UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

Facultad de Ciencias Forestales

Características de trabajabilidad de la madera de *Tetrorchidium rubrivenium*Poeppig (Col de Monte) procedente de la zona de Oxapampa

Tesis para optar el Título de

INGENIERO FORESTAL

Iris Jaquelin Plaza Arce

Lima – Perú 2009

ACTA DE SUSTENTACIÓN DE TESIS

Los Miembros del Jurado que suscriben, reunidos para calificar la sustentación del Trabajo de Tesis, presentado por la ex-alumna de la Facultad de Ciencias Forestales, Bach. IRIS JAQUELIN PLAZA ARCE, intitulado "CARACTERÍSTICAS DE TRABAJABILIDAD DE LA MADERA DE *TETRORCHIDIUM RUBRIVENIUM* POEPPIG (COL DE MONTE) PROCEDENTE DE LA ZONA DE OXAPAMPA".

Oídas las respuestas a las obs	ervaciones formulad	as, lo declaramos:
con el calificativo de		
En consecuencia queda en co INGENIERO FORESTAL.		iderada APTA y recibir el título de
		La Molina, 30 de Enero de 2009
	Ing. Moisés Aceved President	do Mallque e
Ing. Manuel Chavesta Cu Miembro	stodio	Ing. Miguel Meléndez Cárdena s Miembro
 In	g. Neptalí Rodolfo Patroci	Bustamante Guillén nador

RESUMEN

El presente estudio tiene por objetivo determinar el comportamiento de la madera de *Tetrorchidium rubrivenium* al cepillado, moldurado, taladrado, torneado y lijado, bajo condiciones estandarizadas de ensayo, a partir de árboles procedentes de un bosque secundario de la zona de Oxapampa, de tal manera que se proporcione las mejores condiciones para su transformación secundaria.

El Cepillado se ensayó con dos de ángulos de corte y dos velocidades de alimentación; adicionalmente se midió la rugosidad superficial. El Moldurado se trabajó con dos velocidades de giro. El Taladrado se efectuó con dos tipos de broca y dos velocidades de giro. El Torneado se ejecutó con cuatro velocidades de giro y una cuchilla de perfil especial, tal como se indica en la Norma ASTM-D-1666-99. Estos ensayos se ajustaron a la mencionada norma con algunas modificaciones. Finalmente, se realizó el Lijado con un grano Nº 100.

En el Cepillado se obtuvieron buenas calidades de superficie, con 15° de ángulo de corte en los tres planos y dos velocidades de alimentación. En cualquier plano de corte, la calidad de superficie en el Moldurado es regular a una velocidad angular de 7414 rpm. La madera de *Tetrorchidium rubrivenium* califica como regular para el Taladrado, observándose una buen comportamiento en el plano radial con la broca para metal y 1405 rpm. La calidad del Torneado es regular para 4000 y 6000 rpm. Con respecto al Lijado, para mejorar la calidad de superficie de la madera cepillada es necesario emplear lijas con números de grano superiores a 100. Por otro lado, en el Cepillado y Taladrado, los granos arrancado y astillado con gravedad fuerte se asocian con el plano de corte radial.

ÍNDICE

		Pá	ágina
DI	EDICAT	ORIA	III
A(GRADE	CIMIENTOS	IV
ÐΙ	SUME	N	v
IN			
1.	INT	RODUCCIÓN	1
2.	REV	ISIÓN DE LITERATURA	2
	2.1	CONSIDER ACIONES SOBRE TRABAJABILIDAD DE LA MADERA	2
	2.1.1		
	2.1.2	Defectos del labrado mecanizado	
	2.1.3	v ·	
	2.1.4		
	2.2	DESCRIPCION DE LA ESPECIE	
	2.2.1		
	2.2.2	Característica de la madera	9
3.	МАТ	TERIALES Y MÉTODOS	12
Э.			
	3.1	LUGAR DE EJECUCIÓN:	
	3.2	MATERIALES Y EQUIPOS	
	3.2.1		
	3.2.2	Equipos	
	3.3 3.3.1	METODOLOGÍA	
	3.3.1	Selección de árboles y preparación de viguetas	
	3.3.3	Acondicionamiento de la madera	
	3.3.4	Preparación y dimensionado de probetas	
	3.3.5		
	3.3.6	·	
	3.3.7	•	
		ULTADOS Y DISCUSIÓN	
4.			
	4.1	GRADOS PROMEDIOS EN LOS ENSAYOS DE TRABAJABILIDAD	
	4.1.1	Contenido de Humedad	
	4.1.2 4.1.3	Ensayo de Cepillado:	
	4.1.3 4.1.4	· · · · · · · · · · · · · · · · · · ·	
	4.1.4	Ensayo de Taladrado Ensayo de Torneado:	
	4.1.5	·	
	4.2	VARIABILIDAD DE LA CALIDAD DE SUPERFICIE EN LOS ENSAYOS DE TRABAJABILIDAD	
	4.3	ANÁLISIS DE VARIANCIA DE LA CALIDAD DE SUPERFICIE EN LOS ENSAYOS DE TRABAJABILIDAD	
	4.3.1	Ensayo de Cepillado	
	4.3.2	Ensayo de Moldurado	
	4.3.3	·	
	4.3.4	·	
	4.3.5		
	4.4	ANÁLISIS EXPLORATORIO COMPARATIVO DE DEFECTOS EN LOS ENSAYOS DE TRABAJABILIDAD POR	
	MEDIO D	E MÉTODOS MULTIVARIADOS	44
5.	CON	ICLUSIONES	45
6.	KEC	OMENDACIONES	46

ANEXO 1	51
GRADOS DE CALIDAD PARA EL ENSAYO DE CEPILLADO	51
ANEXO 2	64
RUGOSIDAD PARA EL ENSAYO DE CEPILLADO	64
ANEXO 3	69
GRADOS DE CALIDAD PARA EL ENSAYO DE MOLDURADO	69
ANEXO 4	74
GRADOS DE CALIDAD PARA EL ENSAYO DE TALADRADO	74
ANEXO 5	84
GRADOS DE CALIDAD PARA EL ENSAYO DE TORNEADO	84
ANEXO 6	93
GRADOS DE CALIDAD PARA EL ENSAYO DE LIJADO	93
ANEXO 7	96
CARACTERISTICA DE LOS ÁRBOLES	96
ANEXO 8	98
CONSTANCIA DE DETERMINACION BOTANICA	98
ANEXO 9	100
DEFECTOS EN EL ENSAYO DE CEPILLADO	100
ANEXO 10	102
DEFECTOS EN EL ENSAYO DE MOLDURADO	102
ANEXO 11	107
DEFECTOS EN EL ENSAYO DE TALADRADO	107
ANEXO 12	109
DEFECTOS EN EL ENSAYO DE TORNEADO	109
ANEXO 13	111
DEFECTOS EN EL ENSAYO DE LIJADO	111
ANEXO 14	113
ANALISIS DE CORRESPONDENCIA SIMPLE DE DEFECTOS EN LOS ENSAYOS DE TRABAJABILIDAD	113
ANEXO 15	119
ANALISIS DE VARIANCIA DE LOS ENSAVOS DE TRABALARII IDAD	110

Lista de cuadros

Pa	ıgına
ADRO 1 PROPIEDADES FÍSICO MECÁNICAS DE LA TETRORCHIDIUM RUBRIVENIUM	11
ADRO 2 CARACTERÍSTICAS DE TRABAJABILIDAD DE ALGUNAS ESPECIES SIMILARES A LA TETRORCHIDIUM RUBRIVENIUM	12
ADRO 3 CARACTERÍSTICAS DE LAS PROBETAS POR ENSAYO DE TRABAJABILIDAD DE LA MADERA	21
ADRO 4 CALIDAD DE SUPERFICIE EN FUNCIÓN DE LA EXTENSIÓN DE LA SUPERFICIE DEFECTUOSA Y LA GRAVEDAD DEL DEFEC	сто,
EN LOS ENSAYOS DE TRABAJABILIDAD DE LA MADERA.	24
ADRO 5 FACTORES DE CONVERSIÓN DE DEFECTOS SEGÚN SU SEVERIDAD EN LOS ENSAYOS DE TRABAJABILIDAD DE LA MAD	ERA
25	
ADRO 6 GRAVEDAD DE LOS DEFECTOS EN EL ENSAYO DE CEPILLADO PARA LA MADERA DE TETRORCHIDIUM RUBRIVENIUM	
LA ZONA DE O XAPAMPA	26
ADRO 7 VALORES PROMEDIOS DE TEMPERATURAS SEGÚN PLANO DE CORTE PARA EL ENSAYO DE LIJADO PARA LA MADERA	
Tetrorchidium rubrivenium	38
ADRO 8 VARIABILIDAD DEL GRADO PROMEDIO DE CALIDAD DE SUPERFICIE EN LOS ENSAYOS DE CEPILLADO, MOLDURADO,	
TALADRADO Y LIJADO PARA LA MADERA DE <i>TETRORCHIDIUM RUBRIVENEIUM</i>	40
ADRO 9 ANÁLISIS DE VARIANCIA DEL ENSAYO DE CEPILLADO PARA LA MADERA DE TETRORCHIDIUM RUBRIVENIUM	41
ADRO 10 PRUEBA DE TUKEY PARA EL ENSAYO DE CEPILLADO POR PLANO DE CORTE PARA LA MADERA DE TETRORCHIDIUM	
RUBRIVENIUM	42
ADRO 11 ANÁLISIS DE VARIANCIA PARA EL ENSAYO DE MOLDURADO PARA LA MADERA DE TETRORCHIDIUM RUBRIVENIUM	42
ADRO 12 ANÁLISIS DE VARIANCIA PARA EL ENSAYO DE TALADRADO PARA LA MADERA DE TETRORCHIDIUM RUBRIVENIUM	43
ADRO 13 ANÁLISIS DE VARIANCIA PARA EL ENSAYO DE TORNEADO PARA LA MADERA DE TETRORCHIDIUM RUBRIVENIUM	43
ADRO 14 ANÁLISIS DE VARIANCIA PARA EL ENSAYO DE LIJADO PARA LA MADERA DE TETRORCHIDIUM RUBRIVENIUM	43
ADRO 15 RELACIONES ESTABLECIDAS A TRAVÉS DEL ANÁLISIS DE CORRESPONDENCIA SIMPLE (A.C.S.) DE LA CONDICIÓN DI	E
ensayo de trabajabilidad con el tipo de defecto según su Gravedad para la madera de <i>Tetrorchidium</i>	
RUBRIVENIUM	44

