en las características de la madera de una misma especie puede ocurrir de un árbol a otro, en la madera de diferentes partes dentro de un mismo árbol y aún dentro de una misma pieza de madera. Estas variaciones en las propiedades de la madera son en gran parte el resultado de los patrones de crecimiento de los árboles, así como también de las influencias ambientales que afectan ese crecimiento, tales como clima, suelo, humedad y competencia, es indudable que los factores genéticos, hasta el presente mayoritariamente desconocidos, también juegan papel importante. Así mismo, Castro (1972), menciona que el factor externo suelo ejerce gran influencia en el desarrollo del árbol y esto se ve reflejado en la calidad de la madera; así cuando el terreno es húmedo la fibra resulta ligera y esponjosa siendo el exceso de agua el que impide que la savia se concentre y forme un tejido compacto, en cambio los árboles de maderas duras se desarrollan en terrenos secos y arcillosos.

Entre los factores indicativos de la variabilidad en las características de la madera, la apariencia, velocidad de crecimiento, densidad y orientación del grano, son los más fácilmente reconocibles. Por otra parte, las diferencias en las propiedades mecánicas, estabilidad dimensional o la durabilidad, pueden obedecer a razones menos evidentes, tales como tipos y organización de las células dentro de los anillos de crecimiento, composición y

cantidades de extractivos, orientación de las microfibrillas en las paredes celulares, o el espesor y la estructura de la pared secundaria. (Arroyo, 1983)

2.6.3 EFECTOS DE LA SILVICULTURA

Según Arroyo (1983), los tratamientos silviculturales han demostrado tener mayores efectos sobre algunas propiedades de la madera, tales son la manipulación del espacio entre árboles (distancia de siembra y posteriores aclareos) y la estimulación mediante el suministro de nutrientes y agua. A continuación se describen cada una de estas características:

El tamaño de la copa y el espaciamiento entre árboles de coníferas ha demostrado ser muy importante para controlar la velocidad de crecimiento. Las comparaciones de árboles dominantes, codominantes y dominados ha mostrado que el peso específico aumenta con la eliminación o aclareo para la misma edad y posición de la muestra en el tallo. Los árboles dominantes presentan mayores diámetros de traqueidas, menores longitudes y más bajos pesos específicos que los árboles dominados. Sin embargo, el espesor de la pared celular es máximo en los árboles codominantes a edades y posiciones similares. Controlando el número de árboles en un sitio es posible regular el espaciamiento entre árboles para producir la velocidad de crecimiento deseada. Por ejemplo, retardando el crecimiento de los árboles jóvenes de plantaciones, se reducirá a un mínimo la columna de madera juvenil y disminuirá la cantidad de material de baja densidad con características anormales o de contracción. El aclareo en parcelas de árboles jóvenes o maduros permite obtener el espaciamiento óptimo de las copas, lo cual produce incremento de las velocidades de crecimiento, aumento en las proporciones de madera temprana y disminución del incremento del peso específico. Por otra parte, el aclareo de parcelas de árboles sobremaduros de muchas coníferas origina un incremento del porcentaje de madera tardía y del peso específico.

- La aplicación de fertilizantes a los árboles en desarrollo puede producir un aumento del crecimiento, si los elementos nutritivos del sitio están por debajo del óptimo para la especie. En general, las velocidades de crecimiento de mediana a rápida, producidas por fertilización o aclareo, originan iguales efectos en las propiedades de la madera.
- Se ha demostrado que el agua disponible, ya sea en forma de lluvia, por riego, o como subterránea, influye en el porcentaje de madera tardía. En casi todas las coníferas, los estudios realizados indican que la humedad óptima durante todo el período de crecimiento estimula la formación de anillos anchos, tanto en la madera temprana como en la tardía, máximo porcentaje de madera tardía y el incremento del peso específico promedio para la misma especie y la misma posición en el tallo. El aumento del porcentaje de madera tardía en esta condición se debe al aumento en la producción de células de paredes gruesas, con diámetros relativamente grandes, en la primera madera tardía formada.
- El esfuerzo realizado por la escasez de humedad al principio del período de crecimiento, restringe la actividad en la copa del árbol y reduce la producción de auxina, con el consecuente inicio de la formación de madera tardía y el estrechamiento del incremento o anillo de crecimiento. La sequía prolongada durante todo el período de crecimiento también reduce el porcentaje de madera tardía, porque bajo tales condiciones sólo pueden formarse las células planas de la madera tardía. Sin embargo, no todas las especies de coníferas reaccionan a la humedad de esta manera.
- La ubicación geográfica sumada a los efectos climáticos relativos a la temperatura y precipitación, producen variaciones entre los árboles de una misma especie.

2.6.4 INTERRELACIÓN ENTRE LA ANATOMÍA Y LAS PROPIEDADES MECÁNICAS DE LA MADERA

Mateus, citado por Oliveira, Della Lucia y Ramlho (1988), afirma que cada especie forestal esta caracterizada por una estructura anatómica bien diferenciada desde el punto de vista de su geometría, composición y arreglo de sus elementos constituyentes que permiten hacer inferencias respecto a su comportamiento físico-mecánico. Las propiedades de resistencia no son el reflejo de una sola característica anatómica, sino que el resultado de la interacción de diferentes características estructurales. (Espinoza de Pernía y León, 2001)

La característica anatómica de mayor influencia en las propiedades de resistencia mecánica de la madera es el grosor de las paredes de las fibras, observándose que en aquellas maderas en donde se desarrollan fibras de paredes gruesas sus propiedades de resistencia son mayores a las de maderas con fibras delgadas. (Leclercq, 1980)

Espinoza de Pernía y León (2001), señalan, la longitud de las fibras ejerce un papel preponderante cuando se aplican esfuerzos en dirección paralela al grano. La resistencia a la compresión paralela a las fibras, la resistencia a la tensión y la dureza de los extremos son propiedades que se encuentran altamente influenciados por esta característica. En estos casos se observa que aquellas especies que desarrollen fibras de mayor longitud, van a desarrollar mayores valores en las diferentes propiedades mencionadas. Fahn (1978), señala que también la calidad de la madera, se debe a la presencia o ausencia de fibras, su número relativo, su diámetro y el grosor de sus paredes celulares, su longitud y la proporción en que se entrecruce: así mismo su forma recta o curvada.

Para León y Espinoza (2001), agregan que la proporción y distribución del parénquima axial también juega un papel importante en las propiedades de resistencia mecánica. Aquellas

maderas que presenten altas cantidades de tejido parenquimático tienden a desarrollar menores valores en las diferentes propiedades de resistencia mecánica.

La presencia de conductos gomíferos y floema incluso también pueden afectar el comportamiento mecánico de la madera. Ambas estructuras se presentan como discontinuidades del tejido leñoso en donde se presentan planos de debilidad que ocasionan la disminución de las propiedades de resistencia en las maderas en donde se presentan.

Tamaño y proporción del tejido parenquimático radial también pueden afectar las propiedades de resistencia mecánica.

Fahn (1978), indica, maderas con muchas fibras leñosas son fuertes y de allí que las maderas pesadas sean resistentes. La longitud de las fibras y el grado en que se entrecrucen son al parecer de menor importancia para la resistencia de la madera. Madera flexible es aquella que su estructura es homogénea, con fibras largas y rectas, que se entrecruzan parcialmente y tienen los radios rectos. La flexibilidad depende también de la cantidad de agua que posee la madera. La resistencia a la tracción depende de la mutua cohesión entre las fibrillas, las resistencias máximas a la tracción están relacionadas con una rotura larga, es decir las paredes rotas tienen extremos astillados y las maderas con rotura corta tienen resistencia pequeña a la tracción.

2.6.5 MADERA JUVENIL Y MADERA MADURA

Silva (2003), señala que el tallo de un árbol puede ser clasificado en dos regiones basadas en diferencias fundamentales de estructura y propiedades, estas son madera juvenil y madera madura, siendo la primera considerada de menor calidad por poseer características

estructurales y propiedades físicas inferiores en comparación a aquellas en la madera madura.

La madera juvenil forma una columna cilíndrica alrededor de la médula, como resultado de la influencia prolongada de los meristemas apicales de la corona activa durante la formación de la madera por el cambium. A medida que la corona se mueve hacia arriba en crecimiento, la influencia de los meristemas apicales en una región cambial dada disminuye y la madera madura es formada (Pashin y De Zeeuw, 1980). No obstante, no existe una demarcación definida entre la madera juvenil y madura. En su lugar existe una transición gradual de las propiedades de la madera, siendo cada una de éstas las que independientemente definen un límite (Figura Nº 4). Sin embrago, los investigadores están de acuerdo en que la madera juvenil predomina en los primeros 5 a 20 anillos de crecimiento, dependiendo de las especies (Haygreen y Bowyer, 1982).

Los mismos autores afirman que la madera juvenil presenta células más cortas que la madera madura, tiene relativamente pocas células de madera tardía y una alta proporción de células que tienen capas con paredes delgadas, siendo el resultado de esto una baja densidad y una correspondiente menor resistencia en comparación con madera madura. Además parece haber una tendencia al grano en espiral y un ángulo microfibrilar mayor en la capa S_2 de la pared secundaria, que es también típico en la madera de reacción que comúnmente se desarrolla en la zona de madera juvenil. Estas características ocasionan una alta contracción longitudinal y una disminución en la contracción transversal. Además grandes ángulos microfibrilares están asociados con baja resistencia en tensión (Figura N^o 5).

Por regla general, la baja calidad de la madera juvenil es más significativa en coníferas que en latifoliadas, Arroyo (1983). Su presencia tiene varios impactos sobre las propiedades de la madera como lo son el aumento de la contracción longitudinal (hasta 5 veces superior),

aumento de los riesgos de torcedura y resistencia mecánica inferior (Jozsa y Middleton, 1997). La Figura Nº 6 ilustra la distribución de madera juvenil y madura en el fuste.

Silva (2003) al estudiar las características anatómicas y propiedades físicas de *Cedrelinga cateniformis* **Ducke** de 15, 24 y 29 años de las plantaciones de Jenaro Herrera, encontró incrementos en el diámetro de vasos de 15 y 29 años, así como, mayor contracción longitudinal en los de 15 años; señalando que podría indicar la presencia de madera juvenil.

Pashin y De Zeeuw (1980), al investigar los defectos de crecimiento en la madera señala la importancia de la madera quebradiza (denominada "Brashness"), señala que es una condición anormal y que causa en la madera una quebradura a través de todo el grano en niveles de esfuerzos más bajos que lo esperado.

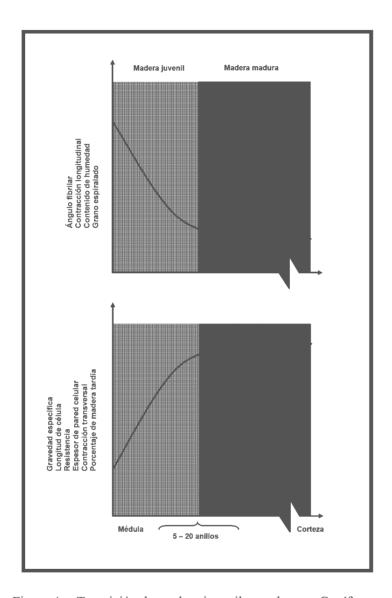


Figura 4: Transición de madera juvenil a madura en Coníferas

Fuente: Haygreen y Bowyer (1982).

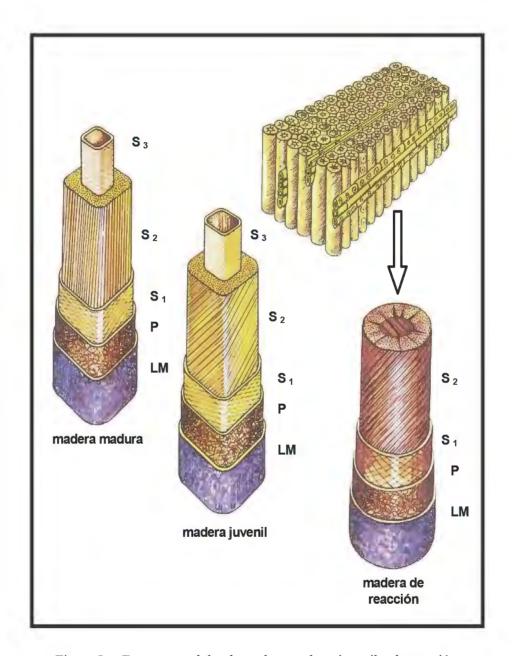


Figura 5 : Estructura celular de madera madura, juvenil y de reacción

Fuente: Jozsa y Middleton (1994).

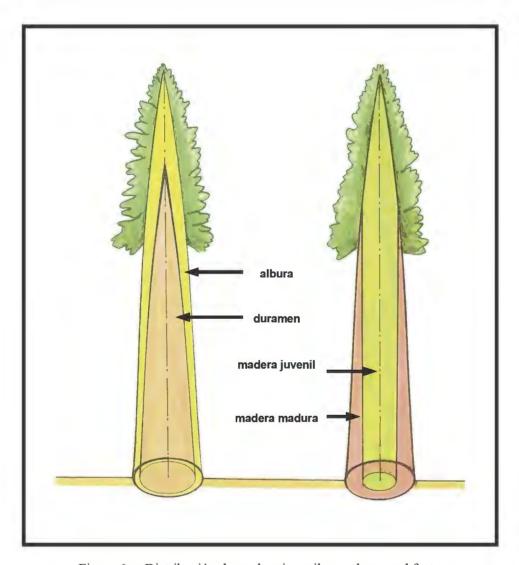
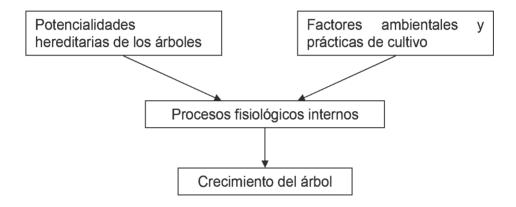



Figura 6 : Distribución de madera juvenil y madura en el fuste

Fuente: Jozsa y Middleton, (1994).

2.7 FISIOLOGÍA DEL CRECIMIENTO DEL ÁRBOL

Según Kozlowski, T. (1991), la importancia de la fisiología del árbol reside en el hecho de que los procesos fisiológicos son los intermediarios críticos mediante los cuales interactúan la herencia, los factores ambientales y las prácticas de cultivo para influir en el crecimiento del árbol. Esto se demuestra en el siguiente diagrama.

Desde un punto de vista del desarrollo, el aumento en el tamaño de los árboles puede ser considerado el resultado final de la división y la expansión celular. La expansión de las células es seguida por la diferenciación y cambios estructurales en los cuales se forman los órganos especializados. Estas fases sucesivas de crecimiento son reguladas por una serie de procesos fisiológicos coordinados como son: síntesis de carbohidratos; metabolismo de nitrógeno y de las grasas; absorción y pérdida de agua; digestión por acción de las enzimas de formas complejas o insolubles de alimento, como es el almidón, compuestos sencillos y solubles; redistribución de los carbohidratos, hormonas, agua y minerales; y asimilación (conversión de alimentos a protoplasma nuevo y paredes celulares) y almacenamiento de alimentos de reserva. Para un fisiólogo, el árbol es una compleja y fascinante máquina bioquímica que comienza desde una pequeña semilla y se convierte en un organismo masivo

que puede pesar muchas toneladas. Los importantes problemas forestales de la producción de semillas, germinación de las mismas, producción y calidad de la madera, latencia de semillas y de yemas, y la floración, son los diversos procesos regulatorios fisiológicos. Además, la inhibición del crecimiento o muerte de los árboles después de los eventos catastróficos ambientales, el ataque de insectos o enfermedades, es precedida por eventos fisiológicos anormales. No es posible enfatizar demasiado en que los cambios ambientales, tratamientos de cultivo y los ataques por enfermedades e insectos, alteran el crecimiento de los árboles únicamente a través de una trayectoria sucesiva de cambios fisiológicos.

2.8 CARACTERÍSTICAS DE CRECIMIENTO DE LOS ÁRBOLES

Los árboles manifiestan varias características comunes de crecimiento. Por ejemplo, todos ellos crecen en altura y diámetro. Sin embrago, son muy diferentes los mecanismo que facilitan el alargamiento del fuste y de las ramas y el incremento en grosor. El alargamiento del eje cilíndrico de la rama de un árbol es atribuible a la división y expansión de las células en muchos puntos terminales de crecimiento (llamados *meristemos apicales*). Tal crecimiento, llamado primario, ocurre en todo el fuste, ramas y puntas de las raíces. Esto da lugar a la ramificación. El crecimiento en el diámetro de los tallos y las ramas es atribuible a la división y la expansión de las células de una capa de cambium, localizada entre la corteza y la madera.

Los árboles también manifiestan interesantes características individuales. Existen notables variaciones hereditarias entre los árboles en cuanto a forma de la corona, tamaño definitivo, longevidad, hábitos de ramificación, tasa de crecimiento de los renuevos, características del crecimiento de las raíces, crecimiento reproductivo, coloración de otoño, etc. Pueden encontrarse notables diferencias en cuanto a características de crecimiento entre árboles tropicales y de zona templada, entre los árboles perennifolios y caducifolios, e incluso entre las distintas especies del mismo género.

Otra observación interesante es que las diversas partes de los árboles crecen a tasas diferentes y en tiempos distintos. Por tanto, las ideas generales que tenemos respecto de la naturaleza del crecimiento del árbol y de lo que lo controla depende en gran medida del aspecto del crecimiento que se observe o mida: incremento en el crecimiento de los renuevos, crecimiento del diámetro o crecimiento de la raíz. Actualmente, en muchos árboles de zona templada, las raíces comienzan a alargarse en primavera antes que lo hagan los renuevos, y el crecimiento cambial anual en la parte más baja del fuste comienza después que cualquiera de ellos.

3. MATERIALES Y MÉTODOS

3.1 LUGAR DE EJECUCIÓN

El estudio se realizó en el Laboratorio de Ensayos Tecnológicos de la Madera del Departamento Académico de Industrias Forestales de la Facultad de Ciencias Forestales de la Universidad Nacional Agraria La Molina (UNALM).

3.2 MATERIALES Y EQUIPOS

3.2.1 MATERIALES

Las muestras colectadas por el Instituto de Investigaciones de la Amazonía Peruana (IIAP), comprenden la selección de 3 árboles representativos para cada una de las edades de las plantaciones evaluadas, los cuales presentan las características que se contemplan en el Cuadro Nº 2. Las edades consideradas son las siguientes: 15, 24 y 29 años y las características de las plantaciones se muestran en el Cuadro Nº 3.

En la UNALM se recepcionó viguetas de madera de 8 x 8 x 300 cm de las diferentes edades de *Cedrelinga cateniformis* **Ducke** (Tornillo), provenientes de las plantaciones de la Unidad Experimental Jenaro Herrera, Loreto (Iquitos).

Cuadro 2 : Características de los árboles y trozas seleccionadas para el estudio de propiedades físicas y mecánicas del Tornillo de plantaciones

TIPO DE	EDAD	ÁDDAI	MUESTRA	ALTU	RA (m)	DIÁ	METRO	(cm)	MÉDULA	SANIDAD	CLASE	COPAY
PLANTACIÓN	(años)	ARBUL	MOESIKA	TOTAL	COMERCIAL	D.A.P	D	d	MEDULA	SANIDAD	CLASE	FOLLAJE
			T11A				49.15	45.50	Excéntrica	Grietas		
		1	T11B	26.60	12.70	45.9	37.45	31.55	Céntrica	Grietas	Dominante	Grande
			T11C				31.25	29.75	Céntrica	Grietas		
			T12A				45.70	34.30	Excéntrica	Grietas		
	15	2	T12B	24.80	19.30	39.2	32.60	31.45	Céntrica	Grietas	Dominante	Mediana
			T12C				30.20	27.70	Céntrica	Grietas		
			T13A				42.90	39.20	Excéntrica	Grietas		
		3	T13B	25.30	11.70	40.1	34.50	30.50	Céntrica	Grietas	Dominante	Mediana
A campo abierto			T13C				28.05	24.25	Céntrica	Grietas		
A Gallipo abiello			T31A				51.75	42.65	Excéntrica	Grietas	Dominante	Mediana
		1	T31B	28.30	13.10	49.9	42.20	40.50	Céntrica	Grietas		
			T31C				36.20	32.00	Céntrica	Grietas		
			T32A				47.25	36.90	Céntrica	Grietas		Grande
	29	2	T32B	29.60	10.10	39.9	38.15	34.45	Céntrica	Grietas	Dominante	
		3	T32C				32.30	30.55	Céntrica	Grietas		
			T33A		15.10		52.05	48.25	Céntrica	Grietas	Dominante	Grande
			T33B	29.70			44.70	40.85	Céntrica	Grietas		
			T33C									
			T21A				47.30	39.45	Céntrica	Sana		
		1	T21B	28.60	13.50	46.5	37.35	34.00	Céntrica	Sana	Dominante	Grande
			T21C				30.35	29.50	Céntrica	Sana		
Fajas de			T22A				39.80	39.25	Excéntrica	Pudrición medular		
enriquecimiento	24	2	T22B	27.30	13.00	43.5	37.75	34.25	Céntrica	Pudrición medular	Dominante	Mediana
omiquoominonto			T22C				33.80	30.85	Céntrica	Sana		mount
			T23A				43.50	40.05	Céntrica	Sana		e Mediana
		3	T23B	29.10	14.10	38.5	34.45	30.30	Céntrica	Sana	Dominante	
			T23C				29.95	27.80	Céntrica	Sana		

Fuente: *IIAP* (2001)

Donde: D:

D: Diámetro del extremo mayor de la troza

d: Diámetro del extremo menor de la troza.

Cuadro 3 : Características de las plantaciones de las cuales se seleccionaron los árboles de Tornillo

INFORMACIÓN SOBRE LA PLANTACIÓN		EDAD (AÑOS)	
HAPONWALION SUBRE LA FLANTACION	15	24	29
CÓDIGO	PES 304 - 86	PES 504 - 77	PES 106 - 72
FECHA DE PLANTACIÓN	18 de Octubre de 1986	15 de Julio de 1977	15 de Febrero de 1972
TIPO DE PLANTACIÓN	A campo abierto	Fajas de enriquecimiento	A campo abierto
TOPOGRAFIA Y SUELO	Terraza alta, llanura, suelo franco-arenoso	Terraza alta, llanura, suelo franco-arenoso	Terraza alta, ladera con pendiente 15%, suelo arena-franca
ÁREA PLANTADA	espaciamiento: 2 x 2 m,		21 x 30 m = 630 m² espaciamiento: 3 x 3 m, árboles plantados: 70
VEGETACIÓN ANTERIOR	Bosque alto, cortado y quemado en 1975	Bosque alto, explotado selectivamente en 1976 y 1977 a través de arrastre con tractores forestales.	Bosque alto, cortado y
ESTABLECIMIENTO .	Transplante a raíz desnuda, no se quemó.	tierra, limpieza de fajas	
MANTENIMIENTO (FECHA: ACTIVIDAD)	1987 a 1990: tres limpiezas, octubre 1990: raleo selectivo, otros: limpiezas y desmalezar.		
OBSERVACIONES	Un incendio en 1963 destruyó parcialmente estos ensayos.		Sobre este sitio de ladera muestra buen crecimiento.

Fuente: Claussi, A.; Marmillod, D.; Blazer, J. (1992)

3.2.2 EQUIPOS Y ACCESORIOS

Para la preparación de las probetas de los ensayos mecánicos se emplearon maquinas de carpintería tales como garlopa, sierra circular, cepilladora, sierra radial, taladro y herramientas auxiliares como wincha, escuadra, lupa de 10x, cuchilla y lápiz de cera.

Para la determinación de densidad básica y contenido de humedad se utilizaron balanzas eléctricas "Sauter" de 2000 g con precisión de 0,1 g y de 500 g con precisión de 0,05 g, desecadores de humedad provistos de silicagel; así como estufas eléctricas "Memmert" de hasta 220 °C, lápices de cera, lupa 10X y cuchillas.

Para los ensayos mecánicos se utilizó la prensa de ensayos universal "Tinius Olsen" y accesorios, el equipo probador de tenacidad "Wiedemann Baldwin"; así como, pie de rey con precisión de 0,05 mm y cierra circular portátil.

Para el registro de información: cámara Pentax "Asahi", películas 35 mm y trípode, formatos diseñados para la toma de datos, computadora Pentium IV con software apropiado Microsoft Word y Excel; scanner, entre otros.

3.3 MÉTODOS Y PROCEDIMIENTO

3.3.1 UBICACIÓN DE LA ZONA

La especie en estudio proviene del Área Piloto de la Estación Experimental Jenaro Herrera, ubicada en el Distrito de Sapuena, Provincia de Requena, Departamento de Loreto, con coordenadas 73°40'O y 4°54'S. (Figura N° 7)

Las plantaciones de las edades de 15 y 29 años corresponden a campo abierto, y la de 24 años a fajas de enriquecimiento. En la Figura N° 8, se observa el plano de localización del centro de investigación, y en la Figura N° 9, se muestra la ubicación de las parcelas experimentales.

.

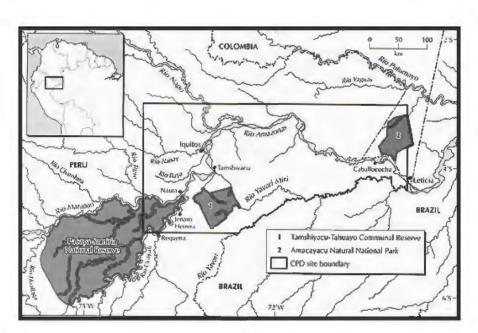


Figura 7 : Ubicación del C. I. Jenaro Herrera

Fuente: www.nmnh.si.edu

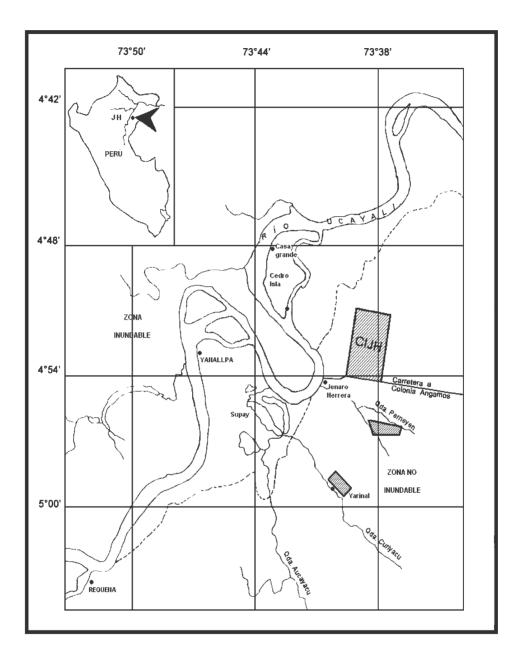


Figura 8 : Ubicación geográfica del Centro de Investigaciones de Jenaro Herrera

Fuente: Claussi, A.; Marmillod, D.; Blazer, J. (1992)

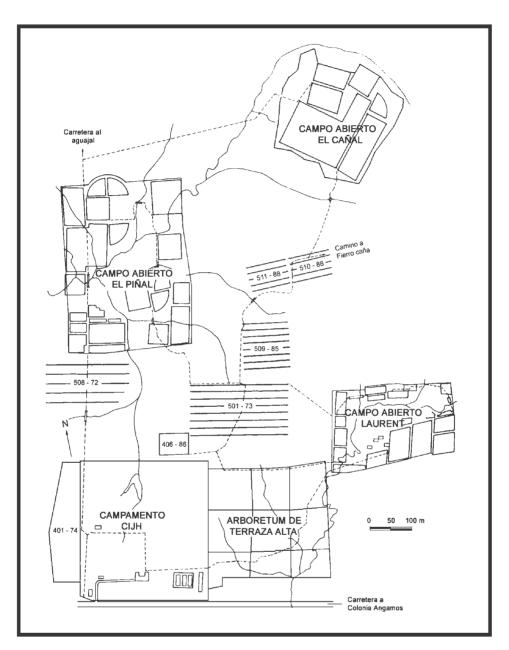


Figura 9 : Ubicación de parcelas experimentales a campo abierto del Centro de Investigaciones de Jenaro Herrera

Fuente: Claussi, A.; Marmillod, D.; Blazer, J. (1992)

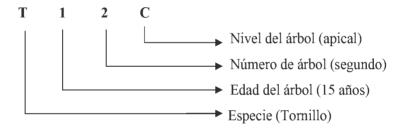
3.3.2 SELECCIÓN Y COLECCIÓN DE MUESTRAS

Se ubicaron y marcaron tres árboles tomando en cuenta los datos de la evaluación de crecimiento y considerando que los individuos sean representativos en cuanto al diámetro y estado sanitario, fuste cilíndrico, entre otros. El marcado de árboles se realizó con pintura codificándolos de acuerdo con la especie, edad, árbol y nivel de corte. La colección de las muestras de madera ha sido responsabilidad del Instituto de Investigación de la Amazonía Peruana (IIAP).

Las trozas debidamente marcadas y codificadas fueron aserradas longitudinalmente. El IIAP remitió al laboratorio listones de 8 x 8 cm de sección transversal debidamente orientados y con una longitud de 300 cm para cada nivel (tres niveles/árbol). Estos se utilizaron para la preparación de probetas en el Laboratorio de Procesamiento de la madera del Departamento Académico de Industrias Forestales de la Universidad Nacional Agraria La Molina.

3.3.3 CODIFICACIÓN DE VIGUETAS

Cada vigueta se identificó con un código compuesto de una letra, 2 dígitos y una letra, donde:


- La primera letra corresponde a la inicial del nombre común de la especie estudiada.
- El primer dígito indica la edad del árbol.
- El segundo dígito indica el número de árbol.
- La segunda letra corresponde al nivel.

En el caso de las edades se codificó de acuerdo a la siguiente equivalencia:

CODIGO	EDAD
1	15 años
2	24 años
3	29 años

Respecto a los niveles, estos se nombraron de acuerdo a lo ilustrado en la Figura Nº 10.

A manera de ilustración se presenta la estructura del código utilizado en una de las viguetas remitidas:

3.3.4 SELECCIÓN DE VIGUETAS

Las viguetas con dimensiones promedio de 8 x 8 x 300 cm, se seleccionaron previa evaluación del material remitido basándose en defectos tales como: nudos, médula incluida, rajaduras, incorrecta orientación de los listones, torceduras que afectan las propiedades físico-mecánicas.

3.3.5 PREPARACIÓN Y ACONDICIONAMIENTO DE PROBETAS

Las viguetas de 8 x 8 x 300 cm debidamente orientad00os se emplearon para la preparación de probetas en el laboratorio de manufactura de la madera del Departamento de Industrias Forestales de la facultad de Ciencias Forestales de la Universidad Nacional Agraria – La Molina. Dichas probetas se acondicionaron convenientemente para que conserven su humedad y permitan la realización de los ensayos en condición saturada.

El Cuadro Nº 4, muestra la disponibilidad de probetas por tipos de ensayos, niveles y repeticiones para la especie y edad.

3.3.6 PROCEDIMIENTO

El estudio de propiedades físicas y mecánicas, se realizó de acuerdo a lo estipulado en las Normas Técnicas Peruanas para cada uno de los ensayos, los cuales se especifican en los Cuadros N^o 5 y 6.

Todos los ensayos mecánicos se hicieron en condición saturada y para mantener dicha condición de humedad en las probetas, se colocaron en cámaras o ambientes cerrados con una determinada cantidad de agua, permitiendo una humedad por encima del punto de saturación de las fibras

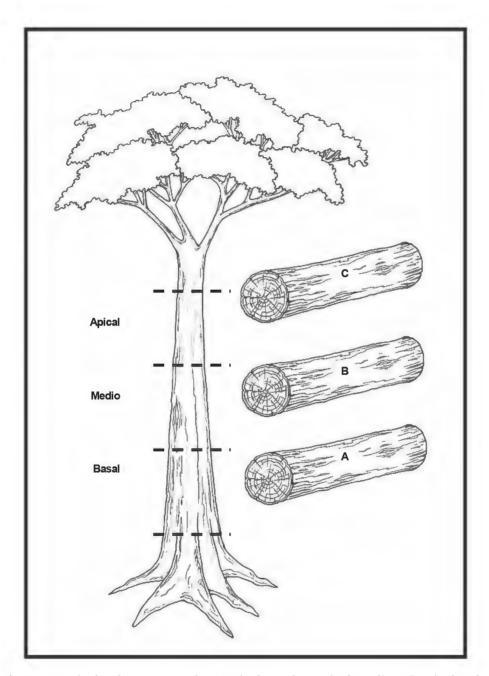


Figura 10 : Niveles de corte. Donde: A. Nivel Basal, B. Nivel Medio y ${\bf C}$. Nivel Apical.