Lista de figuras

		Página
Figura 1	ÁNGULO DE CORTE PARA EL ENSAYO DE CEPILLADO	14
FIGURA 2	CUCHILLAS PARA ENSAYO DE MOLDURADO	14
FIGURA 3	Brocas para metal y madera HSS	15
FIGURA 4	CUCHILLA PARA ENSAYO DE TORNEADO	16
FIGURA 5	PLANTILLA PARA EL ENSAYO DE TALADRADO.	23
FIGURA 6	ZONAS DE EVALUACIÓN EN LAS PROBETAS DE MOLDURADO	26
FIGURA 7	GRADOS PROMEDIOS DE CALIDAD DE SUPERFICIE EN EL ENSAYO DE CEPILLADO SEGÚN PLANO DE CORTE, ÁNGUI	LO DE
CORT	E Y VELOCIDAD DE ALIMENTACIÓN	31
FIGURA 8	VALORES PROMEDIO DE RUGOSIDAD SUPERFICIAL EN EL ENSAYO DE CEPILLADO SEGÚN PLANO DE CORTE, ÁNGL	JLO DE
CORT	E Y VELOCIDAD DE ALIMENTACIÓN	
FIGURA 9	GRADOS PROMEDIOS DE CALIDAD DE SUPERFICIE PARA EL ENSAYO DE MOLDURADO SEGÚN PLANO DE CORTE	Υ
VELO	CIDAD DE GIRO	32
FIGURA 10	DEFECTO DE GRANO ARRANCADO EN EL ENSAYO DE MOLDURADO	33
FIGURA 11	GRADOS PROMEDIO DE CALIDAD DE SUPERFICIE PARA EL ENSAYO DE TALADRADO SEGÚN PLANO DE CORTE,	
VELO	CIDAD DE GIRO Y TIPO DE BROCA.	
Figura 12	DEFECTO DE RUPTURA DE GRANO EN EL ENSAYO DE TALADRADO	34
FIGURA 13	VALORES PROMEDIOS DE TIEMPOS DE PERFORACIÓN EN EL ENSAYO DE TALADRO SEGÚN PLANO DE CORTE,	
BROC	A Y VELOCIDAD DE GIRO.	35
Figura 14	GRADOS PROMEDIO DE CALIDAD DE SUPERFICIE PARA EL ENSAYO DE TORNEADO SEGÚN VELOCIDAD DE GIRO	
FIGURA 15	DEFECTOS DEL GRANO EN EL ENSAYO DE TORNEADO	37
Figura 16	VALORES PROMEDIOS DE RUGOSIDAD SUPERFICIAL EN LOS ENSAYOS DE LIJADO Y CEPILLADO SEGÚN PLANO	DE CORTE,
ÁNGU	JLO Y VELOCIDAD DE CORTE.	38

1. INTRODUCCIÓN

Actualmente existe preocupación a nivel mundial por la deforestación y el papel que cumplen los bosques en la conservación del medio ambiente. El área de bosques secundarios se está incrementando fuertemente, se considera que existen alrededor de 850 millones de hectáreas de bosques secundarios en el mundo, de los cuales, 335 millones de hectáreas se ubican en América (FAO, 2005). Los bosques secundarios de las zonas tropicales se originan en su mayoría por la tala de bosques primarios, la agricultura migratoria y el abandono de pasturas.

El manejo de estos bosques es una alternativa para la recuperación de las áreas deforestadas, lo que se ve favorecido por ser ecosistemas accesibles de rápido crecimiento. Desde el punto de vista socio-económico, la manufactura de la madera proveniente de bosques secundarios, permite un incremento en los ingresos familiares de los pobladores locales, mediante la formación de pequeños talleres de manufactura, con la consiguiente mejora de la calidad de vida.

Se tienen referencias etnobotánicas sobre el uso tradicional de la madera del *Tetrorchidium* rubrivenium Poeppig (Col de monte) en la zona Oxapampa, donde por décadas es utilizada para el revestimiento de paredes y techos, cajonería para frutas, juguetes, entre otros usos; con este antecedente resulta importante desde el punto de vista industrial el estudio del comportamiento de su madera al maquinado para introducirla con valor agregado al mercado local, nacional e internacional, en la perspectiva económica de utilizar el gran potencial desaprovechado en los bosques secundarios.

El objetivo del presente trabajo es la evaluación del comportamiento de la madera de *Tetrorchidium rubrivenium* al cepillado, moldurado, torneado, taladrado y lijado, bajo condiciones estandarizadas de ensayo. El conocimiento de las características de trabajabilidad de la madera es importante para incentivar su transformación secundaria y con ello el mejor aprovechamiento de los bosques secundarios.

2. REVISIÓN DE LITERATURA

2.1 CONSIDERACIONES SOBRE TRABAJABILIDAD DE LA MADERA

2.1.1 GENERALIDADES

Según Ninin (1983), el corte periférico es un proceso de corte rotatorio en el cual la madera es removida en forma de virutas individuales que se forman por la acción intermitente de las cuchillas colocadas en un porta-cuchillas con movimiento rotatorio sobre la madera, obteniéndose una superficie resultante constituida por una serie de marcas de cuchillas individuales generadas por la acción sucesiva de cada cuchilla. En términos específicos el labrado mecanizado de la madera se efectúa para dar forma y calidad de superficie a materiales semielaborados, como cepillado o moldurado de madera aserrada, lijado de tableros aglomerados, taladrado de elementos estructurales para uniones. De otro lado sostiene que en el labrado mecanizado se persiguen cuatro metas fundamentales:

- Obtener calidad de superficie
- Obtener eficiencia en la operación
- Limitar el desgaste
- Limitar el consumo de energía

Gutiérrez (1985), propone un rango de clasificación del comportamiento a la trabajabilidad basándose en el grano, densidad, inclusiones y sílice, estableciendo tres grupos:

- Grupo I: correspondiente a las maderas de buen comportamiento a la trabajabilidad, es decir fácil de trabajar con máquina de carpintería, que tiene grano recto, bajo contenido de sílice (menor de 0.2%) y de baja densidad.
- Grupo II: corresponde a maderas de regular comportamiento a la trabajabilidad, que tiene grano recto u oblicuo, densidad media, contenido de sílice medio (0.2 a 0.5%).

 Grupo III: corresponde a las maderas por lo general de difícil comportamiento, es decir difíciles de trabajar con maquinas de carpintería, por lo general tienen grano entrecruzado, alta densidad y elevado contenido de sílice.

León y Espinoza (1999), señalan que según el concepto de variabilidad, ninguna pieza de madera es exactamente igual a otra, aún cuando estas provengan del mismo árbol. Esta variabilidad afecta en gran medida el comportamiento de la madera e influye notablemente sobre su procesamiento y utilización como material estructural ya que esa variabilidad también se extiende a sus propiedades físicas, mecánicas y otros parámetros de resistencia de los cuales son de gran importancia para aquellos usos en donde se van a aplicar cargas pesadas. Esto trae como consecuencia que la mayoría de las veces, las piezas destinadas a un determinado uso deben poseer cualidades muy por encima del mínimo exigido con el fin de compensar las posibles variaciones que se presentan en la pieza de madera.

Arroyo (1983), menciona que la variabilidad de la madera se debe a que las actividades fisiológicas del árbol son afectadas por:

- Edad y modificaciones en el cambium producidas por maduración o envejecimiento de las células, de las cuales depende la variabilidad dentro de los árboles de una misma especie.
- Factores genéticos que son una de las causas principales de la variabilidad entre árboles, siendo hasta 10 veces superior a la variabilidad dentro de un árbol.
- Factores ambientales, como precipitación, temperatura y/o tratamiento silvicultural, de los cuales depende el suministro de agua y nutrientes al cambium. Estos factores afectan tanto la variabilidad dentro de los árboles como entre árboles de una misma especie.

Del mismo modo Panshin y De Zeeuw (1980), sostienen que las variaciones que se producen en la madera formada de árboles en una misma especie pueden ser el resultado de las condiciones de crecimiento que a su vez están influenciadas por condiciones climáticas, tratamientos silviculturales y el sitio.

El Laboratorio Británico de Investigación en Productos Forestales, citado por Sato (1976), afirma que los factores más importantes en el cepillado de maderas latifoliadas son: velocidad de alimentación, velocidad de corte y ángulo de corte; de igual forma indica que la velocidad de alimentación se escoge en relación al número de cuchillas y la velocidad de rotación del porta-cuchillas, de modo que el número de marcas de cuchilla por centímetro sea debido a la intensidad de corte de la madera. El ángulo de corte de las cuchillas es determinado por las características de la madera de la especie.

Sato (1976), precisa que el porta-cuchillas tiene un ángulo de corte fijo para una cuchilla estándar, este ángulo no puede aumentarse pero si reducirse por un afilado en la cara del corte llamado bisel de corte, aunque a medida que se reduce el ángulo de corte la necesidad de potencia aumenta.

French (1977), sostiene que el número de cuchillas en el cabezal, las revoluciones por minuto en el cabezal, la velocidad y los ángulos de corte, dependen de las especies a cortarse. Recomienda en el caso de maderas de densidad media en diferentes ángulos de corte: de 15° a 20°, para marcas de cuchilla de 3,5 a 4,7 por cm y una velocidad de alimentación de 59 a 44 m/min y de 25° para marcas de cuchillas de 3,5 a 4,3 por cm y una velocidad de 59 a 48 m/min.

Emary (1992) y Harriage (1999), precisan que la calidad de cepillado mejora a medida que disminuye la velocidad de avance.

Emary (1992) y Herrera (1981), explican, cuando en la superficie se genera un menor número de marcas de cuchilla, más pequeñas y menos profundas, se obtiene mejor acabado en el cepillado.