Cuadro 4 : Número de probetas para ensayos mecánicos del Tornillo de tres edades diferentes

						EDAD						
ENGANO	WILLEY .		15 años			24 años			29 años		7074	
ENSAYO	NIVEL					ÁRBOL					TOTAL	
		1	2	3		2	3	1	2	3		
/	A	2	2	2	1	2	1	2	2	2	16	
Flexión estática	В	2	0	2	2	2	2	2	2	1	15	
	С	0	2	2	0	1	2	2	2	0	11	
	A	2	2	2	1	2	1	2	2	2	16	
Compresión paralela	В	2	0	2	2	2	2	2	2	1	15	
	С	0	2	2	0	1	2	1	2	0	10	
	A	2	2	2	0	1	1	2	2	2	14	
Compresión perpendicular	В	2	0	2	2	1	2	2	2	1	14	
	С	0	2	2	0	1	2	1	2	0	10	
-	A	1	2	1	0	1	0	2	1	1	9	
Dureza	В	1	0	2	2	0	0	2	2	1	10	
	С	0	1	2	0	1	1	1	2	0	8	
	A	8	6	8	0	8	6	8	8	8	60	
Tensión perpendicular	В	8	0	8	4	6	2	8	6	0	42	
	С	0	6	6	0	4	6	6	6	0	34	
	A	8	6	4	4	8	2	8	8	8	56	
Clivaje	В	8	0	8	2	6	4	8	6	4	46	
	С	0	2	4	0	0	8	8	6	0	28	
	A	8	4	10	6	8	6	6	8	8	64	
Cizallamiento	В	6	0	8	6	8	4	8	8	4	52	
	С	0	4	6	0	0	6	8	8	0	32	
	A	4	4	6	2	6	0	6	4	6	38	
Tenacidad	В	6	0	6	4	6	8	4	4	2	40	
	С	0	6	6	0	2	6	6	6	0	32	
TOTAL		70	53	103	38	77	74	105	101	51	672	

Cuadro 5 : Propiedades Físicas según Norma Técnica Empleada

PROPIEDADES FÍSICAS	NORMA TÉCNICA					
Contenido de humedad	NTP 251.010					
Densidad	NTP 251.011					

Cuadro 6 : Propiedades Mecánicas según Norma Técnica Empleada

PROPIEDADES MECÁNICAS	NORMA TÉCNICA
Flexión estática	NTP 251.017
Compresión paralela a las fibras	NTP 251.014
Compresión perpendicular	NTP 251.016
Cizallamiento paralelo al grano	NTP 251.013
Clivaje	NTP 251.019
Tenacidad	NTP 251.018
Dureza	NTP 251.015
Tracción perpendicular	NTP 251.086

3.3.7 PROCESAMIENTO DE DATOS Y ANÁLISIS DE RESULTADOS

Para realizar dicho procesamiento se empleó el software Microsoft Excel para Windows. Respecto al análisis estadístico de los resultados, se utilizó el programa estadístico Minitab 14.0 y SPSS 12.0 para Windows.

Se realizó un análisis básico de los datos antes de la ejecución del análisis propiamente dicho; es decir, incluye la elaboración de algunos cuadros y gráficos, así como la obtención de medidas estadísticas descriptivas (media y coeficiente de variabilidad). El procesamiento de la información se trabajo de forma separada; es decir, para cada tipo de plantación; donde, las plantaciones de 15 y 29 años, corresponden A CAMPO ABIERTO; y la de 24 años, a FAJAS DE ENRIQUECIMIENTO.

En las pruebas estadísticas correspondientes se analizaron por un lado, dos edades (15 y 29 años) y tres niveles de corte (A, B y C) por árbol; considerando a las edades como un factor A y a los niveles de corte como un factor B, configurando un diseño Factorial 2Ax3B. Se realizó el análisis de varianza para determinar si existen diferencias significativas (P < 0,05) entre las propiedades de la madera a diferentes edades o a diferentes niveles de corte, o si existe la interacción edad / nivel para cada una de las variables, de acuerdo a la información obtenida en el presente trabajo de investigación.

De otro lado, se analizó la edad de 24 años, aplicándole un análisis de varianza para los ensayos mecánicos, en sus niveles de corte y entre árboles. Se empleó la prueba Tukey para encontrar diferencias significativas por pares de medias de los diferentes niveles de corte, cuando se encontraron diferencias significativas en el análisis de varianza.

En el caso del Análisis de Regresión, la validación estadística garantiza la dinámica de comportamiento de la variable dependiente y su explicación (Coeficiente de Determinación: r²) o asociación (Coeficiente de Correlación: r) con las variables independientes.

La validación estadística incluye los siguientes considerandos:

- 1. Muestras de acuerdo a los años de edad de las plantaciones de Tornillo: 15, 24, y 29 años.
- 2. Los ajustes de la base datos a ecuaciones Lineales, Cuadráticas y Cúbicas. Mediante el análisis de regresión.
- 3. Los estadísticos de Asociación y de Explicación: Coeficiente de Correlación (r) y Coeficiente de Determinación (r²).
- 4. Variables Dependientes: Flexión estática (ELP, MOR, MOE), Compresión paralela (ELP, RM), Compresión perpendicular (ELP), Dureza (extremos y lados) y Cizallamiento; y Variable Independiente: Densidad básica.

4. RESULTADOS Y DISCUSIÓN

4.1 PROPIEDADES MECÁNICAS

4.1.1 A CAMPO ABIERTO

Los Cuadros Nº 7 y 8, muestran los valores promedios para las edades y niveles de corte de las propiedades mecánicas del Tornillo (*Cedrelinga cateniformis* Ducke) para las edades de 15 y 29 años. Los márgenes amplios en los rangos de los valores promedios obtenidos han motivado estimar para cada edad su variabilidad entre y dentro de árboles.

Los valores medios en relación con la variabilidad de los resultados experimentales se aprecian en el Cuadro Nº 9, y son:

- Entre árboles, para la edad de 15 años las propiedades con menores variaciones son Flexión estática (ELP), Compresión paralela (RM), Dureza (extremos) y Clivaje; y en 29 años, ocurre en Flexión estática (ELP y MOR) y Compresión paralela.
- Dentro de los árboles, se observa que en la plantación de 15 años, las propiedades con menores variaciones son Flexión estática (ELP), Compresión paralela (RM), Dureza (lados), Tensión perpendicular (radial), Clivaje (radial) y Cizallamiento (radial); mientras que, para la plantación de 29 años, lo son, Flexión estática (ELP y MOR), Compresión paralela (RM), Dureza, Tensión perpendicular (radial) y Clivaje (radial).

Los coeficientes de variación total inferiores a los señalados en Wood Handbook, para la
plantación de 15 años son las propiedades de Flexión estática (ELP y MOE),
Compresión paralela (RM) y Dureza (lados). En el caso de la plantación de 29 años, las
propiedades con coeficientes de variación total menores a los que figuran en el cuadro
mencionado son Flexión estática (ELP y MOR), Compresión paralela, Dureza y Tensión
perpendicular (radial).

Cuadro 7 : Valores promedio por edades y niveles de corte del Tornillo de 15 y 29 años

EDAD	ÁRBOL	NIVEL	Flexión estática (Kg/cm²)			Comp. paralela (Kg/cm²)			Comp, perp. (Kg/cm²)	Dureza (Kg/cm²)	
			ELP	MOR	MOE x 10 ³	ELP	RM	MOE x 10 ³	ELP	Extremos	Lados
		Α	251.26	458.37	93.29	167.84	189.87	92.07	29.47	257.87	242.21
	1	В	224.29	520.81	71.23	107.18	202.29	81.30	29.89	300.09	306.90
		С									
		A	210.11	397.19	77.93	141.61	140.29	42.76	29.64	261.50	226.89
1	2	В									
	С	258.07	437.12	75.77	148.42	188.60	67.43	24.09	205.21	195.45	
		A	226.99	419.45	59.73	100.07	152.76	53.35	22.48	192.50	180.24
	3	В	215.28	329.55	61.20	121.26	202.84	70.26	42.67	266.95	240.51
		С	220.21	443.91	81.35	129.12	194.52	79.27	39.08	291.70	212.02
	PROMEDIO	S	229.46	429.49	74.36	130.79	181.59	69.49	31.05	253.69	229.17
		Α	273.13	509.69	110.32	167.90	223.53	105.46	28.40	305.09	304.18
	1	В	288.98	586.61	106.98	195.87	267.37	119.85	35.82	346.18	350.94
		С	259.45	484.15	87.14	153.38	203.93	62.16	46.84	360.02	330.29
		Α	234.66	451.03	73.42	179.86	218.09	81.84	34.65	263.32	280.35
3	2	В	283.29	546.70	84.47	189.65	236.65	85.78	33.63	308.95	331.76
		С	268.48	544.72	91.15	163.05	230.52	81.44	41.29	308.72	306.00
		A	337.59	437.30	53.48	200.41	219.61	89.70	22.52	281.48	282.84
	3	В	245.54	481.11	82.06	189.31	215.96	93.10	24.43	220.64	210.20
		С			1						
PROMEDIOS		S	273.89	505.16	86.13	179.93	226.96	89.92	33.45	299.30	299.57

Cuadro 8 : Valores promedio por edades y niveles de corte del Tornillo de 15 y 29 años

EDAD	ÁRBOL	NIVEL	Tensión perp. (Kg/cm²)		Clivaje (Kg/cm)		Cizallamie	ento (Kg/cm²)	Tenacio	lad (Kg-m)
_			Radial	Tangencial	Radial	Tangencial	Radial	Tangencial	Radial	Tangencia
	- 4	Α	28.63	41.98	36.95	47.67	58.40	66.85	0.62	2.34
	1	В	29.30	34.62	31.10	35.59	54.66	60.14	0.00	0.82
		С								
		A	7.53	9.04	41.94	43.22	22.65	41.64	1.00	2.11
1	2	В								
3		С	28.10	24.73	31.15	35.82	46.54	45.14	0.23	0.22
		A	25.88	32.33	29.56	46.04	49.37	45.60	0.00	0.00
	3	В	27.11	27.57	38.99	40.69	54.16	60.60	0.51	0.91
		С	28.97	29.62	39.57	44.93	54.63	54.08	1.20	1.15
	PROMEDIO	S	25.07	28.56	35.61	41.99	48.63	53.44	0.51	1.08
		Α	32.01	44.51	41.47	50.48	55.18	65.46	0.65	1.38
	1	В	36.23	48.91	42.31	54.20	62.15	71.24	1.58	2.21
		С	30.54	35.54	39.05	44.69	51.81	64.65	1.02	0.00
		A	27.86	30.61	37.81	35.16	51.15	71.86	1.16	0.74
3	2	В	21.12	21.15			35.19	36.23	0.05	0.83
		С	35.30	38.48	44.87	25.56	73.30	69.82	1.02	1.33
		Α	24.82	26.52	36.30	37.69	46.15	44.79	0.74	0.13
	3	В			30.51	34.28	48.60	34.28	0.54	2.48
		С								
	PROMEDIO	S	29.70	35.10	38.90	40.29	52.94	57.29	0.85	1.14

Cuadro 9 : Coeficientes de Variación entre, dentro y totales para las plantaciones de 15 y 29 años de Tornillo y su comparación según Wood Handbook

		С	OEFICIENTE [DE VARIACIÓN (º			COFF 1/4D /0/1
PROPIEDADES MECÁNICAS		15 AÑOS			29 AÑOS		COEF. VAR. (% según Wood
	entre árboles	dentro árboles	Total	entre árboles	dentro árboles	Total	Handbook
1. Flexión Estática							
- Esfuerzo al Límite Proporcional	8.77	16.48	15.55	16.31	17.21	17.09	22.00
- Módulo de Rotura	23.94	21.19	21.64	15.14	13.26	13.55	16.00
- Módulo de Elasticidad (x10³)	22.56	22.07	22.14	45.38	24.37	28.34	22.00
2. Compresión Paralela							
- Esfuerzo al Límite Proporcional	25.14	26.02	25.89	13.75	23.65	22.51	24.00
- Resistencia Máxima	17.57	14.80	15.25	5.84	17.09	15.98	18.00
3. Compresión Perpendicular							
- Esfuerzo al Límite Proporcional	28.76	39.77	38.28	41.92	29.36	31.62	28.00
4. Dureza							
- Extremos	11.00	22.24	20.29	22.86	15.87	17.35	17.00
- Lados	22.62	19.58	20.30	22.57	13.35	15.44	20.00
5. Tensión Perpendicular							25.00
- Radial	83.03	16.38	29.51	35.55	16.56	18.72	
- Tangencial	94.29	20.47	34.49	69.57	22.50	28.98	
6. Clivaje							
- Radial	15.03	15.19	15.17	25.90	16.32	17.29	_
- Tangencial	5.74	25.73	24.41	76.60	21.39	29.84	-
7. Cizallamiento							14.00
- Radial	63.12	16.65	25.45	35.48	23.17	24.39	
- Tangencial	45.71	20.55	24.27	45.28	20.73	23.65	
8. Tenacidad							34.00
- Radial	88.29	160.24	153.92	49.57	77.06	74.50	
- Tangencial	98.19	97.34	94.68	42.32	104.13	96.23	

Fuente: Elaboración propia y Wood handbook (1974)

Cuadro 10 : Análisis de varianza para las edades, niveles y entre árboles, para las plantaciones de Tornillo de 15 y 29 años

PROPIEDADES MECÁNICAS	EDAD	NIVEL	EDAD*NIVEL	ENTRE	/ ARBOL
PROFIEDADES MECANICAS	EDAD	NIVEL	EDAD NIVEL	15 AÑOS	29 AÑOS
1. Flexión Estática					
- Esfuerzo al Límite Proporcional	*	N.S.	N.S.	N.S.	N.S.
- Módulo de Rotura	*	N.S.	N.S.	N.S.	N.S.
- Módulo de Elasticidad (x10 ³)	N.S.	N.S.	N.S.	N.S.	N.S.
2. Compresión Paralela					
- Esfuerzo al Límite Proporcional	*	N.S.	N.S.	N.S.	N.S.
- Resistencia Máxima	*	N.S.	N.S.	N.S.	N.S.
3. Compresión Perpendicular					
- Esfuerzo al Límite Proporcional	N.S.	N.S.	N.S.	N.S.	N.S.
4. Dureza					
- Extremos	*	N.S.	N.S.	N.S.	N.S.
- Lados	*	N.S.	N.S.	N.S.	N.S.
5. Tensión Perpendicular					
- Radial	*	N.S.	N.S.	*	*
- Tangencial	N.S.	N.S.	N.S.	*	*
6. Clivaje				. 4.	
- Radial	N.S.	N.S.	N.S.	N.S.	N.S.
- Tangencial	N.S.	N.S.	N.S.	N.S.	*
7. Cizallamiento					
- Radial	N.S.	N.S.	N.S.	*	N.S.
- Tangencial	N.S.	N.S.	N.S.	*	*
8. Tenacidad					
- Radial	N.S.	N.S.	N.S.	N.S.	N.S.
- Tangencial	N.S.	N.S.	N.S.	N.S.	N.S.

Donde: *: Significativo N.S.: No Significativo

Con respecto al análisis estadístico que se presenta en el Cuadro Nº 10 se nota que la edad ejerce influencia significativa sobre las propiedades de Flexión estática (ELP y MOR), Compresión paralela, Dureza y Tensión perpendicular (radial). Estas diferencias pueden atribuirse a la influencia de factores silviculturales (Cuadro Nº 11) y anatómicos.

En el primer caso puede deberse el distanciamiento entre árboles que para la plantación de 15 años fue de 2x2 m, esto se evidencia por una mayor altura comercial y menor presencia de nudos.

Desde el punto de vista anatómico las características preponderantes son el tamaño de radios y diámetros de fibras. La primera contribuye a explicar las diferencias en tensión perpendicular (radial); mientras que la última se traduce en la abundancia de materia leñosa, que es mayor en la de 29 años y consecuentemente presenta mayores valores de resistencia mecánica para esta edad.

Además los resultados muestran que en Flexión estática (MOE), Compresión perpendicular, Tensión perpendicular (tangencial), Clivaje, Cizallamiento y Tenacidad para las edades de 15 y 29 años; el comportamiento es similar. Este comportamiento, podría ser el resultado de una combinación de factores anatómicos con la presencia de madera juvenil (Silva, 2003), durante la selección de listones para la preparación de probetas. Notándose, además, que en Flexión estática y Tenacidad las muestras de estas plantaciones presentan fallas del tipo astilladura corta y quebradura, respectivamente; fallas que evidencia un comportamiento anormal que algunos autores lo denominan madera quebradiza. Las Figuras Nº 11 al 14, ilustran estos tipos de fallas.

En lo que respecta a los niveles de corte del fuste; así como en la interacción edad – nivel, la variación de este factor es nula en todas las propiedades mecánicas estudiadas.

Respecto a las diferencias significativas entre árboles, se puede afirmar que para la plantación de 15 años, existen variaciones en las propiedades de Tracción perpendicular y Cizallamiento; mientras que para la plantación 29 años existe significancia en Tracción perpendicular, Clivaje (tangencial) y Cizallamiento (tangencial).

Cuadro 11 : Información Silvicultural sobre las plantaciones a campo abierto para las edades de 15 y 29 años

OBSERVACIONES	ITEMS	EDAD	(AÑOS)		
GSSERVALGRES	TI LINO	15	29		
TACIÓN	TOPOGRAFIA Y SUELO	Terraza alta, llanura, suelo franco arenoso	Terraza alta, ladera con pendiente 15%, suelo arena- franca		
INFORMACION SOBRE PLANTACIÓN	ÁREA PLANTADA	20 000 m², espaciamiento: 2 x 2 m, árboles plantados: 5000	21 x 30 m = 630 m ² espaciamiento: 3 x 3 m, árboles plantados: 70		
IACION SO	ESTABLECIMIENTO	Transplante a raíz desnuda, no se quemó.	Probablemente se plantaror brinzales repicados.		
INFORM	MANTENIMIENTO (FECHA: ACTIVIDAD)	1987 a 1990: tres limpiezas, octubre 1990: raleo selectivo, otros: limpiezas y desmalezar.			
DE LOS	D.A.P. PROMEDIO (cm)	41.73	47.30		
CARACTERÍSTICAS ÁRBOLES	ALTURA TOTAL PROMEDIO (m)	25.57	29.20		
CARACT	ALTURA COMERCIAL PROMEDIO (m)	14.57	12.77		

Fuente: Información remitida por el IIAP en relación a la selección de muestras para ensayos físicos – mecánicos. 2001.

Figura 11 : Fondo de probeta de Flexión estática de 29 años. En T33A-b se observa la presencia de las astilladura productos del ensayo

Figura 12 : Vista de lados de probetas de Flexión estática para la edad de 15 años. En probeta T13B-b, astilladura y en la probeta T13B-a, quebradura

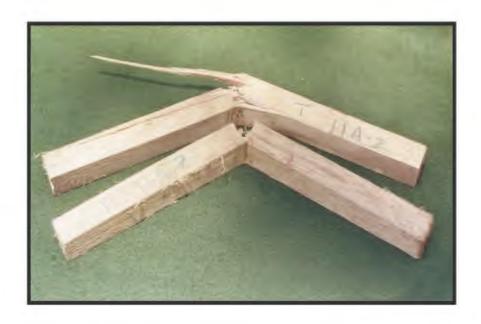


Figura 13 : Probetas T11A-2 radial y tangencial de Tenacidad, de 15 años. En ambas se puede apreciar fallas del tipo quebradura

Figura 14 : Probetas de Tenacidad, T31B-1 radial y tangencial. En las que se observan fallas del tipo astilladura corta, correspondientes a la edad de 29 años

4.1.2 FAJAS DE ENRIQUECIMIENTO

En este tipo de plantación, los Cuadros Nº 12 y 13, ilustran los valores promedios para la edad de 24 años, en los diferentes niveles de corte.

En el Cuadro Nº 14 se observa la variabilidad entre y dentro de árboles. Estos se explican de la siguiente manera:

- Entre árboles, las propiedades de Flexión estática y Tensión perpendicular (radial), son las que presentan menores valores de variación.
- Dentro de los árboles, las propiedades con menores coeficientes de variación son Compresión perpendicular y Dureza (lados).
- El coeficiente de variación total inferior a los señalados en Wood Handbook, para la plantación de 24 años es la propiedad de Compresión perpendicular.

Cuadro 12 : Valores promedio por edad y niveles de corte del Tornillo de 24 años

EDAD	ÁRBOL	NVEL	Rexión estática (Kg/cm²)			Comp. paralela (Kg/cm²)			Сатр, регр. (Kg/an²)	Dureza (Kg/cnf)	
			ELP	MOR	MOEx 10 ³	即	RM	MOEx10 ³	即	Extremos	Lados
		Α				58.38	73.64	2222			
	1	В	143.58	244.81	49.08	81.37	10292	39.80	1218	106.01	64.13
		С									
		Α	134.18	239.98	45.75	103.19	118.87	39.61	22.05	288.74	213.61
2	2	В	226.05	353.41	77.14	119.57	163.14	88.87	18.16	197.94	211.34
		С	191.91	334.36	55.54	125.68	183.06	7279	25.35		
		Α				61.64	73.08	26.80	6.96		
	3	В	123.44	189.42	36.30	83.25	98.37	37.20	10.53		
		С	206.45	419.45	82.06	115.53	171.08	75.38	20.90	156.63	11214
	PROVEDIOS		170.93	296.90	57.64	93.58	123.02	50.33	16.59	187.33	150.30

Cuadro 13 : Valores promedio por edad y niveles de corte del Tornillo de 24 años

EDAD)	ÁRBOL	NVE	Tensión perp. (Kg/cm²)		Clivaje (Kg/cm)		Cizallamiento (Kg/cm²)		Tenacidad (Kg+m)	
			Radial	Tangencial	Radial	Tangencial	Radial	Tangencial	Radial	Tangencial
	1	A			11.57	14.75	25.87	39.84	0.00	0.00
		В	16.89	20.10			20.01	23.89	0.00	0.09
		С								
	2	A	16.57	13.66	30.30	30.74	3271	37.09	0.00	0.55
2		В	21.91	26.36	30.05	31.12	39.23	40.13	0.46	0.49
		С							0.00	0.07
	3	Α	3.63	8.04	14.11	14.01	17.14	17.84		
		В	6.29	7.19	11.03	17.38	21.36	26.40	0.67	0.21
		С	37.07	4263	42.20	48.75	48.08	65.33	0.32	0.18
	PROMEDIOS 1			19.66	23.21	26.13	29.20	35.79	0.21	0.23

Cuadro 14 : Coeficientes de Variación entre, dentro y totales para la plantación de 24 años de Tornillo y su comparación según Wood Handbook

	COEFICIE	COEF. VAR. (%)		
PROPIEDADES MECÁNICAS	entre árboles	24 AÑOS dentro árboles	Total	según Wood Handbook
1. Flexión Estática				
- Esfuerzo al Límite Proporcional	16.25	38.31	34.64	22.00
- Módulo de Rotura	13.38	42.30	37.83	16.00
- Módulo de Elasticidad (x10 ³)	12.38	44.10	39.33	22.00
2. Compresión Paralela				
- Esfuerzo al Límite Proporcional	41.81	36.09	37.11	24.00
- Resistencia Máxima	43.61	35.67	37.11	18.00
3. Compresión Perpendicular				
- Esfuerzo al Límite Proporcional	22.82	17.67	18.94	28.00
4. Dureza				
- Extremos	54.56	24.75	39.48	17.00
- Lados	80.49	9.31	51.41	20.00
5. Tensión Perpendicular				25.00
- Radial	19.14	65.28	61.43	20.00
- Tangencial	39.11	63.77	61.23	
6. Clivaje				
- Radial	62.00	44.66	47.34	_
- Tangencial	57.91	41.91	44.22	-
7. Cizallamiento				14.00
- Radial	55.16	37.42	39.79	
- Tangencial	35.08	42.68	41.90	
8. Tenacidad				34.00
- Radial	198.30	166.38	170.69	
- Tangencial	161.75	103.96	112.82	

Cuadro 15 : Análisis de varianza para los niveles y entre árboles, para la plantación de Tornillo de 24 años

PROPIEDADES MECÁNICAS	NIVEL	ENTRE / ARBOL
1. Flexión Estática - Esfuerzo al Límite Proporcional - Módulo de Rotura - Módulo de Elasticidad (x10 ³)	N.S. N.S. N.S.	N.S. N.S. N.S.
Compresión Paralela Esfuerzo al Límite Proporcional Resistencia Máxima	N.S. N.S.	N.S. N.S.
Compresión Perpendicular Esfuerzo al Límite Proporcional	N.S.	N.S.
4. Dureza - Extremos - Lados	N.S. N.S.	N.S. *
5. Tensión Perpendicular - Radial - Tangencial	*	N.S. N.S.
6. Clivaje - Radial - Tangencial	*	N.S. N.S.
7. Cizallamiento - Radial - Tangencial	*	N.S. N.S.
8. Tenacidad - Radial - Tangencial	N.S. N.S.	N.S. N.S.

Donde: *: Significativo N.S.: No Significativo

Cuadro 16 : Prueba de Tuckey para la plantación de 24 años respecto a los niveles de corte

PROPIEDADES MECÁNICAS	NIVEL			
1. Flexión Estática - Esfuerzo al Límite Proporcional - Módulo de Rotura - Módulo de Elasticidad (x10 ³) 2. Compresión Paralela				
- Esfuerzo al Límite Proporcional - Resistencia Máxima				
Compresión Perpendicular Esfuerzo al Límite Proporcional				
4. Dureza				
- Extremos - Lados				
5. Tensión Perpendicular				
- Radial - Tangencial	A B A B	C		
6. Clivaje				
- Radial - Tangencial	B A A B	C C		
7. Cizallamiento				
- Radial - Tangencial	A B B A	C C		
8. Tenacidad - Radial - Tangencial				

En cuanto al análisis estadístico, el Cuadro Nº 15 muestra variación en los niveles de corte, para las propiedades de Tensión perpendicular, Clivaje y Cizallamiento.

El análisis de Tukey, que se presenta en el Cuadro Nº 16, identifica para el factor nivel de corte en los ensayos con significancia ante mencionados, que entre los niveles A y B, las propiedades de Tracción perpendicular (radial y tangencial), Clivaje (radial y tangencial) y Cizallamiento (radial y tangencial), no muestran diferencias significativas. Caso contrario se da entre los niveles A y C, donde se encuentran diferencias significativas para los ensayos de Tracción perpendicular (radial y tangencial), Clivaje (radial y tangencial) y Cizallamiento (radial y tangencial); de la misma manera sucede para los niveles B y C, donde las propiedades de Tracción perpendicular (radial y tangencial), Clivaje (radial y tangencial) y Cizallamiento (radial y tangencial), presentan variaciones significativas. Estos resultados nos indican que el comportamiento entre los niveles A y B son similares, ello implica que es indistinto el tomar muestras entre esos niveles de corte y para los ensayos mencionados.

En Flexión estática y tenacidad las muestras de esta plantación presentan fallas del tipo quebradura ("Brashness") lo que indica, una baja calidad de la madera para fines estructurales. Las Figuras N° 15 y 16, ilustran estos tipos de fallas.

Respecto a las diferencias significativas entre árboles, sólo existe diferencia significativa en Dureza (lados), de todas las propiedades mecánicas analizadas.

Figura 15: Fallas del tipo quebradura en las probetas T21A-1 radial y tangencial para el ensayo de Tenacidad, correspondientes a la edad de 24 años

Figura 16: Vistas de lados. En T21B-a se observa quebradura y en T21B-b la presencia de quebradura; pero en diferente grado, así como, la falla de la compresión en la zona superior de la probeta

4.2 CLASIFICACIÓN DE LA RESISTENCIA Y EVALUACIÓN COMPARATIVA DE LA ESPECIE

4.2.1 A CAMPO ABIERTO

La clasificación de resistencia de las propiedades mecánicas para las edades de 15 y 29 años, aplicando los criterios propuestos por Aróstegui; indican que la madera de la primera edad puede clasificarse como de baja resistencia en todas sus propiedades; mientras que para la tercera edad, de baja resistencia en compresión paralela (RM), compresión perpendicular (ELP) y cizallamiento; pero, de mediana resistencia en flexión estática (MOR) y dureza (lados). El Cuadro Nº 17 muestra estos resultados.

En relación a la evaluación comparativa se ha optado por la selección de especies comerciales en base a la densidad básica. El Cuadro Nº 18 y la Figura Nº 17, ilustran esta comparación. Se nota que los valores promedios de las dos edades, de la especie en estudio son superiores a los de la Lupuna, excepto para tenacidad en las dos edades. Respecto al Tornillo proveniente de bosque natural con el de las plantaciones, todas las propiedades mecánicas de las dos edades son menores. Similar tendencia se observa al compararlos con la Caoba, excepto en flexión estática (MOR) y en dureza (lados), para la de 29 años.

Cuadro 17 : Clasificación de resistencia de propiedades mecánicas del Tornillo de plantaciones de 15 y 29 años en comparación con el Tornillo proveniente de bosque natural

PROPIEDADES MECÁNICAS	UNIDADES	TORNILLO PLANTACIÓN				TORNILLO BOSQUE NATURAL	
PROPIEDADES MECANICAS	UNIDADES	15 AÑOS	CLASIF.	29 AÑOS	CLASIF.	VALOR PROM.	CLASIF.
Flexión Estática Módulo de Rotura	Kg/cm²	429.49	BAJA	506.77	MEDIA	576.00	MEDIA
Compresión Paralela Resistencia Máxima	Kg/cm²	181.59	BAJA	227.69	BAJA	283.00	MEDIA
Compresión Perpendicular Esfuerzo al Límite Proporcional	Kg/cm²	31.05	BAJA	33.14	BAJA	57.00	MEDIA
4. Dureza - Lados	Kg/cm²	228.36	BAJA	307.45	MEDIA	388.00	MEDIA
5. Cizallamiento	Kg/cm²	51.98	BAJA	56.54	BAJA	81.00	MEDIA

Fuente: Aróstegui (1982)

Cuadro 18 : Cuadro comparativo del Tornillo, Lupuna y Caoba provenientes de bosques naturales con el Tornillo de plantaciones de 15 y 29 años

PROPIEDADES MECÁNICAS	UNIDADES	TORNILLO DE PLANTACIÓN		TORNILLO*	LUPUNA*	CAOBA*
LIGHTER INTOVIOUS	UNIDADES	15 AÑOS	29 AÑOS	(Cedrelinga cateniformis)	(Chorisia integrifolia)	(Swietenia macrophylla)
1. Flexión Estática						
- Esfuerzo al Límite Proporcional	Kg/cm ²	229.46	275.78	349.00	153.00	328.00
- Módulo de Rotura	Kg/cm ²	429.49	506.77	576.00	232.00	524.00
- Módulo de Elasticidad (x10 ³)	Kg/cm ²	74.36	86.40	108.00	47.00	94.00
2. Compresión Paralela						
- Esfuerzo al Límite Proporcional	Kg/cm ²	130.79	179.30	222.00	109.00	240.00
- Resistencia Máxima	Kg/cm ²	181.59	227.69	283.00	125.00	292.00
3. Compresión Perpendicular						
- Esfuerzo al Límite Proporcional	Kg/cm ²	31.05	33.14	57.00	17.00	58.00
4. Dureza						
- Extremos	Kg/cm ²	259.60	305.28	_	_	_
- Lados	Kg/cm ²	228.36	307.45	388.00	120.00	298.00
5. Tensión Perpendicular						
- Radial	Kg/cm ²	25.13	30.02	_	_	_
- Tangencial	Kg/cm ²	30.00	35.62	-	-	-
6. Clivaje		V.				
- Radial	Kg/cm	36.09	39.55	_	_	_
- Tangencial	Kg/cm	42.68	40.76	-	-	-
7. Cizallamiento	Kg/cm ²	51.98	56.54	81.00	28.00	68.00
8. Tenacidad	Kg-m	0.72	0.92	3.00	1.10	1.90



Figura 17 Gráfico comparativo de propiedades mecánicas del Tornillo, Lupuna y Caoba provenientes de bosques naturales con el Tornillo de plantaciones de 15 y 29 años

4.2.2 FAJAS DE ENRIQUECIMIENTO

Para la edad de 24 años, la clasificación de resistencia en función a sus propiedades mecánicas, según los criterios propuestos por Aróstegui; determina, de muy baja resistencia en Flexión estática (MOR) y de baja en el resto de las propiedades. El Cuadro N° 19 esquematiza estos resultados.