Spence (1993), afirma que mientras más alta sea la velocidad de avance, más rápido se cepillará la tabla, pero el cepillado será burdo. Una velocidad de avance lenta dejará un cepillado más liso, pero reducirá la producción, así mismo recomienda una velocidad de avance de 6 m/min para un cepillado de alta calidad.

Según Gonzáles (1995), la rugosidad superficial es el conjunto de irregularidades de la superficie real, definidas convencionalmente en una sección donde los errores de forma y las ondulaciones han sido eliminados. La desviación media aritmética del perfil (Ra), es la media

aritmetica de los valores absolutos de las desviaciones del perfil, en los límites de la longitud básica "l" y puede ser expresado en μm ó μinch.

2.1.2 DEFECTOS DEL LABRADO MECANIZADO

Tuset y Duran (1986), definen como defectos de la madera a aquellas irregularidades o imperfecciones que se manifiestan en ella y alteran sus propiedades físicas, mecánicas o químicas que determinan limitaciones en las aplicaciones posibles del material haciendo inferior su valor comercial.

Ninin (1983), señala que los diferentes mecanismos de falla generados en la madera producen distintos tipos de viruta, a los cuales corresponden calidades de superficie resultante, de otro lado asegura que la ocurrencia de los tipos de viruta depende de la especie, de algunas de sus características anatómicas, densidad y otras de sus propiedades mecánicas.

Vignote y Jiménez (1996), afirman que los defectos de superficie causados por la cuchilla o fresa obedecen a la velocidad de corte y a su profundidad. A medida que aumenta la velocidad de avance de la madera aumenta el paso de ondulación y la apariencia del defecto. De la misma forma aumentando la profundidad del corte aumenta la irregularidad de la superficie y pierde calidad de trabajo.

Koch, citado por Taquire (1987), enfatiza que los anillos de crecimiento afectan en la calidad de superficie y esfuerzo de las máquinas, las fibras pueden afectar si están dispuestas de la siguiente manera: grano entrecruzado, se presenta en la superficie radial en forma de bandas alternas, una a favor y otra en contra del grano, al ser cepilladas se produce grano arrancado en bandas contra el grano.

Según De la Paz Pérez y Carmona (1979), el grano entrecruzado suele presentar gran resistencia al corte, dado a que el filo de las herramientas se topa con secciones sucesivas de comportamiento diferente. Este grano ofrece problemas para obtener superficies de buena calidad dada la disposición entrecruzada, alterna y cíclica de los elementos. Es posible que en algunos casos, en partes de la tabla que sea paralela a los elementos se obtengan superficies de

buena calidad y otras partes en donde se cortan diagonalmente las fibras se obtienen acabados apelusados. Asimismo en ocasiones sobre todo cuando se presenta el corte por hendido, suelen presentarse superficies de pésimo acabado.

Sato y Ninin, citado por Taquire (1987), explican que el grano arrancado se produce cuando los efectos corren debajo del plano de corte, formándose el tipo de viruta I cuando la herramienta entra en la pieza mientras la madera es comprimida en forma local y no uniforme hasta que la cara de la herramienta entre en contacto con la superficie entera de la sección transversal de la viruta no deformada; a medida que la herramienta continua en movimiento, la madera en la zona por delante de ella queda sometida a mas comprensión paralela al grano y al clivaje en la zona del filo produciendo el quiebre de la viruta para luego continuar el avance de la herramienta, la viruta quebrada se mueve hacia arriba sobre la cara de corte hasta que el filo consigue nuevamente una zona de madera sin deformar, en donde comienza otro ciclo.

JUNAC (1983), precisa que la presencia y gravedad del grano arrancado es función de la densidad, siendo así que tiende a presentarse en maderas de mayor densidad. Lousiana State University Agricultural Center (2001), agrega que el grano arrancado se presenta al extraer pequeñas piezas de madera con las cuchillas, causadas por una velocidad de alimentación demasiada rápida. Lluncor (1989), señala que en el caso del defecto de grano arrancado se puede reducir o eliminar disminuyendo el ángulo de corte o reduciendo la velocidad de alimentación. Referente a los planos de corte el grano arrancado es más notorio en el plano radial.

Zavala (1993), sostiene que se genera grano astillado debido al grano inclinado y también a la presencia de grano irregular alrededor de los nudos. Lluncor (1989), afirma que el grano astillado mayormente se presenta en especies de mayor densidad.

Vignote y Jiménez (1996), señalan que cuando se corta en dirección contraria al grano, la madera tiende a figurarse, produciendo un defecto denominado grano levantado, que ocasiona muchas dificultades al realizar el acabado de la madera. Zavala (1993), señala que el grano levantado se presenta en la madera en tensión cuando se cepilla la madera en sentido opuesto al grano y se relaciona con la variación de las características de los anillos de crecimiento. Lousiana State University Agricultural Center (2001), agrega que el grano levantado se

produce por aflojamiento del grano en la superficie de la madera y que el grano comprimido es causado por la viruta que se enrosca en la hoja de la cuchilla y es empujada hacia la superficie de la madera.

Koch, citado por Taquire (1987), afirma que el grano velloso ocurre cuando la herramienta produce fallas de compresión y de cizallamiento en la madera por delante del filo. También las maderas en compresión que generalmente tienen fibras en ángulos helicoidales son difíciles de cepillar, así como las maderas en tensión producen vellosidades

Zavala (1993), considera que el grano velloso se asocia con la presencia de madera en tensión y que se presenta en todos los ensayos de maquinado. Según Lluncor (1989), el defecto de grano velloso se podría eliminar aumentando la velocidad del cabezal.

2.1.3 FACTORES QUE INCIDEN EN EL CORTE DE LA MADERA

Ninin (1983), indica que la estructura anatómica, composición química y propiedades físicomecánicas se interrelacionan al momento del labrado mecanizado, explicando que la estructura anatómica facilita o dificulta las fallas a nivel celular, según la abundancia o escasez de células de baja resistencia, la distribución crítica de los elementos potenciales de falla, inclinación de grano.

Koch (1964), señala que la naturaleza anisotrópica de la madera es la característica más importante para formar la viruta al momento de ser cortada, los planos de corte tienen marcadas influencias sobre la calidad y la eficiencia de corte. También indica que existe una relación entre las propiedades mecánicas de la madera (cizallamiento, dureza y tenacidad) y la trabajabilidad con las máquinas de carpintería.

Aróstegui (1982), la madera con baja resistencia a la ruptura por golpe, es decir quebradiza, al romperse manifiesta una rotura corta con planos lisos. La madera tenaz, es decir con gran resistencia a la ruptura por golpe, falla con astilladura larga.

Según Ninin (1983) encontramos que los factores que inciden en el corte de la madera se agrupan de la siguiente manera:

A) FACTORES INHERENTES A LA MADERA

La especie, contenido de humedad, temperatura de la madera, anisotropía de la madera, coeficiente de fricción en corte, orientación del grano.

B) FACTORES INHERENTES A LAS CONDICIONES DE CORTE

Ancho de corte, profundidad de corte, velocidad de corte, velocidad de alimentación.

C) FACTORES INHERENTES A LA HERRAMIENTA

Ángulo de corte o ataque, ángulo de hierro, ángulo libre, calidad de filo.

Además de los factores inherentes a la madera, en el lijado según Palacios (2003), encontramos los factores inherentes al equipo y a las condiciones de trabajo como el tipo de equipo, material abrasivo, granulometría de la lija, tensión de montaje, agentes de embotamiento (longitud de la banda de lija, velocidad de la lija, presión de la lija sobre la madera, superficie de contacto), espesor de remoción, velocidad de alimentación y los factores resultante (temperatura de la pieza de madera, facilidad de embotamiento, facilidad de remoción del polvillo, desgaste del material abrasivo, defectos del lijado).

2.1.4 ENSAYOS DE TRABAJABILIDAD

A) CEPILLADO

Según Zavala (1993), el cepillado es considerado, después del aserrío, como la operación más importante del maquinado de la madera, debido a que la mayoría de piezas deben ser reducidas a dimensiones precisas y superficies tersas antes del uso final.

B) MOLDURADO

Según Zavala (1993), el moldurado es una práctica común en la industria del mueble que consiste en dar forma especial a los bordes de las piezas de madera, las cuales se utilizan en combinación con otros productos para mejorar la estética.

C) TALADRADO

El taladrado tiene como finalidad, cuantificar y calificar el trabajo de realizar agujeros en la madera, expresados en calidad, eficiencia, desgaste de los filos y gasto de energía eléctrica. La importancia de realizar agujeros en la madera es que forman parte de las uniones entre las piezas de los diferentes productos de carpintería, ebanistería y construcción en general JUNAC (1983).

D) TORNEADO

Según Zavala (1993), la operación de torneado consiste en darle una forma específica a una pieza de madera. Se realiza para generar distintos productos como mangos de herramientas, artículos deportivos, partes de muebles y juguetes, etc.

E) LIJADO

Vignote y Jimenez (1996), indica que el objetivo del lijado es preparar la superficie de la madera para la realización del acabado, eliminando las imperfecciones que se puedan haber producido en el mecanizado.

2.2 DESCRIPCION DE LA ESPECIE

2.2.1 DISTRIBUCIÓN Y HÁBITAT

Según Reynel *et al* (2007), esta especie se encuentra en la ecorregión Ceja de Selva, en áreas de bosques montado nublado, entre los 1000 - 3000 msnm, reportándose en los departamentos de Amazonas, Loreto, Huánuco, Junín, Pasco y San Martín. Es una especie presente en las zonas de bosque secundario, persistiendo en los estadios maduros del bosque.

2.2.2 CARACTERÍSTICA DE LA MADERA

Kuljich (2007), describe las características anatómicas de la madera de *Tetrorchidium rubrivenium* Poeppig de la siguiente manera:

A) GENERALES

No existe diferencia entre albura y duramen en condición verde ni seca al aire. La madera es de color blanco amarillento o amarillo claro. Anillos de crecimiento diferenciados con bandas oscuras irregulares. Presenta médula excéntrica. Olor y sabor indistintivos, grano entrecruzado, textura media, brillo medio, veteado satinado en el corte radial causado por el grano. Madera moderadamente blanda al ser cortada por una cuchilla en sentido transversal a las fibras.