Respecto a la evaluación comparativa, las especies comerciales seleccionadas se observan en el Cuadro Nº 20 y la Figura Nº 18. Los valores promedios de la edad en estudio son superiores a los de la Lupuna, excepto en compresión perpendicular (ELP) y en tenacidad. En relación al Tornillo proveniente de bosque natural con el de las plantaciones, todas las propiedades mecánicas son menores. De igual forma se observa al compararlos con Marupa.

Cuadro 19 : Clasificación de resistencia de propiedades mecánicas del Tornillo de plantaciones de 24 años en comparación con el Tornillo proveniente de bosque natural

PROPIEDADES MECÁNICAS	UNIDADES	TORNILLO	PLANTACIÓN	TORNILLO BOSQUE NATURAL		
PROPIEDADES MECANICAS	UNIDADES	24 AÑOS	CLASIF.	VALOR PROM.	CLASIF.	
Flexión Estática Módulo de Rotura	Kg/cm ²	298.37	MUY BAJA	576.00	MEDIA	
Compresión Paralela Resistencia Máxima	Kg/cm ²	126.04	BAJA	283.00	MEDIA	
Compresión Perpendicular Esfuerzo al Límite Proporcional	Kg/cm ²	15.97	BAJA	57.00	MEDIA	
4. Dureza - Lados	Kg/cm ²	146.11	BAJA	388.00	MEDIA	
5. Cizallamiento	Kg/cm ²	34.09	BAJA	81.00	MEDIA	

Fuente: Aróstegui (1982)

Cuadro 20 : Cuadro comparativo del Tornillo, Lupuna y Marupa provenientes de bosques naturales con el Tornillo de plantaciones de 24 años

PROPIEDADES MECÁNICAS	UNIDADES	TORNILLO DE PLANTACIÓN 24 Años	TORNILLO* (Cedrelinga cateniformis)	LUPUNA* (Chorisia integrifolia)	MARUPA* (Simarouba amara)
1. Flexión Estática					
- Esfuerzo al Límite Proporcional	Kg/cm ²	171.57	349.00	153.00	258.00
- Módulo de Rotura	Kg/cm ²	298.37	576.00	232.00	427.00
- Módulo de Elasticidad (x10 ³)	Kg/cm ²	58.71	108.00	47.00	76.00
2. Compresión Paralela					
- Esfuerzo al Límite Proporcional	Kg/cm ²	96.27	222.00	109.00	159.00
- Resistencia Máxima	Kg/cm ²	126.04	283.00	125.00	201.00
3. Compresión Perpendicular					
- Esfuerzo al Límite Proporcional	Kg/cm ²	15.97	57.00	17.00	33.00
4. Dureza					
- Extremos	Kg/cm ²	175.55	_	_	_
- Lados	Kg/cm ²	146.11	388.00	120.00	204.00
5. Tensión Perpendicular					
- Radial	Kg/cm ²	19.49	_	_	_
- Tangencial	Kg/cm ²	22.10	-	-	-
6. Clivaje					
- Radial	Kg/cm	27.47	_	_	_
- Tangencial	Kg/cm	30.60	-	-	-
7. Cizallamiento	Kg/cm ²	34.09	81.00	28.00	57.00
8. Tenacidad	Kg-m	0.29	3.00	1.10	1.60

Fuente: Elaboración propia; Aróstegui (1982)

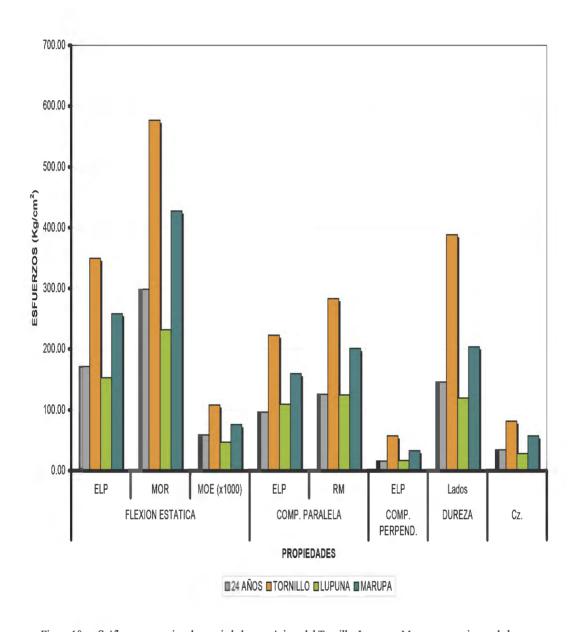


Figura 18 : Gráfico comparativo de propiedades mecánicas del Tornillo, Lupuna y Marupa provenientes de bosques naturales con el Tornillo de plantaciones de 24 años

4.3 RELACIÓN DENSIDAD BÁSICA Y PROPIEDADES MECÁNICAS

Toda propiedad resistente de un material depende en gran medida de la cantidad de materia sólida que posea por unidad de volumen; es decir, la densidad de éste. Así las propiedades de las probetas libres de defectos deben de tener una buena correlación con la densidad básica. Es por ello que en la correlación entre la densidad y los diferentes esfuerzos de las propiedades mecánicas, se pretenden identificar cuales de ellas presentan un coeficiente de determinación apropiado que garantice las predicciones de los valores estimados con las ecuaciones correspondientes.

4.3.1 A CAMPO ABIERTO

A) PLANTACIONES DE 15 AÑOS

En el Cuadro Nº 21 se aprecian los valores de correlación (r), coeficientes de determinación (r²), con sus respectivas ecuaciones de regresión.

a) **Ecuación Lineal.-** El Coeficiente de Correlación con valores superiores al 0,50 presentan las propiedades de Flexión estática (MOR: 0,65), Compresión paralela (RM: 0,57), Compresión perpendicular (ELP: 0,71), Dureza (extremos: 0,73 y lados: 0,87) y Cizallamiento (0,95). Sin embargo, los coeficientes de determinación superiores al 50% sólo se presentan para los ensayos de Comprensión perpendicular (ELP: 50%), Dureza (extremos: 53%, lados: 76%) y Cizallamiento (91%). Estadísticos que ponen

de manifiesto que los ensayos correspondientes si son altamente explicativos en las variaciones de la densidad básica.

b) **Ecuaciones Cuadráticas y Cúbicas.**- El Coeficiente de correlación r con valores por encima de 0,50 para los ensayos de Flexión estática (MOR y MOE), Compresión paralela (ELP y RM), Compresión perpendicular (ELP), Dureza (extremos y lados) y Cizallamiento, que mantienen una dispersión baja de los valores.

Así mismo, los coeficientes de determinación superiores al 50% se presentan en los ensayos de Comprensión paralela (RM: 75%), Compresión perpendicular (ELP: 52% y 54%), Dureza (extremos: 53% y 54%, lados: 79%) y Cizallamiento (92%, solo para la ecuación cuadrática), que ponen de manifiesto que los ensayos mencionados son altamente explicados por la densidad básica.

Cuadro 21 : Ecuaciones y coeficientes de determinación y de correlación para regresiones lineales, cuadráticas y cúbicas para la plantación de 15 años

	_	_		_	_		_	_			
PROPIEDAD (VARIABLE		ECUACIONES DE CORRELACIÓN									
DEPENDIENTE)	r ²		LINEAL	r ²	r	CUADRÁTICA	r²	r	CÚBICA		
Flexión estática											
ELP	0.140	0.374	y = 109.425 + 302.238x	0.148	0.384	y = -10.377 + 939.596x - 823.875x ²	0.186	0.432	$y = 97.153 - 673.410x + 5293.830x^2 - 6861.668x^3$		
MOR	0.422	0.650	y = -114.346 + 1369.369x	0.443	0.666	y = 384.175 - 1257.843x + 3428.314x ²	0.444	0,666	y = 351.320 - 766.839x + 1559.112x ² + 2096.512x ³		
мое	0.223	0.472	y = 4.401 + 176.148x	0.240	0.490	y = 85.291 - 250.146x + 556.281x ²	0.290	0.539	$y = 141.994 - 1097.541x + 3782.224x^2 - 3618.244x^3$		
Compresión paralela											
ELP	0.093	0.305	y = 28.839 + 263.789x	0.307	0.554	$y = 86.859 - 220.365x + 828.962x^2$	0.395	0.628	y = 410.131 - 116.292x - 6320.426x ² + 12051.463x ³		
RM	0.328	0.573	y = 24.968 + 405.318x	0.567	0.753	y = -25.171 + 823.736x - 716.370x ²	0.570	0.755	y = 24.350 + 839.679x - 1811.563x ² + 1846.127x ³		
Compresión perpendicular											
ELP	0.507	0.712	y = -46.800 + 198.151x	0.525	0.725	y = 52.760 - 310.893x + 643.730x ²	0.541	0.736	y = 72.878 - 148.284x - 605.989x ² + 1777.323x ³		
Dureza											
Extremos	0.538	0.734	y = -81.254 + 883.035x	0.539	0.734	y = -114.425 + 1050.168x - 208.674x ²	0.542	0.736	$y = -7.553 - 108.206x + 3848.756x^2 - 4523.794x^3$		
Lados	0.764	0.874	y = -129.038 + 925.907x	0.790	0.889	y = 388.847 - 1683.511x + 3257.993x ²	0.792	0,890	y = 458.570 - 2439.233x + 5905.058x ² - 2951.320x ³		
Cizallamiento	0.913	0.955	y = -10.588 + 165.686x	0.922	0.96	y = 9.958 + 28.215x + 213.510x ²					

B) PLANTACIONES DE 29 AÑOS

Se observa en el Cuadro Nº 22 el ajuste estadístico para este tipo de plantación.

a) **Ecuación Lineal.**- El Coeficiente de correlación con valores por encima de 0,50 para los ensayos de Flexión estática (MOR: 0,75 y MOE: 0,69), Compresión perpendicular (ELP: 0,69), Dureza (lados: 0,93) y Cizallamiento (0,96), muestran un alto grado de de asociación o relación de las variables de los ensayos con respecto a la densidad básica.

Valores por encima del 50% respecto al coeficiente de determinación para los ensayos de Flexión estática (MOR: 56%), Dureza (lados: 88%) y Cizallamiento (92%), los que implica el alto grado de explicación de las variaciones de los mencionados ensayos con respecto a las variaciones en la Densidad básica.

b) **Ecuaciones Cuadráticas**.- Coeficiente de correlación con valores por debajo del 0,50 para los ensayos de Flexión estática (ELP: 0,16) y Compresión paralela (RM: 0,31), nos indican un muy bajo grado de asociación de las variables de los ensayos con respecto a la densidad básica.

Respecto al Coeficiente de determinación, los ensayos de Flexión estática (MOR: 60% y MOE: 65%), Compresión paralela (RM: 99%), Dureza (extremos: 53%, lados: 88%) y Cizallamiento (92%), confirman un alto grado de explicación de las variaciones de los mencionados ensayos con respecto a las variaciones en la Densidad básica, manifestando de esta manera la significancia de dicha variables.

c) Ecuaciones Cúbicas.- Para el caso de los Coeficientes de correlación, los ensayos de Flexión estática (MOR: 0,78 y MOE: 0,81), Compresión paralela (ELP: 0,49), Compresión perpendicular (ELP: 0,70) y Dureza (extremos: 0,73 y lados: 0,94), presenta grados de asociación muy alto.

Los ensayos de Flexión estática (MOR: 62% y MOE: 66%) y Dureza (extremos: 54% y lados: 89%), son estadísticos que ponen de manifiesto que los ensayos correspondientes si son altamente explicativos en las variaciones de la densidad básica.

Finalmente en el Cuadro Nº 23 se presentan las ecuaciones de regresión que mejor describen la relación densidad básica – propiedades mecánicas, para las edades de 15 y 24 años.

Cuadro 22 : Ecuaciones y coeficientes de determinación y de correlación para regresiones lineales, cuadráticas y cúbicas para la plantación de 29 años

PROPIEDAD (VARIABLE		ECUACIONES DE CORRELACIÓN								
DEPENDIENTE)	7		LINEAL	Ŧ		CUADRÁTICA	ŕ	r	CÚBICA	
Flexión estática										
ELP	0.001	0.230	y = 264.955 + 24.383x	0.026	0.162	y = 863.653 - 2588.428x + 2953.756x ²	0.211	0.459	y = 610.859 - 5432.673x + 19348.283x ² - 19687.77x ³	
MOR	0.565	0.752	y = -15.392 + 1176.030x	0.602	0.776	y = -1009.934 + 5721.351x - 5138.453x ²	0.623	0.789	y = -1121.352 + 4317.855x + 2951.435x ² - 9714.948x ³	
МОЕ	0.484	0.696	y = -86.029 + 388.355x	0.655	0.809	y = -853.870 + 3897.590x - 3967.166x ²	0.667	0.817	y = -883.105 + 3529.321x - 1844.427x ² - 2549.145x ³	
Compresión paralela										
ELP	0.231	0.480	y = 23.201 + 144.732x	0.475	0.689	y = 203.751 - 921.739x + 1448.893x ²	0.497	0.705	y = 351.081 - 2279.186x + 5289.434x ² - 3433.588x ³	
RM	0.013	0.114	y = 204.098 - 56.778x	0.990	0.314	y = 380.138 - 1096.613x + 1412.706x ²	0.110	0.332	y = 553.079 - 2690.026x + 5920.850x ² - 4030.451x ³	
Compresión perpendicular										
ELP	0.485	0.696	y = -38.088 - 159.287x	0.486	0.697	y = -45.349 + 193.778x - 40.202x ²	0.492	0.702	y = -72.830 + 165.629x + 532.607x ² - 822.012x ³	
Dureza										
Extremos	0.236	0.485	y = 75.382 + 490.008x	0.535	0.731	y = -1374.810 + 6889.560x - 6966.034x ²	0.545	0.738	y = -1556.530 + 8427.150x - 10898.73x ² + 3151.354x ³	
Lados	0.882	0.939	y = -91.154 + 849.604x	0.886	0.942	y = -243.761 + 1523.045x - 733.053x ²	0.895	0.946	$y = -90.670 + 227.690x + 2580.080x^2 - 2654.884x^3$	
Cizallamiento	0.928	0.963	y = -16.296 + 170.928x	0.928	0.963	y = -9.808 + 138.698x + 38.921x ²				

Cuadro 23 : Ecuaciones de regresión que mejor describen la relación densidad básica – propiedades mecánicas, para las plantaciones de 15 y 29 años

PROPIEDAD	ECUACIONES D	E CORRELACIÓN				
(VARIABLE DEPENDIENTE)	15 Años	29 Años				
Flexión estática						
ELP	_	_				
MOR	y = -114.346 + 1369.369x	$y = -1121.352 + 4317.855x + 2951.435x^2 - 9714.948x^3$				
MOE	$y = 141.994 - 1097.541x + 3782.224x^2 - 3618.244x^3$	$y = -883.105 + 3529.321x - 1844.427x^2 - 2549.145x^3$				
Compresión paralela						
ELP	$y = 410.131 - 116.292x - 6320.426x^2 + 12051.463x^3$	_				
RM	$y = -25.171 + 823.736x - 716.370x^2$	$y = 380.138 - 1096.613x + 1412.706x^2$				
Compresión perpendicular						
ELP	$y = 72.878 - 148.284x - 605.989x^2 + 1777.323x^3$	_				
Dureza						
Extremos	y = -81.254 + 883.035x	_				
Lados	$y = 388.847 - 1683.511x + 3257.993x^2$	$y = -90.670 + 227.690x + 2580.080x^2 - 2654.884x^3$				
Cizallamiento	y = -10.588 + 165.686x	y = -16.296 + 170.928x				

Donde:

Y: Propiedad mecánica

X: Densidad básica

4.3.2 FAJAS DE ENRIQUECIMIENTO

A) PLANTACIONES DE 24 AÑOS

El Cuadro Nº 24 muestra el ajuste estadístico respectivo.

a) Ecuaciones Lineales, Cuadráticas y Cúbicas: Coeficiente de correlación con valores superiores al 0,50 se da en todos los ensayos, esto demuestra que si existe grado de asociación o relación de las variables de los ensayos con respecto a la densidad básica, o sea los valores provenientes del ensayo están próximos con relación a la ecuación ajustada.

Respecto al estadístico r², este asume valores por encima del 50% para los ensayos de Flexión estática (ELP, MOR y MOE), Compresión paralela (ELP y RM), Compresión perpendicular (ELP), Dureza (extremos y lados) y Cizallamiento, lo cual confirma el grado de explicación de las variaciones de los mencionados ensayos con respecto a las variaciones en la Densidad básica, manifestando de esta manera la significancia de dicha variables.

En el Cuadro Nº 25, se pueden observar las ecuaciones de regresión que mejor describen la relación densidad básica – propiedades mecánicas, para esta plantación.

Cuadro 24 : Ecuaciones y coeficientes de determinación y de correlación para regresiones lineales, cuadráticas y cúbicas para la plantación de 24 años

PROPIEDAD (VARIABLE				ECUACIONES DE CORRELACIÓN					
DEPENDIENTE)	r²		LINEAL	r²		CUADRÁTICA	r²		CÚBICA
Flexión estática									
ELP	0.681	0.825	y = -119.291 + 972.786x	0.683	0.827	y = -23.216 + 331.775x + 1052.715x ²	0.684	0.827	y = 29.491 - 294.250x + 3489.286x ² - 3065.940x ³
MOR	0.882	0.939	y = -330.118 + 2101.959x	0.887	0.942	y = -44.551 + 196.676x + 3128.995x ²	0.922	0.96	y = -934.401 + 10765.832x - 38007.53x ² + 51762.119x ³
MOE	0.677	0.823	y = -53.928 + 376.722x	0.677	0.823	y = -68.656 + 474.987 - 161.379x ²	0.744	0.863	y = -322.782 + 3493.353x - 11909.25x ² + 14782.352x ³
Compresión paralela									
ELP	0.770	0.877	y = -61.869 + 561.698x	0.790	0.889	y = 83.779 - 495.609x + 1833.314x ²	0.794	0.891	y = 111.619 - 1035.583x + 4509.777x ² - 3922.325x ³
RM	0.877	0.936	y = -94.928 + 748.861x	0.878	0.937	y = -54.586 + 492.011x + 507.787x ²	0.885	0.941	y = -2.623 - 515.868x + 5503.487x ² - 7321.141x ³
Compresión perpendicular									
ELP	0.889	0.943	y = -13.775 + 105.121x	0.889	0.943	y = -21.712 + 160.353x - 91.487x ²	0.891	0.944	y = -18.312 + 111.309x + 127.223x ² - 302.046x ³
Dureza									
Extremos	0.930	0.964	y = -119.134 + 987.756x	0.950	0.975	y = 243.505 - 1537.408x + 4313.325x ²	0.954	0.977	y = 113.311 - 168.896x - 517.592x ² + 5352.895x ³
Lados	0.909	0.953	y = -169.738 + 1058.716x	0.943	0.971	y = -658.967 + 4552.064x - 5967.114x ²	0.985	0.993	y = -194.397 - 1693.799x + 12551.049x ² - 20519.04x ³
Cizallamiento	0.867	0.931	y = -15.882 + 180.536x	0.868	0.932	y = -7.799 + 122.758x + 97.614x ²	0.912	0.955	y = -161.596 + 1730.645x - 5322.698x ² + 5895.072x ³

Cuadro 25: Ecuaciones de regresión que mejor describen la relación densidad básica – propiedades mecánicas, para la plantación de 24 años

PROPIEDAD (VARIABLE DEPENDIENTE)	ECUACIONES DE CORRELACIÓN 24 Años
Flexión estática	
ELP	y = -23.216 + 331.775x + 1052.715x ²
IMOR	$y = -934.401 + 10765.832x - 38007.53x^2 + 51762.119x^3$
MOE	$y = -322.782 + 3493.353x - 11909.25x^2 + 14782.352x^3$
Compresión paralela	y = -022.702 + 0400.000x = 11000.20x + 14702.002x
ELP	y = 83.779 - 495.609x + 1833.314x ²
IRM	y - 65.779 - 495.009X + 1655.514X
	-
Compresión perpendicular	2
ELP	$y = -21.712 + 160.353x - 91.487x^2$
Dureza	
Extremos	y = 243.505 - 1537.408x + 4313.325x ²
Lados	$y = -194.397 - 1693.799x + 12551.049x^2 - 20519.04x^3$
Cizallamiento	$y = -161.596 + 1730.645x - 5322.698x^2 + 5895.072x^3$

Donde: Y: Propiedad mecánica X: Densidad básica

4.4 APTITUDES DE USO

4.4.1 A CAMPO ABIERTO

Teniendo en consideración los valores obtenidos, su comparación con especies de uso conocido, los requisitos mínimos de uso y los coeficientes de variabilidad encontrados, las aptitudes de usos probables para las plantaciones de 15 y 29 años son básicamente mueblería del tipo que se señala en las conclusiones y cajonería liviana, sujeto a su comportamiento en la retención de elementos de unión (extracción de clavos y/o grapas).

4.4.2 FAJAS DE ENRIQUECIMIENTO

Para la de 24 años, solo en trabajos de mueblería orientados a la producción de persianas de madera, ficheros, carpetas de trabajo y rondanas.

5. CONCLUSIONES

5.1 A CAMPO ABIERTO

- 1. Entre las edades de este tipo de plantación, el comportamiento mecánico presenta diferencias significativas sólo para los esfuerzos de Flexión estática (ELP y MOR), Compresión paralela, Dureza y Tensión perpendicular (radial).
- Valores altos de variación total se observa para la edad de 15 años en los ensayos de Compresión perpendicular, Tensión perpendicular y Tenacidad; y para la edad de 29 años, Compresión perpendicular y Tenacidad.
- 3. En relación al comportamiento dinámico, los valores medios son muy bajos, incluso inferiores a la Lupuna y los tipos de fallas para las plantaciones de 15 y 29 años, son quebradura y astilladuras cortas, respectivamente. Asimismo presentan una amplia dispersión de los valores medios que limitan su posibilidad de uso estructural.
- 4. De uso netamente no estructural para las dos edades en estudio; además se recomienda aprovechar la madera de la plantación de 15 años y no esperar a un turno de cosecha de 29 años, pues la clasificación por resistencia mecánica y el volumen de madera son similares.
- 5. En esta especie, para ambas edades, el uso es básicamente mueblería del tipo: tableros de mesa y escritorios, persianas de madera, revisteros, separadores de libros, fícheros para entrada y salida de documentos, carpeta de trabajo, rondanas, pie de lámpara, claraboyas, machihembrado para revestimiento no estructural, biombos y zócalos. Así mismo, embalajes livianos y cajonería liviana, sujeto a su

comportamiento en la retención de elementos de unión (extracción de clavos y/o grapas).

6. Mejores resultados en resistencia mecánica de este tipo de plantación versus el de Fajas de enriquecimiento, debido a características anatómicas, entre ellas el tamaño de fibras y principalmente el diámetro tangencial; así como la cantidad de materia leñosa.

5.2 FAJAS DE ENRIQUECIMIENTO

- 1. Las razones del comportamiento poco usual para la plantación de 24 años, podrían deberse a combinaciones de factores, como tipo de plantación, establecimiento y principalmente el mantenimiento.
- 2. Existe un comportamiento anisotrópico marcado en las propiedades de Tensión perpendicular, Clivaje y Cizallamiento, en lo que respecta a los niveles de corte A y B.
- 3. Presentan valores altos de variación las propiedades de Flexión estática, Compresión paralela, dureza, Tensión perpendicular, Clivaje, Cizallamiento y Tenacidad.
- 4. En relación con el tipo de fallas se nota una tendencia a la quebradura en los ensayos de flexión estática y tenacidad.

90

5. Sólo en trabajos de mueblería orientados a la producción de persianas de madera,

6. RECOMENDACIONES

- Considerando que una de las aptitudes de uso es cajonería liviana, es necesario saber el comportamiento de las especies en la retención de elementos de unión (extracción de clavos y/o grapas).
- 2. En los esfuerzos en tensión perpendicular, clivaje y cizallamiento, es recomendable no promediar los valores medios radiales con los tangenciales.
- 3. Tratándose de madera de plantaciones es recomendable, un estudio integral que permita disponer de mayores elementos de juicio para entender mejor su comportamiento, lo que implica realizar muestreos apropiados que permitan trabajos dendrocronológicos, la identificación de madera juvenil, la magnitud de madera tensionada, el porcentaje de albura duramen, presencia de nudos, entre otras.
- 4. Realizar un constante monitoreo de las plantaciones, de ser posible contar con información anual; así como también conocer los antecedentes de los progenitores, con lo cual se garantizaría una mejor proyección del comportamiento y por consiguiente calidad de madera de las plantaciones.
- 5. Se recomienda continuar con las evaluaciones de las plantaciones a campo abierto, ya que con ellas se obtuvieron mejores resultados, con el fin de encontrar la edad propicia en la que estas alcancen similares características tecnológicas respecto a los individuos provenientes de bosques naturales.
- 6. Sería conveniente estudiar sus propiedades mecánicas en condición seca al aire; así como, su cambio dimensional en condiciones de humedad próximas de uso.

С	como también se recomienda ubicar los listones en el sentido transversal.							ersal.	

92

7. La toma de muestras de forma uniforme y equitativa en los tres niveles de corte; así

BIBLIOGRAFÍA

- Acevedo, M.; Kikata, Y. 1994. Atlas de Maderas del Perú. Lima, PE, UNALM -Universidad de Nagoya Japón. 202 p.
- 2. Aróstegui, A. 1970. Descripción, propiedades físico mecánicas y usos de la madera del Perú. Lima, PE, Centro de Investigaciones Forestales. 76 p.
- 3. Aróstegui, A. 1973. Aptitud de 10 Maderas Nacionales en la Industria de la Construcción. Lima, PE. 150 p.
- Aróstegui, A. 1974. Estudio Tecnológico de Maderas del Perú (zona Pucallpa). Lima,
 PE. Características y Usos de la Madera de 145 especies del país. Ministerio de Agricultura. UNALM. Vol I. 483 p.
- 5. Aróstegui, A. 1982. Recopilación y Análisis de Estudios Tecnológicos de Maderas Peruanas. Lima, PE, PNUD FAO. 57p. (Documento de Trabajo Nº 2)
- Arroyo, J. 1983. Propiedades Físico-Mecánicas de la Madera. Universidad de los Andes. Mérida, VE, Facultad de Ciencias Forestales. 197 p.
- Brako, L.; Zarucchi, J. 1993. Catálogo de las Angiospermas y Gimnospermas de Perú. Missouri Botanical Garden. 461 p.
- 8. Castro, F. 1972. Estudio Anatómico, Físico y Mecánico de 15 Especies Tropicales de Iparia. Tesis Ing. Forestal. Huancayo, PE, UNAC. 98 p.

- 9. Claussi, A.; Marmillod, D.; Blaser, J. 1992. Descripción Silvicultural de las Plantaciones Forestales de Jenaro Herrera IIAP. Iquitos, PE. 334 p.
- Chichignoud, M; Deon, G; Detienne, P. 1990. Atlas de Maderas Tropicales de América Latina. OIMT – Centre Technique Forestier Tropical. 218 p.
- 11. Durán, P. 2003. Evaluación de las propiedades mecánicas de la madera de Credelinga cateniformis (Ducke) Ducke (Tornillo) proveniente de plantaciones, con respecto a la influencia de cuatro factores de crecimiento. Tesis Ing. Forestal. Lima, PE, UNALM. 80 p.
- 12. El Castañero. 1998. El Tornillo. Nº 2. Abril. Puerto Maldonado, PE. 27 p.
- 13. Espinoza de pernía, N.; León, W. 2001. Anatomía de la madera. 1 a. ed. Mérida, VE, Universidad de Los Andes. Talleres Gráficos Universitarios. 396 p.
- 14. Fanh, A. 1978. Anatomía Vegetal. 2 a. ed. Madrid, ES. 643 p.
- 15. Haygreen, J.; Bowyer, J. 1982. Forest Products and Wood Science. An Introduction. USA. 495 p.
- 16. IIAP (INSTITUTO DE INVESTIGACIÓN DE LA AMAZONÍA PERUANA).
 2001. Información remitida por el Instituto de Investigación de la Amazonía
 Peruana en relación a la selección de muestras para ensayos físicos mecánicos.60p.

- 17. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de contenido de humedad. NTP 251.010. Lima, PE. 7 p.
- INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Densidad. NTP 251.011. Lima, PE. 7 p.
- INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada).
 Maderas. Método de determinación de Cizallamiento paralelo al grano.
 NTP 251.013. Lima, PE. 6 p.
- 20. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Compresión axial o paralela al grano. NTP 251.014. Lima, PE. 3 p.
- 21. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Dureza. NTP 251.015. Lima, PE. 4 p.
- 22. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Compresión perpendicular al grano. NTP 251.016. Lima, PE. 5 p.
- 23. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Flexión estática. NTP 251.017. Lima, PE. 8 p.

- 24. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Tenacidad. NTP 251.018. Lima, PE. 5 p.
- 25. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de Clivaje. NTP 251.019. Lima, PE. p.
- 26. INDECOPI (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Privada). 1980. Maderas. Método de determinación de la tensión perpendicular a las fibras. NTP 251.086. Lima, PE. 3 p.
- 27. JUNAC (JUNTA DEL ACUERDO DE CARTAGENA). 1981. Descripción General y Anatómica de 105 Maderas del Grupo Andino. Cali, CO. 442 p.
- 28. Jozsa, L. A.; Middleton, G. R. 1994. A discussion of wood quality attributes and their practical implications. Forintek Canada Corp. 42 p. (Special Publication N° SP 34)
- 29. Jozsa, L. A.; Middleton, G. R. 1997. Les caracteristiques determinant la qualité du bois: Nature et conséquences pratiques. Forintek Canada Corp. 42 p. (Publication spéciale SP 34F)
- 30. Leclercq, A. 1980. Relationships between beechwood anatomy and its physico mechanical properties. IAWA Bulletin 1 (1 2). 83 p.
- 31. López, J. 1970. Estudio Silvicultural de la especie *Cedrelinga catenaeformis* **Ducke**. Tesis Ing. Forestal. Lima, PE, UNALM. 89 p.

- 32. Lopez parodi, J.; Freitas, D. 1990. Geographical aspects of forested wetlands in the lower Ucayali, Peruvian Amazonia. Forest Ecology and management 33/34 (1 4). 648 p.
- 33. Marengo, A. 1983. Estudio Agroclimático en la zona de Jenaro Herrera (Requena, Loreto) y climático en la selva baja norte del Perú. Tesis Ing. Meteorólogo. Lima, PE, UNALM. 380 p.
- 34. Marmillod, D. 1982. Methodick und ergebnisse von Untersuchungen uber Zusammensetzung und Aufbau eines Terrassenwaldes im peruanischen Amazonien. Tesis Dr. Forestal. Gottingen, Alemania, Georg August Universtat. 198 p.
- 35. Oliveira, J.; Della lucia, R.; Ramlho, R. 1988. Revista Árbore 12 (2). Estudo das Propiedades Físicas e Tecnológicas da Madeira da Pindaìba (*Xylopia sericea* st. Hil.) II. Anatomía da Madeira. Minas Gerais, BR. 121 p.
- 36. Pashin A.; De zeeuw, C. 1980. Textbook of Wood Technology. 4 th. Ed. Mc Graw-Hill, New York, US. 722 p.
- 37. Reynel., C.; Pennington, T. D.; Pennington, R. T.; Flores, C.; Daza, A. 2003. Lima, PE. Árboles útiles de la Amazonía Peruana y sus usos. Un manual con apuntes de identificación, ecología y propagación de las especies. 509 p.
- 38. Silva, Z. 2003. Características anatómicas y propiedades físicas de *Cedrekinga cateniformis* **Ducke** (Tornillo) de diferentes edades, provenientes de plantaciones de Jenaro Herrera. Tesis Ing. Forestal. Lima, PE, UNALM. 100p.

- 39. Soudre, K. 1999. Influencia de cuatro factores de crecimiento en la variación de las propiedades físicas en la madera de *Cedrelinga cateniformis* **Ducke** (Tornillo), de las plantaciones establecidas en el bosque Alexander Von Humboldt, Ucayali. Tesis Ing. Forestal. Lima, PE, UNALM. 109 p.
- 40. Thibaut, B. 1988. Rapport D'activitiés du Laboratoire de Mécanique et Génie Civil : Variabilité des propriétés physiques et mécaniques de l'arbre. Universite des Science et Tecniques du Languedoc. La Francce.
- 41. U.S. DEPARTMENT OF AGRICULTURE. 1974. Wood handbook. Agriculture handbook. US. 454 p.
- 42. Young, R. 1991. Introducción a las Ciencias Forestales. 1 a. ed. ME. Editorial Limusa, S. A. de C.V. 362 p.