B) MACROSCÓPICAS

Poros visibles a simple vista, predominantemente múltiples radiales de 2 a 4 poros, escasos solitarios, difusos, de forma ovalada y de arreglo radial. Parénquima longitudinal visible con lupa de 10x, tipo apotraqueal difuso de color más claro que el tejido fibroso. Radios en la sección transversal finos, visibles a simple vista; en la sección tangencial son no estratificados y en la sección radial poco contrastados.

C) MICROSCÓPICAS

En promedio 6 poros por mm² predominantemente múltiples radiales (de 2 a 4 poros) y escasos solitarios, con un diámetro tangencial promedio 147,4 μm clasificados como medianos. Longitud promedio de elementos vasculares 680,8 μm clasificados como medianos, con presencia de apéndices en ambos extremos. Parénquima Longitudinal en la sección transversal del tipo apotraqueal difuso y paratraqueal escaso; en la sección longitudinal, alargadas verticalmente septadas (5-8 septas) y disposición no estratificada; con presencia de gomas. Radios en la sección tangencial de altura promedio 940,1 μm, clasificados como bajos; uniseriados presentando porciones biseriadas con 19,9 μm de ancho en promedio, clasificados como muy finos; de 12 radios por mm, clasificados como numerosos, no estratificados; ocasionalmente presentan tubos laticíferos. Fibras libriformes con longitud promedio 1.728,3 μm, clasificadas como largas, con diámetro de 32,7 μm, clasificadas como medianas; de paredes muy delgadas con un espesor promedio de pared de 3,08 μm; no estratificados.

Según Mainieri y Peres (1989), la madera de *Tetrorchidium rubrivenium* debe considerarse de baja resistencia al ataque de organismos xilófagos; recomendando su uso en cajonería liviana, juguetes, centro de paneles, tableros de partículas, acabados internos como molduras y zócalos.

Para la madera de esta especie, los mismos autores reportaron los siguientes valores en el Cuadro 1:

Cuadro 1 Propiedades físico mecánicas de la Tetrorchidium rubrivenium

Propiedades Físicas				Clasificación
Densidad a 159	Densidad a 15% de humedad (g/cm³) 0,46			
Contracción	Radial		3,20	Baja
(%)	Tangencial		7,20	Baja
	Volumétrica		11,70	Baja
	Propiedades Mecánicas			
Comprensión	Resistencia máxima	Madera Verde	236,00	Bajo
paralela	(kg/cm2)	Al 16% de humedad	309,00	Вајо
al grano	Esfuerzo al Límite Proporcional – madera verde (kg/cm²)			Вајо
	Módulo de elasticidad – madera verde (kg/cm²)		94.300,00	Вајо
Flexión	Módulo de rotura	Madera Verde	437,00	Вајо
estática	(kg/cm2)	Al 16% de humedad	645,00	Вајо
	Esfuerzo al Límite Proporcional – madera verde (kg/cm²)		219,00	Вајо
Módulo de elasticidad – madera verde (kg/cm²)		86.300,00	Medio	
Tenacidad seca al aire trabajo absorbido (kg.m)		1,44	Вајо	
Cizallamiento - madera verde (kg/cm²)		67,00	Вајо	
Dureza Janka - madera verde (kg/cm²)		222,00	Вајо	
Tensión perpendicular al grano (kg/cm²)		45,00	Вајо	
Clivaje - madera verde (kg/cm)		4,60	Вајо	

A continuación en el Cuadro 2 se muestra las características de trabajabilidad de la madera de especies con características similares a *Tetrorchidium rubrivenium*:

Cuadro 2 Características de trabajabilidad de algunas especies similares a la *Tetrorchidium rubrivenium*

Fanasia	DB*	Tipo de	ENSAYOS DE TRABAJABILIDAD				Fuente		
Especie	DB	Grano	Cepillado	Moldurado	Taladrado	Torneado	Lijado	ruente	
Bolaina	0,38	Recto	Buena	Buena	Buena	Sin información	Buena	Taquire (1987) Valdivia (1993)	
Catahua	0,41	Entrecruzado	Buena	Buena	Buena	Buena	Buena	Aróstegui <u>et al</u> (1978) Aróstegui (1982)	
Marupá	0,36	Recto	Excelente a bueno	Excelente	De bueno a regular	De bueno a regular	Buena	Aróstegui (1982) Palacios (2003) Meléndez y Bustamante (2006)	
Pashaco	0,45	Entrecruzado	Regular	Buena	Buena	Buena	Sin información	Aróstegui (1982)	
Ucshaquiro	0,39	Entrecruzado	Buena	De buena a excelente	Buena	Regular	Buena	Aróstegui <u>et al</u> (1978) Aróstegui (1982)	

Fuente: Elaboración propia *DB: Densidad básica

3. MATERIALES Y MÉTODOS

3.1 LUGAR DE EJECUCIÓN:

Los ensayos de cepillado, moldurado, taladrado y lijado se realizaron en el taller de Trabajabilidad de la Facultad de Ciencias Forestales de la Universidad Nacional Agraria La Molina (UNALM). El ensayo de torneado se realizó en las instalaciones del Centro de Innovación Tecnológica de la Madera -CITE maderas.

3.2 MATERIALES Y EQUIPOS

3.2.1 MATERIALES

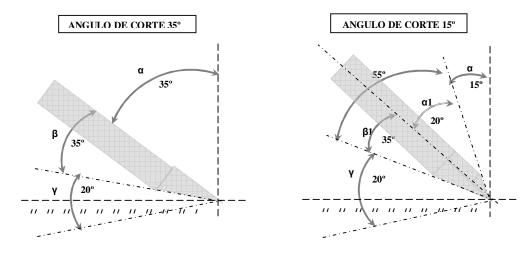
A. MADERA

■ Nombre común : "Col de monte"

■ Nombre científico : *Tetrorchidium rubrivenium* Poeppig.

■ Familia : Euphorbiaceae

■ Sinonímia : *Tetrorchidium andinum* M. Arg.


■ Toponimia : "Col de monte" (Perú), "Peroba de agua amarilla" (Brasil),

"Ombura" (Paraguay).

La madera de *Tetrorchidium rubrivenium* se obtuvo de cinco árboles de bosques secundarios ubicados en la zona de Acuzazú, del distrito Oxapampa, provincia Oxapampa, perteneciente al Departamento Pasco.

B. CUCHILLAS PARA CEPILLADORA

- Un juego de tres (3) cuchillas HSS con ángulo de corte de 35°.
- Un juego de tres (3) cuchillas HSS con ángulo de corte de 15°.

Donde:

α: Angulo de Corte

β: Angulo de Cuchilla

γ: Angulo Libre

α1: Angulo de Bisel Frontal

β1: Angulo de Afilado

Figura 1 Ángulo de corte para el ensayo de cepillado

C. CUCHILLA PARA MOLDURADO

Fabricada en acero, con un ángulo de cuchilla de 40° y perfil mostrado en la Figura 2

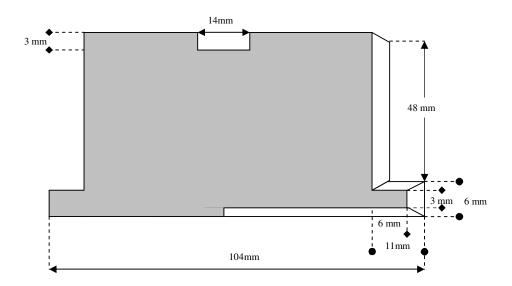


Figura 2 Cuchillas para ensayo de moldurado

D. BROCAS PARA TALADRADO

- Una broca HSS doble hélice sin alas para metal de 12.5 mm de diámetro con ángulo de afilado en la punta de 45°.
- Una broca HSS de tres puntas para madera de 12.5 mm de diámetro.

Figura 3 Brocas para metal y madera HSS

E. CUCHILLA PARA TORNEADO

Fabricada en acero de una sola pieza, con un ángulo de cuchilla de 25° y el perfil mostrado en la Figura 4.

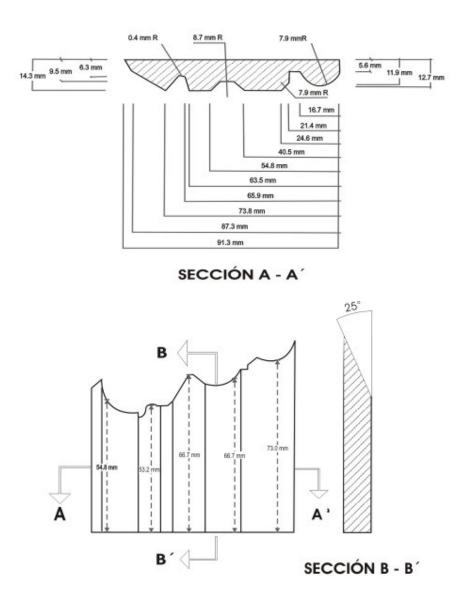


Figura 4 Cuchilla para ensayo de torneado

F. LIJAS

- Lijas de grano N° 60 para lijadora de banda portátil.
- Lijas de grano N° 100 para lijadora de banda portátil.

G. FORMULARIOS DE REGISTRO Y EVALUACIÓN DE ENSAYOS

Dependiendo del tipo de ensayo, se utilizaron los formatos mostrados en los anexos del 1 al 6.

3.2.2 EQUIPOS

A. PARA PREPARACIÓN DE PROBETAS

- Máquinas de carpintería: garlopa, sierra circular, cepilladora y sierra radial.
- Otros: cinta métrica, lápiz de cera, escuadra de metal.

B. PARA AFILADO DE CUCHILLAS

- Afiladora de cuchillas
- Herramientas auxiliares: nivel metálico de burbuja, falsa escuadra, lentes de plástico.

C. PARA EJECUCIÓN DE ENSAYOS

• Cepilladora WADKIN BURSGREEN, con las siguientes especificaciones:

N° de Caras	1
Ancho de mesa (mm)	300
Diámetro de portacuchillas (mm)	100
Número de cuchillas	3
Velocidad angular (rpm)	5.000
Velocidad de alimentación (m/min)	5 y 10

Molduradora o Tupí SICM-CHAMBON, con las siguientes especificaciones:

Número de ejes	1
Velocidad angular (rpm)	3.750 y 7.414
Diámetro del portacuchilla (mm)	120
Mesa (mm)	800 x 800

■ Taladro eléctrico de pedestal BIMAK modelo 25/e, con las siguientes especificaciones:

Potencia (Hp)	1
Mesa (mm)	135 x 180
Velocidad angular (rpm)	760 y 1.405
Diámetro del eje (mm)	70

■ Torno Copiador Semiautomático CALPE MH-1300

Diámetro máximo a tornear (mm)	350
Distancia máxima entre centros (mm)	1.300
	1.500
Nalasidadas dal salas dal (mana)	2.500
Velocidades del cabezal (rpm)	4.000
	6.000
Potencia del motor cabezal (Hp)	4
Velocidad del motor cabezal (rpm)	3.000
Velocidad de avance del carro (mm/min)	15.000

• Lijadora de banda portátil CRAFTSMAN, con las siguientes especificaciones:

Velocidades	300 - 385 m/min
Diámetro del tambor	55 mm
Plato	100 x 135 mm
Peso	7.46 Kg

D. DE MEDICIÓN Y CONTROL

- Higrómetro de contacto WAGNER L609
- Tacómetro digital MITUTOYO de 1 rpm de precisión
- Rugosímetro de aguja MITUTOYO de 0.01 µm de precisión
- Cronómetro digital CASIO
- Vernier digital MITUTOYO de 0.01 mm de precisión
- Balanza de pie B.C. con una precisión de 0.1 gr.

- Multímetro digital SAMWIN DT820C de 1º de precisión.
- Pesas de 5 Kg.
- Cuchilla
- Lupas de 10x y 22x
- Lápices de cera y pintura esmalte
- Formatos

E. PARA PROCESAMIENTO DE DATOS E IMÁGENES

- Microcomputadora
- Impresora
- Cámara Digital
- Útiles de escritorio

3.3 METODOLOGÍA

Los ensayos se realizaron siguiendo parcialmente lo indicado por la Norma "Standar Methods for Conducting Machining Tests of Wood and Wood- Base Materials" ASTM-D-1666-87 (1999), teniendo en cuenta que parte de la maquinaria disponible no cumple con las especificaciones establecidas por esta norma.

Dicha norma fue compatibilizada con las especificaciones establecidas por Sato (1976), para los ensayos de trabajabilidad y las modificaciones de equipo y maquinaria propuesta por la JUNAC (1976), para maderas tropicales.

3.3.1 SELECCIÓN DE ÁRBOLES Y PREPARACIÓN DE VIGUETAS

Comprendió las siguientes actividades:

- Se seleccionaron al azar cinco árboles que presentaron fustes rectos, sin ramificaciones bajas, ni daños fitosanitarios. Cada fuste se subdividió en trozas de 2,00 m y una de 1.00 m. Las características son detalladas en el Anexo 7.
- 2. Se obtuvieron 18 viguetas por cada árbol: 6 de 4 x 10 x 100 cm; 6 de 2,5 x 10 x 100 cm y 6 de 2 x 10 x 100 cm. Las viguetas estuvieron orientadas en los tres planos de corte: tangencial, radial y oblicuo.
- Las viguetas fueron codificadas mediante un dígito que indica el número del árbol (1, 2, 3, 4, 5), una letra que indica la posición dentro del árbol (A, B, C, D, E) y 2 letras que indican el plano de corte (Rd, Tg, Ob). Ejemplo: 1A Rd

3.3.2 IDENTIFICACIÓN DE LA ESPECIE

La identificación de la especie se realizó en el Herbario Dendrológico de la Facultad de Ciencias Forestales de la Universidad Nacional Agraria La Molina. La constancia de identificación se muestra en el Anexo 8.

3.3.3 ACONDICIONAMIENTO DE LA MADERA

Las viguetas fueron acondicionadas al aire, hasta alcanzar un contenido de humedad de 13% a 15% que corresponde al contenido de humedad de equilibrio de la Molina.

3.3.4 PREPARACIÓN Y DIMENSIONADO DE PROBETAS

Mediante una garlopa mecánica cada vigueta fue escuadrada en una cara y un canto, a fin de verificar la orientación del grano.

Las probetas fueron dimensionadas y seleccionadas por cada tipo de ensayo de acuerdo a las especificaciones del Cuadro 3.

Cuadro 3 Características de las probetas por ensayo de trabajabilidad de la madera.

Ensayo	Dimensiones de la probeta (cm)	Número de árboles	Número de probetas por árbol	Número total
Cepillado	4,0 x 1,0 x 100,0	5	6	30
Moldurado	2,0 x 7,5 x 100,0	5	6	30
Taladrado	2,5 x 10,0 x 30,5	5	6	30
Torneado	2,0 x 2,0 x 12,5	5	8	40
Lijado	1,5 x 8,0 x 100,0	5	6	30

Para los ensayos de cepillado, moldurado y taladrado se prepararon probetas orientadas en los tres planos de corte: tangencial, radial y oblicuo. En el ensayo de lijado se utilizaron las mismas probetas del ensayo de cepillado.

3.3.5 REALIZACIÓN DE ENSAYOS

A. CEPILLADO

Estos ensayos se realizaron con dos ángulos de corte: 15° y 35° y dos velocidades de alimentación: 5 y 10 m/min; con una profundidad promedio de 0.8 mm por pasada. A través de un higrómetro de contacto, se obtuvo el contenido humedad de cada probeta. Los ensayos para cada árbol se realizaron en los tres planos de corte radial, tangencial y oblicuo. Se marcó en el extremo de cada probeta a fin de indicar la dirección de alimentación. Para cada ángulo de corte, las probetas fueron cepilladas en una sola cara a favor del grano, reduciendo el espesor de la probeta hasta un mínimo 3 cm. Las cuchillas fueron ajustadas y niveladas a la misma altura en el cilindro porta cuchillas mediante un calibrador.

Se calcularon las marcas de cuchilla correspondientes a las dos velocidades de alimentación, empleando la siguiente fórmula:

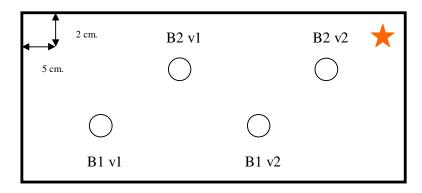
$$M = (\omega \times N) / V \times 100$$

Donde:

M: número de marcas de cuchilla por cm

ω: Velocidad de giro o del cabezal porta cuchillas en rpm

N: número de cuchillas en el cabezal V: velocidad de avance en m/min.


B. MOLDURADO

Los ensayos de moldurado se realizaron utilizando una cuchilla preparada con ángulo de filo de 40°. Con el higrómetro de contacto se obtuvo el contenido de humedad de cada probeta.

En esta prueba se utilizaron accesorios (peine de madera) que evitaron la vibración de la probeta en el corte, minimizando las posibilidades de ocurrencia de accidentes durante la ejecución del ensayo. Se colocó una marca en la cara de cada probeta para indicar la dirección de alimentación y la velocidad de giro. Las probetas fueron ensayadas a favor del grano con dos velocidades de giro (3.750 y 7.414 rpm).

C. TALADRADO

Los ensayos de taladrado se efectuaron con 30 kg. de carga de penetración, dos velocidades de giro (760 y 1.405 rpm.) y dos tipos de broca (para metal y madera). Se utilizó una plantilla para señalar la ubicación correcta de los agujeros tal como se muestra en la Figura 5. El contenido humedad para la prueba se obtuvo con el higrómetro de contacto. El taladrado se efectuó en los planos de corte radial, tangencial y oblicuo. Se cronometró el tiempo de penetración para cada caso. La alimentación se hizo manualmente y las perforaciones se realizaron sin ningún respaldo, de esta manera fue posible evaluar la salida y entrada en cada agujero.

Donde:

B1: Broca para Metal B2: Broca para Madera

v1: 760 rpm v2: 1.405 rpm

Figura 5 Plantilla para el ensayo de taladrado.

D. TORNEADO

Se realizó en un torno copiador semiautomático con 35° de ángulo de corte y cuatro velocidades de giro: 1.500, 2.500, 4.000 y 6.000 rpm. En este ensayo no se tuvo en cuenta el plano de corte, por ello la probeta se codificó en un extremo colocando el número del árbol y la letra que indica la posición dentro del árbol. Antes de colocar la probeta entre las puntas del torno, se trazaron diagonales en sus extremos para determinar el centro geométrico.

Se utilizó una cuchilla preparada con el perfil especial, propuesta por la Norma ASTM (1999).

E. LIJADO

Las probetas se ensayaron con una velocidad de 385 m/min. Solo en aquellas probetas que presentaron grano arrancado, el ensayo se inició con una lija de grano Nº 60 para continuar con la lija de grano Nº 100.

3.3.6 EVALUACIÓN DE LAS PROBETAS

Se procedió clasificando cada probeta de acuerdo a la ausencia o presencia, gravedad y extensión del defecto en la superficie maquinada. Posteriormente se determinó la calidad de la probeta utilizando los parámetros detallados en el Cuadro 4.

Cuadro 4 Calidad de superficie en función de la extensión de la superficie defectuosa y la gravedad del defecto, en los ensayos de trabajabilidad de la madera.

Gravedad del	Extensión de la superficie defectuosa				
defecto	(0 – 4)	(5 – 35)	(36 – 69)	(70 – 100)	
Suave	Excelente	Buena	Regular	Regular	
Moderado	Buena	Regular	Mala	Mala	
Fuerte	Regular	Mala	Mala	Deficiente	

A continuación se obtuvo la clasificación final en grados de calidad según la Norma ASTM (1999). Los niveles de calificación de acuerdo a la ocurrencia del defecto fueron los siguientes:

Calidad	Grado	
Excelente	1	
Bueno	2	
Regular	3	
Malo	4	
Deficiente	5	

En la determinación de la equivalencia de cada defecto en estudio, se utilizaron los factores de conversión detallados en el Cuadro 5.