ANEXO 1

VALORES PROMEDIOS Y RANGOS DE LAS PROPIEDADES MECÁNICAS DEL TORNILLO

PROPIEDADES MECÁNICAS	UNIDADES	15	AÑOS	24	AÑOS	29 AÑOS	
FROFIEDADES MECANICAS	UNIDADES	PROMEDIO	RANGO	PROMEDIO	RANGO	PROMEDIO	RANGO
1. Flexión estática							
- Esfuerzo al Límite Proprocional	Kg/cm ²	229.46	153.27 - 277.29	171.57	107.43 - 280.78	275.78	219.27 - 382.13
- Módulo de Rotura	Kg/cm ²	429.49	171.66 - 524.14	298.37	144.47 - 532.12	506.77	404.30 - 595.36
- Módulo de Elasticidad (x10³)	Kg/cm ²	74.36	45.80 - 101.58	58.71	32.90 - 98.73	86.40	32.83 - 123.59
2. Compresión paralela							
- Esfuerzo al Límite Proporcional	Kg/cm ²	130.79	73.89 - 196.86	96.27	44.73 - 161.66	179.30	112.31 - 233.15
- Resistencia Máxima	Kg/cm ²	181.59	143.58 - 215.68	126.04	73.08 - 200.17	227.69	137.42 - 270.96
3. Compresión perpendicular							
- Esfuerzo al Límite Proporcional	Kg/cm ²	31.05	19.78 - 57.86	15.97	6.63 - 27.44	33.14	17.80 - 53.41
4. Dureza							
- Extremos	Kg/cm ²	259.60	192.50 - 339.14	175.55	99.43 - 288.74	305.28	220.64 - 383.18
- Lados	Kg/cm ²	228.36	180.24 - 306.90	146.11	59.25 - 227.23	307.45	210.20 - 391.58
5. Tensión perpendicular							
- Radial	Kg/cm ²	25.13	6.41 - 34.27	19.49	3.28 - 40.54	30.02	15.27 - 39.80
- Tangencial	Kg/cm ²	30.00	7.64 - 49.11	22.10	6.75 - 45.26	35.62	15.64 - 55.31
6. Clivaje							
- Radial	Kg/cm	36.09	26.61 - 46.88	27.47	10.33 - 46.70	39.55	26.02 - 51.89
- Tangencial	Kg/cm	42.68	12.53 - 60.53	30.60	11.00 - 56.47	40.76	19.82 - 60.23
7. Cizallamiento							
- Radial	Kg/cm ²	48.64	20.70 - 66.20	30.95	15.13 - 57.83	52.43	32.48 - 77.78
- Tangencial	Kg/cm ²	55.32	26.42 - 76.65	37.24	16.73 - 69.43	60.66	34.53 - 85.12
8. Tenacidad							
- Radial	Kg-m	0.48	0.00 - 2.33	0.30	0.00 - 1.57	0.86	0.00 - 1.77
- Tangencial	Kg-m	0.96	0.00 - 2.63	0.28	0.00 - 0.86	0.98	0.00 - 2.48

 $ANEXO\ 2$ RANGOS DE CLASIFICACIÓN DE LAS MADERAS SEGÚN SUS PROPIEDADES MECÁNICAS

GRUPO	FLEXIÓN ESTÁTICA (MOR)	COMPRESIÓN PARALELA (RM)	COMPRESIÓN (ELP)	DUREZA LADOS	CZ-JAMENT	CLASIFICACIÓN
Τ	<300	<120	<10	< 100	<30	Muy Baja
ı	300 - 500	120 - 240	1'0 - 40	100 - 300	30-60	Baja
	501 - 800	241 - 360	41 - 70	301 - 600	61 - 90	Media
IV	8001 - 1000	361 - 480	71 - 100	601 - 900	91 - 120	Alta
٧	> 1000	> 480	>100	>900	>120	Muy Alta

ANEXO 3

PROPIEDADES MECÁNICAS DEL TORNILLO DE 15 AÑOS

EDAD	ÁRBOL	NIVEL	IVEL CÓDIGO	FLEXIÓN ESTÁTICA (Kg/cm²)			COMP. PARALELA (Kg/cm²)		COMP. PERP. (Kg/cm²)	DUREZA (Kg/cm²)	
				ELP	MOR	MOE x 10 ³	ELP	RM	ELP	EXTREMOS	LADOS
		A	11A-a	228.701	415.236	84.996	138.822	168.322	23.122	257.872	242.209
		A	11A-b	273.814	501.512	101.582	196.864	211.414	35.819		
	1	В	11B-a	232.949	524.136	77.599	73.893	191.253	34.752	300.094	306.904
	'	В	11B-b	215.621	517.490	64.858	140.466	213.332	25.024		
		С	11C-a					-			
		C	11C-b								
	2	A	12A-a	247.948	489.333	101.405	115.258	159.588	37.909	318.708	288.517
		A	12A-b	172.264	305.051	54.461	167.957	120.996	21.365	204.3	165.256
1		В	12B-a								
1		В	12B-b								
		С	12C-a	258.134	437.394	70.714	183.054	196.87	23.259	205.208	195.447
			12C-b	258.012	436.853	80.823	113.794	180.32	24.925		
		Δ	13A-a	206.890	414.494	63.333	95.72	143.581	25.172	192.496	180.238
		A	13A-b	247.089	424.412	56.118	104.413	161.929	19.778		
	3	В	13B-a	153.270	171.662	45.802	112.332	215.677	32.819	303.272	242.663
		В	13B-b	277.289	487.444	76.606	130.185	190	52.529	230.632	238.35
		С	13C-a	215.830	459.718	83.971	118.461	197.725	57.863	244.252	188.183
		C	13C-b	224.582	428.109	78.727	139.776	191.318	20.296	339.138	235.853
	PRO	MEDIO		229.457	429.489	74.357	130.785	181.595	31.045	259.597	228.362

ANEXO 4

PROPIEDADES MECÁNICAS DEL TORNILLO DE 15 AÑOS

EDAD	ÁRBOL	NIVEL	CÓDIGO	TENSIÓN PE	RP. (Kg/cm²)	CLIVAJE	(Kg/cm)	CIZALLAMIE	NTO (Kgjam [†])	TENACID	AD (Kg-m)
				Tang.	Rad.	Tang.	Rad.	Tang.	Rad.	Tang.	2.052 0.109 2.631 1.133 0.771 0.000 1.268 0.000 0.417 0.000 2.083 2.004 0.345 0.000 0.345 0.000 0.000 0.683 0.328 0.000
			11A-a	34.154	25.681	41.141	39.226	76.648	54.550	2.052	0.109
		A	11A-b	49.105	29.228	55.364	35.487	69.967	59.575	2.631	1.133
		A	11A-c	39.866	34.274	46.301	35.311	66.918	66.197		
			11A-d	44.784	25.322	47.885	37.773	53.887	53.281		
			11B-a	38.610	25.070	43.606	31.708	60.467	48.113	0.771	0.000
	١,		11B-b	35.471	28.911	29.966	28.148	60.624	62.031	1.268	0.000
	1	В	11B-c	28.661	31.907	33.213	33.443	59.338	53.839	0.417	0.000
			11B-d	35.746	31.308						
			11C-a								
		С	11C-b								
		'	11C-c								
-			11C-d								
			12A-a	12.521	7.454	60.533	33.443	27.747	20.701	0.417 0.00 2.130 0.00 2.083 2.00 0.345 0.00 0.000 0.68 0.328 0.00 0.000 0.00 0.000 0.00	0.000
		١,	12A-b	7.640	6.409	56.593	46.882	26.423	21.763		2.004
		A	12A-c	6.968	8.736	12.530	45.490	70.759	25.487		
			12A-d								
			12B-a								
		,	12B-b								
1	2	В	12B-c							0345	
			12B-d								
			12C-a	28.098	24.730			31.217	42.662	0.345	0.000
		С	12C-b			35.819	31.147	59.064	50.422	0.000	0.683
			12C-c							0.328	0.000
			12C-d					-		0.345 0.000 0.000 0.683 0.328 0.000 0.000 0.000 0.000 0.000 1.812 0.719 0.910 0.789 0.000 0.000	
			13A-a	34.852	27.864	40.966	26.611			0.000	0.000
		A	13A-b	29.931	24.376	49.872	29.964	43.211	44.559	2.052 2.631 0.771 1.268 0.417 2.130 2.083 0.345 0.000 0.328 0.000 0.000 0.000	0.000
		, n	13A-c	36.356	26.824	47.273	32.100	49.794	46.809	0.000	0.000
			13A-d	28.194	24.466			55.112	45.431		
			13B-a	30.773	27.142	44.455	34.573	61.763	53.875	1.268 0.417 2.130 2.083 2.083 0.000 0.328 0.000 0.000 0.000 0.000 0.1812 0.927	0.719
	3	В	13B-b	21.251	26.213	36.681	39.407	59.890	60.364	0.910	0.789
	"	, b	13B-c	30.380	29.160	39.674	40.051	61.666	51.405	0.345 0.0 0.000 0.6 0.328 0.1 0.000 0.0 0.000 0.1 1.812 0.7 0.910 0.0 0.000 0.0	0.000
			13B- d	27.857	25.943	41.950	41.922	59.096	51.011		
			13C-a	29.474	28.523	43.729	39.533	55.039	57.520	0.182	1.268
		С	13C-b	33.480	29.730	46.126	39.612	53.128	51.741	0.927	0.000
		"	13C-c	25.919	28.647					2.346	2.331
			13C-d								
	PRO	MEDIO		30.004	25.127	42.684	36.092	55.322	48.635	0.958	0.476

ANEXO 5

PROPIEDADES MECÁNICAS DEL TORNILLO DE 24 AÑOS

EDAD	ÁRBOL	NIVEL	CÓDIGO	FLEX	IÓN ESTÁTICA (K	g/cm²)	COMP. PARA	LELA (Kg/cm²)	COMP. PERP. (Kg/cm ²)	DUREZA	(Kg/cm²)
				ELP	MOR	MOE x 10 ³	ELP	RM	ELP	99.426 5 112.592 6 1288.744 2 191.588 22 204.3 19	LADOS
		A	21A-a 21A-b				58.376	73.644			
	1	В	21B-a 21B-b	143.582	244.807	49.083	87.963 74.769	113.472 92.362	14.342 10.019	99.426 59.24 112.592 69.00 288.744 213.6 191.588 227.2 204.3 195.4	59.247 69.008
		С	21C-a 21C-b								
		A	22A-a 22A-b	107.425 160.944	158.069 321.888	32.895 58.608	44.729 161.657	67.094 170.638	22.045	99.426 59.247 112.592 69.008 288.744 213.607 191.598 227.227 204.3 195.447	
2	2	В	22B-a 22B-b	280.777 171.316	382.743 324.074	98.727 55.559	107.453 131.686	163.866 162.412	18.16		227.227 195.447
		С	22C-a 22C-b	191.905	334.358	55.537	125.683	183.06	25.348		
		A	23A-a 23A-b	A 41			61.636	73.083	6.964	99.426 59.247 112.592 69.008 288.744 213.60 191.588 227.22 204.3 195.44	
	3	В	23B-a 23B-b	86.248 160.627	144.465 234.370	37.536 35.057	106.816 59.679	116.607 80.141	14.441 6.625		
		С	23C-a 23C-b	158.431 254.462	306.779 532.124	69.422 94.694	135.252 95.814	200.174 141.979	27.439 14.356	156.63	112.138
	PRO	MEDIO		171.572	298.368	58.712	96.270	126.041	15.974	175,547	146.112

ANEXO 6

PROPIEDADES MECÁNICAS DEL TORNILLO DE 24 AÑOS

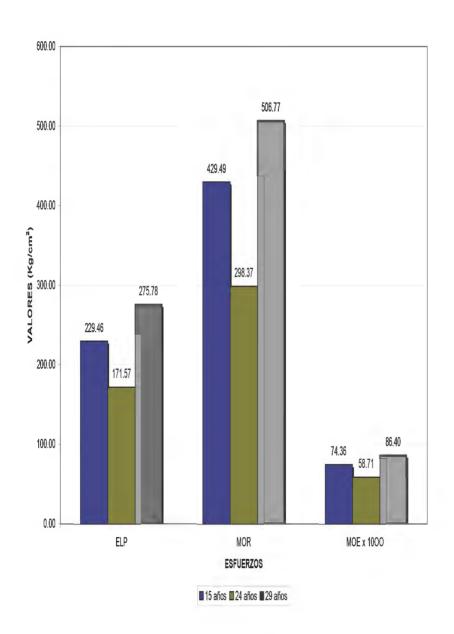
EDAD	ÁRBOL	NIVEL	CÓDIGO	TENSIÓN PE	RP.(Kg/cm²)	CLIVAJI	E(Kg/cm)	CIZALLAMIENTO (Kg/cm²)		TENACIDAD (Kg-m)	
				Tang.	Rad.	Tang.	Rad.	Tang.	Rad.	Tang.	
			21A-a			14.065	10.460	46.241	27.107	0.000	0.000
		A	21A-b			15.436	12.687				
		_ ^	21A-c					33.435	24.643		
			21A-d								
			21B-a	19.466	18.437			25.506	23.577	0.000	0.000
	1	В	21B-b	20.724	15.343			18.975	21.322	0.173	0.000
		"	21B-c					27.196	15.132		
			21B-d								
			21C-a								
		c	21C-b								
			21C-c								
			21C-d							0.173 0.000 0.7429 0.000 0.178 0.000 0.743 0.000 0.466 0.863 0.381 0.394 0.619 0.118 0.075 0.000	
			22A-a	7.419	18.454	30.087	33.429	33.803	32.249	0.178	0.000
		A	22A-b	14.909	15.462	33.994	22.387	39.817	31.192	0.178	0.000
		_ ^	22A-c	15.464	14.470	28.655	41.519	37.650	34.686	0.743	0.000
2			22A-d	16.852	17.874	30.207	23.852				
			22B-a	26.465	21.148	32.871	32.789	25.991	37.741	0.000 0.000 0.173 0.000 0.173 0.000 0.7429 0.000 0.178 0.000 0.743 0.000 0.466 0.863 0.381 0.394 0.619 0.118 0.075 0.000	0.863
	2	В	22B-b	25.704	21.467	37.036	24.943	42.266	38.910		0.394
-	'	"	22B-c	26.900	23.119	23.444	32.429	45.352	39.478		
			22B-d					46.926	40.791		
		С	22C-a							0.075	0.000
			22C-b								
		"	22C-c								
			22C-d								
			23A-a	6.745	3.496	14.011	14.110	18.946	12.400		
		A	23A-b	6.967	3.279			16.729	21.876		
		"	23A-c	10.407	4.126						
			23A-d								
			23B-a	7.192	6.288	23.757	10.331	25.976	24.143	0.000 0.000 0.000 0.173 0.7429 0.178 0.743 0.466 0.381 0.619 0.075 0.858 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.117
	3	В	23B-b			11.001	11.722	26.834	18.582	0.000	1.569
	"	"	23B-c							0.000	
			23B-d							0.000	0.000
			23C-a	45.261	40.537	43.872	46.702	69.429	56.133	0.000	0.000
		С	23C-b	39.667	33.548	50.345	45.084	62.204	30.289	0.000	0.956
		"	23C-c	41.956	34.068	44.323	33.329	64.355	57.825	0.550	0.000
			23C-d	43.645	40.131	56.470	43.692				
	PRO	MEDIO		22.102	19.485	30.598	27.466	37.244	30.951	0.281	0.295