Cuadro 5 Factores de conversión de defectos según su severidad en los ensayos de trabajabilidad de la madera

Defecto	Factor de conversión					
Derecto	Cepillado	Moldurado	Taladrado	Torneado	Lijado	
Grano arrancado	1.0	1.0		1.0		
Grano astillado	0.8	0.8	0.8	0.8	_	
Grano levantado	0.6	0.6		0.6		
Ruptura de grano			1.0			
Grano velloso	0.2	0.2		0.2	1.0	
Grano comprimido (aplastamiento)			-	0.4	_	
Rayado					1.0	

Fuente: Sato (1976); Lluncor (1989)

En base a la ponderación del defecto para cada ensayo, se determinó la equivalencia respectiva, mediante la siguiente expresión (Sato, 1975):

$$E = (G-1) x F + 1$$

Donde:

E: equivalencia del defecto

G: grado de calidad

F: factor de conversión o peso por tipo de ensayo.

Finalmente, con las equivalencias para cada defecto por probeta, se calificó la probeta en base al defecto que presentó mayor equivalencia o equivalencia dominante, según los siguientes rangos por calidad de superficie (Sato, 1975):

Rango	Calidad	
De 1,0 a 1,5	Excelente	
De 1,6 a 2,5	Buena	
De 2,6 a 3,5	Regular	
De 3,6 a 4,5	Malo	
De 4,6 a 5,0	Deficiente	

A. PARA EL CEPILLADO

Se utilizó un recuadro de 100 x 100 mm para la determinación porcentual de la extensión de los defectos de cepillado, así mismo se aplicaron criterios de evaluación cuantitativos y cualitativos. La gravedad de los mismos se determinó aplicando el Cuadro 6, midiendo para ello la profundidad del grano arrancado y el ancho del grano astillado. En los casos del grano levantado y grano velloso se estimó por comparación. Se tomo tres lecturas con el rugosímetro.

Cuadro 6 Gravedad de los defectos en el ensayo de cepillado para la madera de *Tetrorchidium rubrivenium* de la zona de Oxapampa

Defecto	Gravedad			
Delecto	Suave	Moderado	Fuerte	
Grano Arrancado (profundidad)	menor a 0.10 mm	0.10 a 0.30 mm	mayor a 0.30 mm	
Grano Astillado (ancho de astilla)	menor a 0.75 mm	0.75 a 1.75 mm	mayor a 1.75 mm	

Fuente: Elaboración propia

B. PARA EL MOLDURADO

La determinación porcentual de la extensión de los defectos se efectuó de forma similar al cepillado, para lo cual se evaluó cada defecto en dos zonas de corte: una doble (zona 1: dos superficies) y otra simple (zona 2: una superficie), conforme se ilustra en la Figura 6. La gravedad de los defectos se determinó por simple comparación entre las probetas.

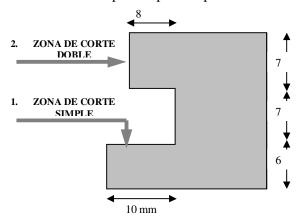


Figura 6 Zonas de evaluación en las probetas de moldurado.

C. PARA EL TALADRADO

La extensión de los defectos se cuantificó en porcentaje de acuerdo a la porción de circunferencia tanto de entrada como de salida de la broca. La gravedad de los defectos se estimó por simple comparación entre las probetas.

D. PARA EL TORNEADO

La extensión de los defectos se determinó en porcentaje, separando las porciones afectadas de la probeta de la siguiente manera: cilindro mayor y menor para evaluar el defecto de grano arrancado y grano levantado; planos inclinados para evaluar el grano comprimido y las aristas resultantes para evaluar el grano astillado y grano velloso. La gravedad de los defectos se estimó por simple comparación.

E. PARA EL LIJADO:

Para determinar la extensión de los defectos grano velloso y rayado, se utilizó un recuadro de 8 x 8 cm. La gravedad de los defectos se estimó por simple comparación. Adicionalmente, se obtuvieron tres lecturas con el rugosímetro para efectos de comparación con los valores de rugosidad obtenidos en el ensayo de cepillado.

3.3.7 ANÁLISIS ESTADÍSTICO DE LOS GRADOS DE CALIDAD

Con la finalidad de facilitar la estimación de los parámetros indicadores de la variabilidad normal de la madera de acuerdo al procedimiento descrito por Calzada (1982), se tabularon en una hoja electrónica de cálculo los grados de calidad por probeta de los diferentes ensayos. Para cada tipo de ensayo se determinó la variabilidad de la especie a nivel de árboles, según el detalle siguiente:

Ensayos	Cepillado	Moldurado	Taladrado	Torneado	Lijado
Nº de Árboles			5		
Nº de Repeticiones/árbol	6	6	6	8	6
Nº de Repeticiones/ensayo	30	30	30	40	30

Se aplicaron dos diseños estadísticos, a fin de evaluar el efecto de los diversos tratamientos en la calidad de superficie producida en los ensayos de cepillado, moldurado, taladrado, torneado y lijado. Los tres primeros ensayos se analizaron empleando el diseño de bloques

completamente al azar, en el caso del torneado se utilizó el diseño que es completamente al azar. En el lijado solo se realizó una evaluación cualitativa. Para los ensayos de cepillado y taladrado se consideró un arreglo factorial de 2A x 2B, de acuerdo al siguiente esquema:

- Unidad experimental: Probeta de madera de *Tetrorchidium rubrivenium*
- Variable observada: Grado de calidad.
- Bloque para el cepillado, moldurado, taladrado: Plano de corte.
 - o Factores para el cepillado de la madera

Factor	Niveles del factor				
A Ángulo de corte (α)	15⁰	35⁰			
B Velocidad de alimentación (Va)	5 m/min	10 m/min			
Tipo de combinación: α - Va					

o Factores para el taladrado de la madera

Factor	Niveles del factor			
A Velocidad angular (ω)	760 rpm	1,405 rpm		
B Tipo de Broca (B)	madera	metal		
Tipo de combinación: ω - B				

o Factor para el moldurado y torneado de la madera: velocidad de giro

De acuerdo a los diseños utilizados para cada tipo de ensayo se plantearon las siguientes hipótesis:

- Hp 1: Los efectos del plano de corte en los grados de calidad de la madera cepillada, moldurada, taladrada y lijada son similares.
- Hp 2: Los efectos del ángulo de corte en los grados de calidad de la madera cepillada son similares.

- Hp 3: Los efectos de la velocidad de alimentación en los grados de calidad de la madera cepillada con similares.
- Hp 4: Los efectos de interacción entre los factores de ángulo de corte y velocidad de alimentación son similares.
- Hp 5: Los efectos de la velocidad de giro en los grados de calidad de la madera moldurada son similares.
- Hp 6: Los efectos de la velocidad de giro en los grados de calidad de la madera taladrada son similares.
- Hp 7: Los efectos del tipo de broca en los grados de calidad de la madera taladrada son similares.
- Hp 8: Los efectos de interacción entre los factores de velocidad de giro y tipo de broca son similares.
- Hp 9: Los efectos de la velocidad de giro en los grados de calidad de la madera torneada son similares.

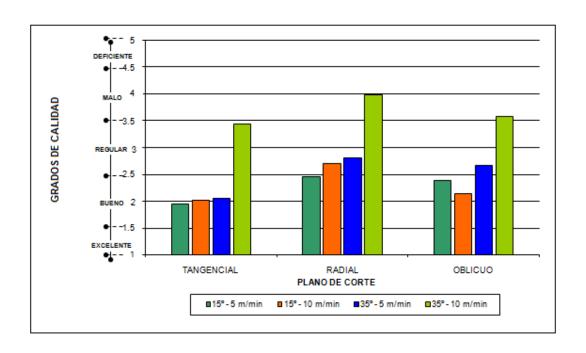
Con la finalidad de encontrar relaciones entre el tipo de defecto según su gravedad y la condición del ensayo de trabajabilidad en donde se generó el mismo, se preparó una tabla de contingencia o frecuencias, por ensayo. Para este fin, se consideró realizar un análisis multivariado a través de una Correspondencia Simple (ACS).

4. RESULTADOS Y DISCUSIÓN

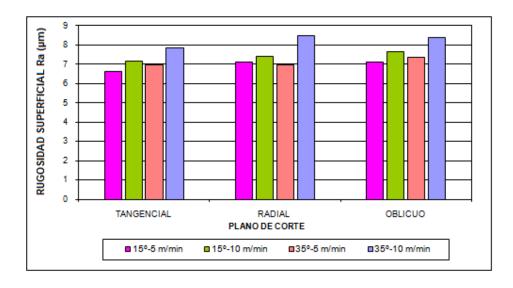
4.1 GRADOS PROMEDIOS EN LOS ENSAYOS DE TRABAJABILIDAD

4.1.1 CONTENIDO DE HUMEDAD

Los valores de contenido de humedad promedio, en las probetas ensayadas, corresponden a un 13.5% + 2.


4.1.2 ENSAYO DE CEPILLADO:

En las Figuras 7 y 8 se muestran los grados promedios de calidad de superficie y los valores promedios de rugosidad superficial obtenidos en el ensayo de cepillado de *Tetrorchidium rubrivenium*, según su plano de corte, a las velocidades de alimentación de 5 y 10 m/min con los ángulos de corte de 15° y 35°.


En la Figura 7, se puede apreciar que existe una tendencia a disminuir la calidad de superficie en el cepillado, conforme aumenta el ángulo de corte de 15° a 35°, es decir que a menor ángulo mejora la calidad, independientemente de la velocidad de alimentación, tal como también indican Peñaloza (2005), Sato (1976), Scheelje (2002) y Soria (2006).

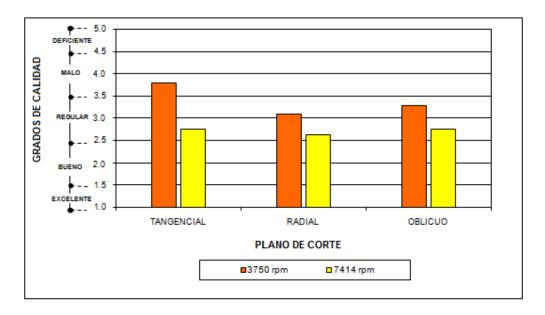
También se puede observar que *Tetrorchidium rubri*venium se comporta mejor al cepillado, con el ángulo de corte de 15° y en los planos de corte tangencial y radial. En cualquiera de los planos de corte, el ángulo de corte de 35° con una velocidad de 10 m/min proporciona el peor comportamiento al cepillado de *Tetrorchidium rubriv*enium, como encontramos en Aróstegui (1982) y JUNAC (1983), puede deberse al grano entrecruzado y la baja densidad que posee la madera.

En general, la calidad de superficie en el cepillado de *Tetrorchidium rubrivenium*, no mantiene un patrón constante con ambas velocidades, aún cuando las marcas de cuchilla generadas por cm son de 30 y 15 respectivamente; y según ASTM (1999), 8 marcas de cuchilla/cm son suficientes para obtener un cepillado de calidad aceptable.

Figura 7 Grados promedios de calidad de superficie en el ensayo de cepillado según plano de corte, ángulo de corte y velocidad de alimentación

Figura 8 Valores promedio de rugosidad superficial en el ensayo de cepillado según plano de corte, ángulo de corte y velocidad de alimentación.

Con respecto a la rugosidad superficial en el cepillado, se puede afirmar que en los tres planos de corte, los valores promedios aumentan conforme se incrementa la velocidad de alimentación, tal como se aprecia en la Figura 8. De tal manera se puede esperar que a menor


velocidad de alimentación se obtenga menor irregularidad en la superficie cepillada debido al mayor número de marcas de cuchilla.

El valor promedio de rugosidad superficial (Ra = 6,95 μm) para la madera de *Tetrorchidium rubrivenium* es inferior al registrado en Pashaco (*Albizia sp.*) (Meléndez y Bustamante, 2003), teniendo en cuenta que son especies de similares características. Es destacable en la madera de *Tetrorchidium rubrivenium*, el menor valor de rugosidad reportado en el plano de corte tangencial con ángulo de corte de 15° a la velocidad de avance de 5 m/min.

Los grados de calidad de superficie de cada probeta cepillada, se muestran en el Anexo 1, de modo complementario en el Anexo 2 se presentan los valores de rugosidad superficial de las probetas evaluadas.

4.1.3 ENSAYO DE MOLDURADO:

En la Figura 9, se muestran los grados promedios de calidad de superficie, obtenidos en el ensayo de moldurado del *Tetrorchidium rubrivenium* según plano de corte, a las velocidades de giro: 3.750 y 7.414 rpm.

Figura 9 Grados Promedios de calidad de Superficie para el Ensayo de Moldurado según Plano de Corte y Velocidad de Giro.

La mencionada figura permite observar que la madera de *Tetrorchidium rubrivenium*, independientemente del plano de corte, tiene un regular comportamiento con la mayor velocidad de giro. En general las calidades resultantes varían de regular a mala para los tres planos de corte con ambas velocidades, correspondiendo al plano radial la menor calidad de superficie, cuando se utiliza la menor velocidad de giro.

Algunas las probetas con ambas velocidades de giro presentaron el defecto de grano arrancado con mayor incidencia en la zona de corte simple (Figura 10), pudiendo atribuirse al grano entrecruzado de la especie, falta de cohesión transversal entre las fibras, presencia de nudos y defectos de estructura; o también a la menor proporción de madera en esta zona explicada por JUNAC (1983).

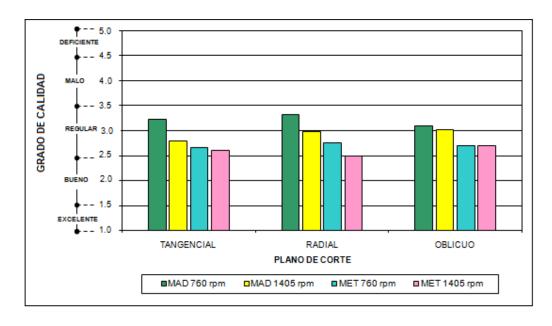
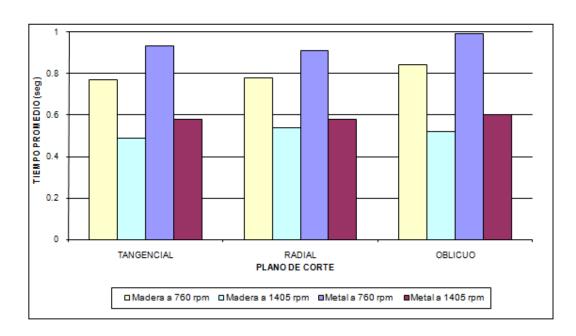

Los grados de calidad de superficie de cada una de las probetas utilizadas se muestran en el Anexo 3.

Figura 10 Defecto de grano arrancado en el Ensayo de Moldurado

4.1.4 ENSAYO DE TALADRADO

En la Figura 11 se observan los grados promedios de calidad de superficie por plano de corte, en el ensayo de taladrado del *Tetrorchidium rubrivenium*, según velocidad de giro y tipo de broca. Independientemente del plano de corte, se observa que la mejor calidad de superficie la proporciona la broca para metal y la mayor velocidad de giro. Por lo tanto, se puede afirmar que el *Tetrorchidium rubrivenium* presenta un regular comportamiento al taladrado cuando se utiliza broca para metal y se incrementa la velocidad de giro.


Figura 11 Grados promedio de calidad de superficie para el ensayo de taladrado según plano de corte, velocidad de giro y tipo de broca.

En general los grados de calidad obtenidos en el ensayo de taladrado varían de bueno a regular, con predominio de la calidad regular, tal como puede observarse en el Anexo 4.

El defecto dominante es el de ruptura de grano en los orificios de entrada y salida (Figura 12) el cual puede atribuirse a su grano entrecruzado, la densidad de la madera como tal, como también lo afirma Lluncor (1989), otro motivo puede ser la falta de cohesión transversal entre las fibras, el impacto de una fuerte caída para la perforación a una alta velocidad de giro como lo afirma JUNAC (1983).

Figura 12 Defecto de ruptura de grano en el ensayo de taladrado

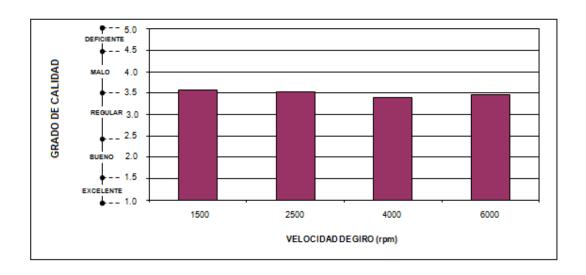


Figura 13 Valores promedios de tiempos de perforación en el ensayo de taladro según plano de corte, tipo de broca y velocidad de giro.

En la Figura 13, podemos observar los tiempos promedios de perforación por plano de corte, donde a mayor velocidad de giro se obtienen menores tiempos de perforación pero la calidad de superficie no siempre es buena. Asimismo observamos que usando una broca para metal a una mayor velocidad se obtiene la mejor calidad de superficie pero el tiempo es mayor, lo cual coincide con Meléndez y Bustamante (2006). Entre tipos de brocas a una misma velocidad de giro no se aprecia diferencia significativa en tiempos de perforación.

4.1.5 ENSAYO DE TORNEADO:

En la Figura 14 se muestra el grado promedio de calidad de la superficie torneada del *Tetrorchidium rubrivenium* con 35° de ángulo de corte y las velocidades de giro de 1.500, 2.500, 4.000 y 6.000 rpm. Se puede observar una tendencia a mejorar la calidad de superficie a medida que aumenta la velocidad de giro. Es oportuno precisar que el ángulo de 35° es el que por defecto poseen las cuchillas para tornos copiadores, cumpliendo las funciones de desbaste y acabado a la vez.

Figura 14 Grados promedio de calidad de superficie para el ensayo de torneado según velocidad de giro.

Se puede admitir que el torneado del *Tetrorchidium rubrivenium* es de regular calidad a cualquier velocidad de giro, presentándose mayormente los defectos grano astillado y grano levantado (Figura 15). La fibra larga de *Tetrorchidium rubrivenium* origina el defecto grano astillado y grano levantado apreciado en las aristas y en la zona cilíndrica respectivamente. Otro motivo puede ser la falta de cohesión transversal entre fibras, además las maderas de baja densidad tienen mal comportamiento al torneado con elevados ángulos de corte (35°) como lo afirma la JUNAC (1983). En general la calidad obtenida en el ensayo de torneado es regular en las diferentes velocidades. Cabe resaltar que en los trabajos de Soria (2006) y Peñaloza (2005) realizados con un torno manual coinciden en que la calidad mejora a menor ángulo de corte, a diferencia de un torno semiautomático no se puede modificar el ángulo de corte por más que así lo requiera la madera. Los grados de calidad de superficie de cada probeta evaluada se detallan en el Anexo 5.

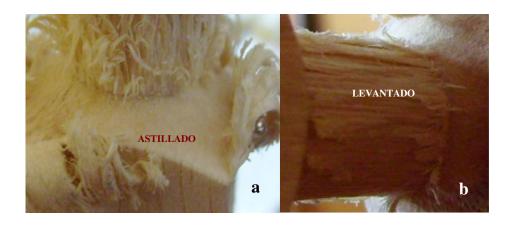
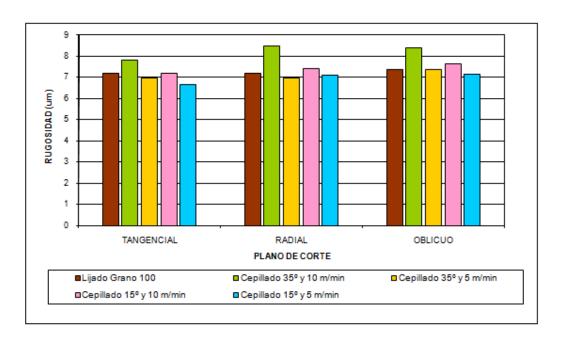



Figura 15 Defectos del grano en el ensayo de Torneado

a) Grano Astillado b) Grano Levantado

4.1.6 ENSAYO DE LIJADO

En la Figura 16 se observa los valores promedios de rugosidad superficial obtenidos en el ensayo de lijado de madera de *Tetrorchidium rubrivenium* utilizando lija de grano N° 100, en comparación con los resultados registrados en el ensayo de cepillado con sus diferentes tratamientos, según el plano de corte.