ANEXO 7

PROPIEDADES MECÁNICAS DEL TORNILLO DE 29 AÑOS

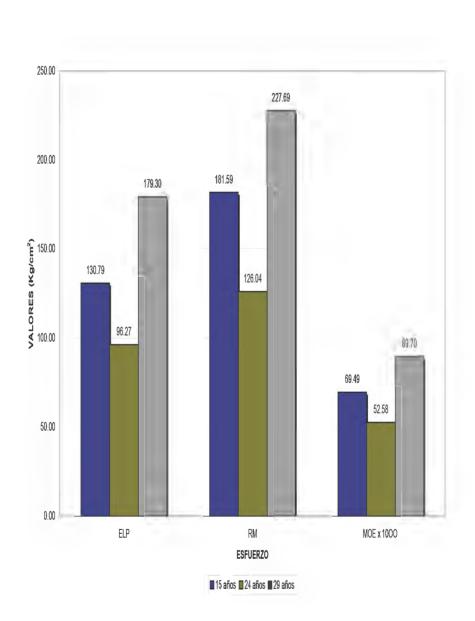
EDAD	ÁRBOL	NIVEL	CÓDIGO	FLEX	(IÓN ESTÁTICA (K	g/cm²)	COMP. PARA	LELA (Kg/cm²)	COMP. PERP. (Kg/cm²)	DUREZA	(Kg/cm²)
				ELP	MOR	MOE x 10 ³	ELP	RM	ELP	EXTREMOS LA 336.414 31. 273.762 29 316.438 37 375.912 32 360.022 33 263.32 28 299.64 27 318.254 39 383.176 30 234.264 30 281.48 28	LADOS
		A	31A-a	231.461	463.749	107.388	223.485	244.902	29.558	336.414	313.714
		A	31A-b	314.801	555.624	113.260	112.307	202.152	27.24	DUREZA (Kg/cm²) EXTREMOS LADOS 336.414 313.714 273.762 294.646 316.438 374.55 375.912 327.334 360.022 330.285 263.32 280.345 299.64 271.946 318.254 391.575 383.176 302.818 234.264 309.174 281.48 282.842 299.64 271.946 318.254 391.575	
	1	В	31B-a	318.116	583.969	112.392	194.356	263.769	41.852		
	'	В	31B-b	259.848	589.244	101.574	197.389	270.961	29.782	375.912	327.334
		С	31C-a	229.284	404.303	50.689	107.783	137.423	46.841	360.022	330.285
			31C-b	289.618	563.993	123.590	198.983	270.436			
		A	32A-a	250.050	488.380	77.656	212.379	234.502	47.406	263.32	280.345
		Α .	32A-b	219.266	413.682	69.185	147.343	201.675	21.902		
3	2	В	32B-a	298.771	590.072	94.352	146.157	208.274	34.643	299.64	271.946
J	2	В	32B-b	267.810	503.325	74.592	233.15	265.026	32.623	DUREZA (Kg/cm²) EXTREMOS LADOS 336.414 313.714 273.762 294.646 316.438 374.55 375.912 327.334 360.022 330.285 263.32 280.345 299.64 271.946 318.254 391.575 383.176 302.818 234.264 309.174 281.48 282.842	
		С	32C-a	213.163	494.082	88.968	199.4	258.314	29.173		
			32C-b	323.803	595.357	93.339	126.698	202.718	53.412	234.264	309.174
		A	33A-a	293.045	458.848	74.136	204.017	227.201	27.24	EXTREMOS 336.414 273.762 316.438 375.912 360.022 263.32 299.64 318.254 383.176 234.264 281.48 299.64 318.254	282.842
		Λ	33A-b	382.126	415.753	32.829	196.808	212.016	17.804		
	3	В	33B-a	245.541	481.108	82.060	189.313	215.964	24.432	299.64	271.946
	,		33B-b							318.254	391.575
		С	33C-a								
			33C-b								
	PRO	MEDIO		275.780	506.766	86.401	179.305	227.689	33.136	312.352	318.673

ANEXO 8

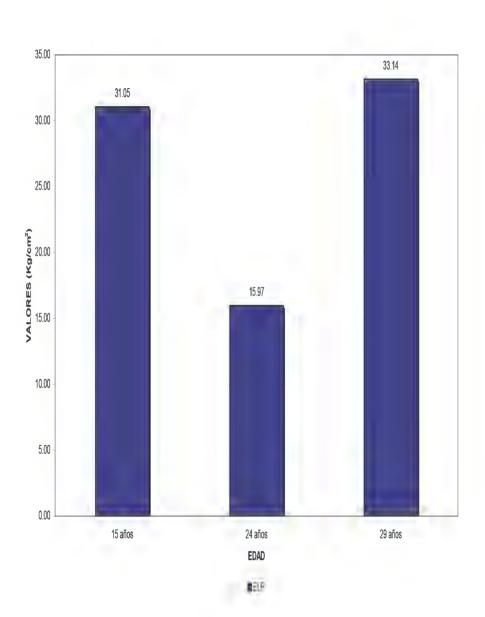

PROPIEDADES MECÁNICAS DEL TORNILLO DE 29 AÑOS

EDAD	ÁRBOL	NIVEL	CÓDIGO	TENSIÓN PERP. (Kgicm²)		CLIVAJE (Kg/cm)		CIZALLAMIE	NTO (Kg/cm²)	TENACIDAD (Kg-m)	
				Tang.	Rad.	Tang.	Rad.	Tang.	Rad.	Tang.	Rad.
			31A-a	40.659	32.529	53.274	39.136	60.671	60.703	1.684	0.273
		A	31A-b	55.309	30.415	44.183	51.886	61.556	55.391	1.320	0.805
		A	31A-c	36.828	29.410	45.807	38.510	74.141	49.454	1.133	0.858
			31A-d	45.236	35.674	58.657	36.357				
			31B-a	50.934	33.308	57.700	46.789	69.332	63.547	2.437	1.387
	1	В	31B-b	42.691	39.797	48.572	26.021	66.363	64.015	1.988	1.765
	'	"	31B-c	47.364	36.893	60.234	48.187	65.931	60.285		
			31B-d	54.657	34.918	50.303	48.223	83.326	60.750		
			31C-a	44.469	31.739	59.990	38.318	69.546	42.417	0.000	1.387
		l c	31C-b	31.492	27.364	33.803	35.745	64.663	48.480	0.000	1.684
		'	31C-c	31.685	29.928	59.213	47.398	50.964	63.333	0.000	0.000
			31C-d	34.526	33.143	25.764	34.728	73.433	53.016		0.000 1.684
			32A-a	29.140	30.737	34.298	34.420	85.116	66.674	1,988 0,000 0,000 1,486 0,000 0,000 1,866	1.486
		١,	32A-b	29.004	26.794	33.983	34.342	71.252	43.286		0.841
		A	32A-c	30.517	28.287	35.925	45.445	64.829	45.566		
			32A-d	33.763	25.618	36.428	37.039	66.256	49.094		
			32B-a	26.621	20.026			36.347	34.226	0.000	0.000
3		B	32B-b	16.767	15.274			37.801	32.476	1.666	0.091
J	2	B	32B-c	20.070	28.065			34.531	38.866		
			32B-d								
		С	32C-a	37.197	33.698	19.821	45.624	62.767	77.782	2.177	1.684
			32C-b	43.733	35.473	25.356	41.617	71.594	72.896	0.000	1.370
			32C-c	37.104	34.404	24.901	51.656	75.110	69.218	1.812	0.000
			32C-d	35.903	37.635	32.173	40.595				
			33A-a	15.640	24.777	39.169	35.854	42.693	46.467	0.381	0.945
			33A-b	27.271	25.776	34.497	32.839	49.102	46.185	1.320 1.133 2.437 1.988 0.000 0.000 0.000 1.486 0.000 1.666	0.054
		A	33A-c	31.058	23.945	45.712	39.517	42.586	45.783	0.000	1.212
			33A-d	32.119	24.790	31.372	36.999				
			33B-a			36.854	32.364	48.851	27.723	2.482	0.542
	3	В	33B-b			31.699	28.655	48.348	45.619		
	"	"	33B-c								0.273 0.805 0.858 1.387 1.765 1.387 1.684 0.000 1.486 0.841 0.000 0.091 1.684 1.377 0.000 0.945 0.054 1.212
			33B-d								
			33C-a								
		l c	33C-b								
		"	33C-c								
			33C-d								
	PROI	MEDIO		35.621	30.015	40.757	39.549	60.658	52.433	0.977	0.862

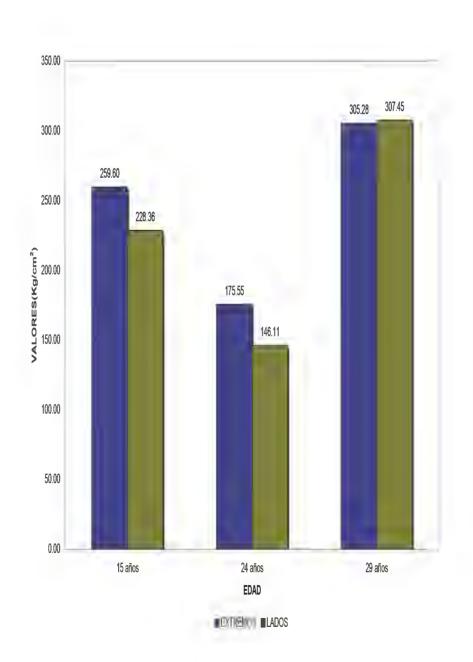
ANEXO 9


COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE FLEXIÓN ESTÁTICA PARA LAS TRES EDADES

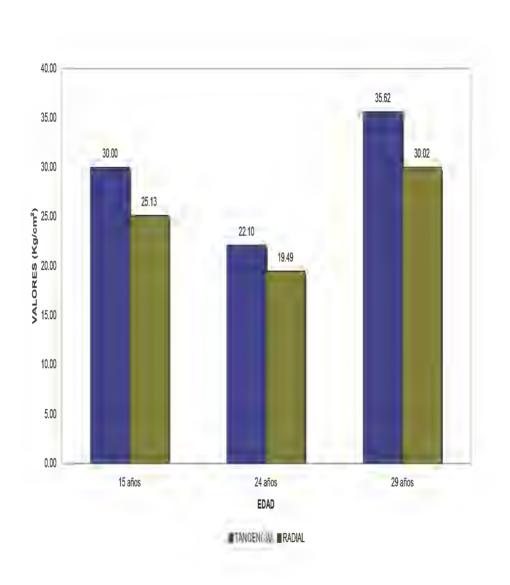
DEL TORNILLO


ANEXO 10

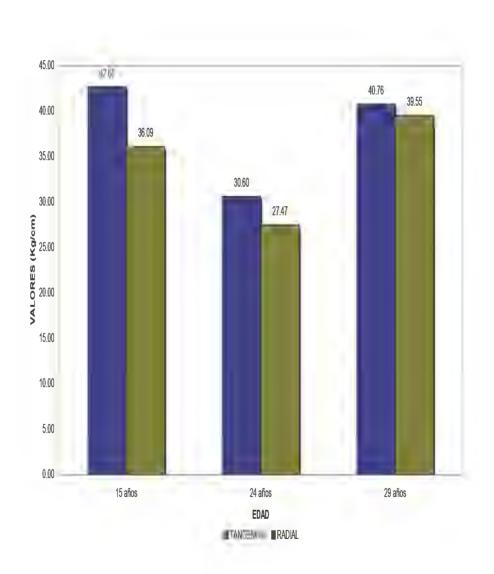
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE COMPRESIÓN PARALELA PARA LAS TRES EDADES DEL TORNILLO


COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE COMPRESIÓN PERPENDICULAR PARA LAS TRES

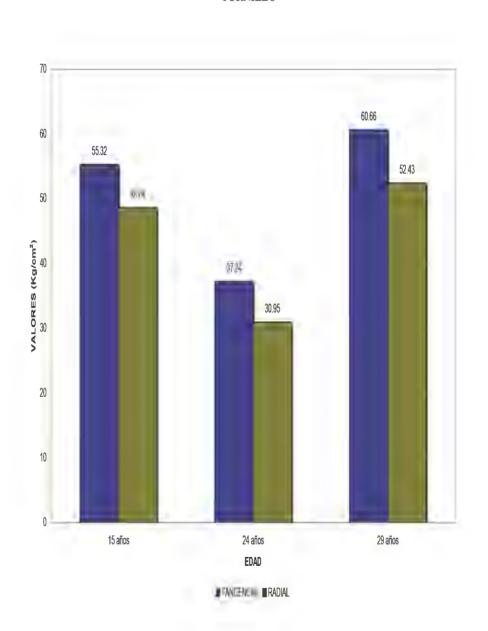
EDADES DEL TORNILLO



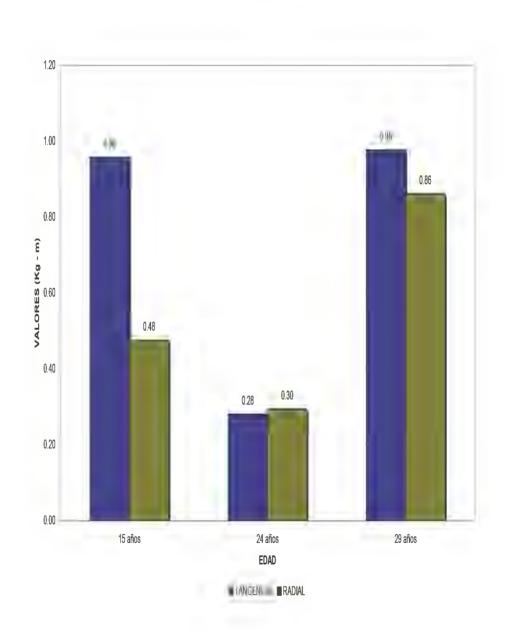
ANEXO 12


COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE DUREZA PARA LAS TRES EDADES DEL TORNILLO

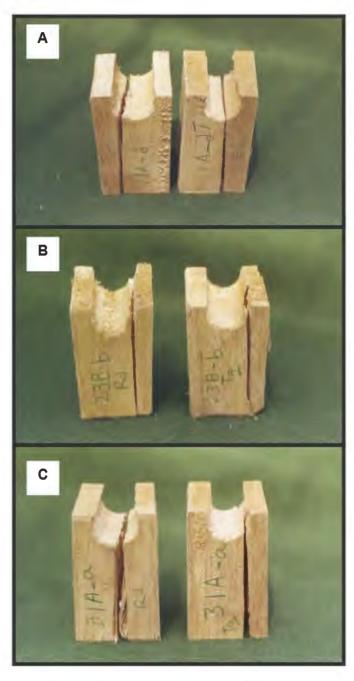
COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE TENSIÓN PERPENDICULAR PARA LAS TRES EDADES DEL TORNILLO



COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE CLIVAJE PARA LAS TRES EDADES DEL TORNILLO

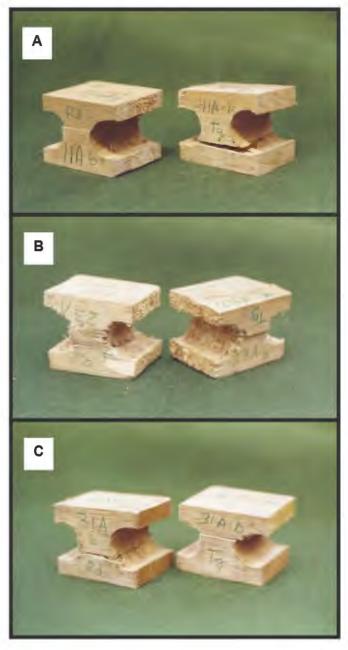

ANEXO 15

COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE CIZALLAMIENTO PARA LAS TRES EDADES DEL TORNILLO

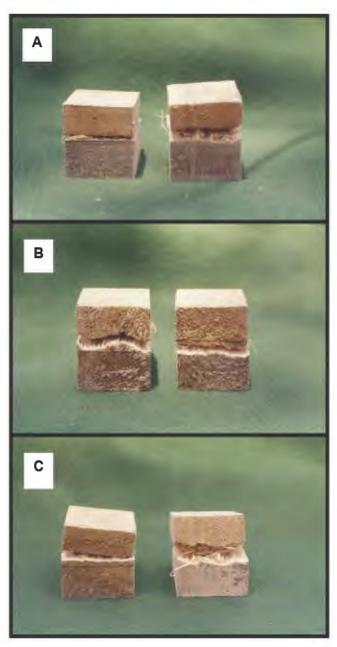


ANEXO 16

COMPARACIÓN DE VALORES PROMEDIOS DE LOS ESFUERZOS DE TENACIDAD PARA LAS TRES EDADES DEL TORNILLO



ENSAYO DE CLIVAJE PARA LAS TRES EDADES DEL TORNILLO


A. muestras de 15 años, **B.** muestras de 24 años y **C.** muestras de 29 años

ENSAYO DE TENSIÓN PERPENDICULAR PARA LAS TRES EDADES DEL TORNILLO

A. muestras de 15 años, **B.** muestras de 24 años y **C.** muestras de 29 años

ENSAYO DE CIZALLAMIENTO PARA LAS TRES EDADES DEL TORNILLO

A. muestras de 15 años, **B.** muestras de 24 años y **C.** muestras de 29 años