Figura 16 Valores promedios de rugosidad superficial en los ensayos de lijado y cepillado según plano de corte, ángulo y velocidad de corte.

Se puede apreciar que, excepto en el cepillado a 35° y 10 m/min, los valores de rugosidad superficial promedio son similares entre los ensayos de lijado y cepillado en cualquier plano de corte, predominando el defecto de grano velloso lo cual se manifiesta en las maderas blandas según JUNAC (1983). De esta manera, se puede afirmar que si se desea mejorar la calidad de superficie de la madera cepillada de *Tetrorchidium rubrivenium* es necesario emplear lijas con números de grano mayores a 100.

Cuadro 7 Valores promedios de temperaturas según plano de corte para el ensayo de lijado para la madera de *Tetrorchidium rubrivenium*

Plano de corte		tura Promedio con № 60	Temperatur con	Ensuciamiento Promedio			
	en Lija	en Lija en Madera en Lija en Madera					
Tangencial	38,0	29,0	44,5	35,9	medio		
Radial	41,5	33,0	47,4	36,0	medio		
Oblicuo	39,33	29,66	46,3	35,9	alto		

En el Cuadro 7 tenemos las temperaturas promedios por número de lija y piezas de madera, se observa que a mayor numeración de lija mayor temperatura registra la lija y la madera ensayada, además la velocidad de ensuciamiento es de medio a alto lo cual es debido a que la madera de *Tetrorchidium rubrivenium* es de densidad baja y a la presencia de goma lo cual concuerda con la investigación de Palacios (2003) y JUNAC (1983). En el Anexo 6 se muestra el registro de datos obtenidos durante la realización del ensayo.

4.2 VARIABILIDAD DE LA CALIDAD DE SUPERFICIE EN LOS ENSAYOS DE TRABAJABILIDAD

En el Cuadro 8 se muestra para cada ensayo, la variabilidad de la especie, la variabilidad entre árboles y la variabilidad dentro de los árboles de *Tetrorchidium rubrivenium*. Para la interpretación de los coeficientes de variabilidad mostrados en el cuadro anterior, se aplicó la escala propuesta por Rubio (1996).

Independientemente de la condición, en los ensayos de cepillado, moldurado y lijado se observa una alta variabilidad de la especie y dentro de los árboles, siendo homogénea la variabilidad entre árboles.

En relación al taladrado y torneado, coincidiendo con Soria (2006), para cualquier condición se obtienen calidades homogéneas debido a la similitud de calidad en las probetas de menor tamaño.

Cuadro 8 Variabilidad del grado promedio de calidad de superficie en los ensayos de cepillado, moldurado, taladrado y lijado para la madera de *Tetrorchidium rubriveneium*

Parámetros Estadísticos		Cepi	Ilado		Mole	dura	Taladrado Torneado								
	5 m/min		10 m/min		3750	7414				Broca para Metal		2500	4000	6000	Lijado con grano N° 100
	15°	<i>35</i> °	15°	<i>35</i> °	rpm	rpm	760 rpm	1405 rpm	760 rpm	1405 rpm	rpm	rpm	rpm	rpm	
Promedio	2,26	2,50	2,28	3,67	3,39	2,71	3,22	2,93	2,70	2,60	3,58	3,52	3,40	3,46	3,27
CV	22,91	21,10	26,88	17,39	17,88	20,27	14,54	16,18	16,24	13,94	8,03	8,14	10,04	7,97	21,71
CV1	11,91	10,04	9,03	9,69	6,31	7,80	4,65	9,13	10,90	10,52	3,72	5,48	6,23	7,25	7,74
CV2	18,80	19,98	24,23	13,86	17,18	19,14	14,78	14,76	11,60	10,53	5,07	4,29	10,20	2,45	20,82

Donde:

CV: Coeficiente de Variación Total (%)

CV1: Coeficiente de Variación entre árboles (%)

CV2: Coeficiente de Variación dentro de los árboles (%)

4.3 ANÁLISIS DE VARIANCIA DE LA CALIDAD DE SUPERFICIE EN LOS ENSAYOS DE TRABAJABILIDAD

4.3.1 ENSAYO DE CEPILLADO

El Cuadro 9 contiene los resultados del análisis de variancia de la calidad de superficie en el ensayo de cepillado de *Tetrorchidium rubrivenium*, con dos ángulos de corte, dos velocidades de alimentación y tres planos de corte.

Este análisis demuestra que existen diferencias significativas a nivel de planos de corte, ángulos de corte y velocidades de alimentación, por lo tanto hay suficiente evidencia estadística para afirmar que al menos uno de los niveles de los factores considerados proporciona calidad de superficie distinta a los otros; además indica que existen efectos de interacción entre el ángulo de corte y la velocidad de alimentación, es decir, existe un efecto combinado de ambos factores en la variación de la calidad de superficie obtenida.

Cuadro 9 Análisis de variancia del ensayo de cepillado para la madera de Tetrorchidium rubrivenium

Fuente de variabilidad	Significancia
Plano de corte (bloque)	Significativo
Ángulo de corte	Significativo
Velocidad de alimentacion	Significativo
Interaccion angulo-velocidad	Significativo

El Cuadro 10 muestra la comparación de los planos de corte según la Prueba de Tuckey, observándose que todos los planos de corte proporcionan diferentes calidades de superficie

.

Cuadro 10 Prueba de Tukey para el ensayo de cepillado por plano de corte para la madera de Tetrorchidium rubrivenium

Plano de corte	Significancia
Oblicuo-Radial	Significativo
Oblicuo-Tangencial	Significativo
Radial-Tangencial	Significativo

4.3.2 ENSAYO DE MOLDURADO

Los resultados del análisis de variancia de la calidad de superficie en el ensayo de moldurado por plano de corte, con dos velocidades de giro, se muestran en el Cuadro 11.

En este cuadro se puede observar que no existen diferencias significativas entre los planos de corte, por lo tanto se puede trabajar indistintamente en cualquier plano de corte obteniendo calidades de superficie similares. De la misma manera, se encontró suficiente evidencia estadística para afirmar que las velocidades de giro proporcionan grados de calidad diferentes.

Cuadro 11 Análisis de variancia para el ensayo de moldurado para la madera de *Tetrorchidium rubrivenium*

Fuente de variabilidad	Significancia
Plano de corte (bloque)	No significativo
Velocidad de giro	Significativo

4.3.3 ENSAYO DE TALADRADO

En el Cuadro 12 se muestra el análisis de variancia de la calidad de superficie en el ensayo de taladrado, por plano de corte, con dos tipos de broca y dos velocidades de giro, observándose que existen diferencias significativas entre los tipos de broca y las velocidades de giro, lo cual indica que la calidad de superficie al perforar esta madera se modifica según el tipo de broca y la velocidad de giro. De la misma manera, se observa que no existen diferencias significativas ente los planos de corte, por lo tanto se puede trabajar indistintamente con cualquier plano de corte obteniendo similares calidades de superficie, tampoco existe efecto de interacción entre el tipo de broca y la velocidad de giro.

Cuadro 12 Análisis de variancia para el ensayo de taladrado para la madera de *Tetrorchidium rubrivenium*

Fuente de variabilidad	Significancia
Planos de corte (bloque)	No significativo
Tipo de broca	Significativo
Velocidad de giro	Significativo
Interacción tipo de broca-velocidad	No significativo

4.3.4 ENSAYO DE TORNEADO

En el Cuadro 13 se detallan los resultados del análisis de variancia de la calidad de superficie en el torneado de *Tetrorchidium rubrivenium* con cuatro velocidades de giro, observándose que no existen diferencias significativas entre los niveles de velocidad de giro, por lo tanto existen suficientes evidencias estadísticas para afirmar que las diferentes velocidades de giro proporcionan similares calidades de superficie.

Cuadro 13 Análisis de variancia para el ensayo de torneado para la madera de Tetrorchidium rubrivenium

Fuente de variabilidad	Significancia
Velocidad de giro	No significativo

4.3.5 ENSAYO DE LIJADO

En el Cuadro 14 se muestran los resultados del análisis de variancia de la calidad de superficie en el ensayo de Lijado en tres planos de corte. Este análisis muestra que no existen diferencias significativas entre los planos de corte, por lo tanto, se puede lijar con Grano 100 indistintamente en cualquier plano de corte obteniendo similares calidades de superficie.

Cuadro 14 Análisis de variancia para el ensayo de lijado para la madera de *Tetrorchidium rubrivenium*

Fuente de variabilidad	Significancia
Plano de corte	No significativo

4.4 ANÁLISIS EXPLORATORIO COMPARATIVO DE DEFECTOS EN LOS ENSAYOS DE TRABAJABILIDAD POR MEDIO DE MÉTODOS MULTIVARIADOS

En el Cuadro 15 se presentan las mejores relaciones establecidas entre el tipo de defecto según su gravedad y la condición del ensayo de trabajabilidad que generó el mismo. En forma general, se puede afirmar que el plano de corte radial está asociado con gravedad fuerte de los granos arrancado y astillado en los ensayos de cepillado y taladrado.

Para el ensayo de cepillado, generalmente los granos arrancado y astillado fuertes, se presentan en el plano de corte radial, con 35° de ángulo de corte y 5 m/min de velocidad de alimentación.

En el taladrado, la broca para madera en la entrada de la perforación, sobre el plano radial y a 760 rpm de velocidad de giro, se asocia con ruptura de grano y grano astillado de fuerte gravedad.

Cuadro 15 Relaciones establecidas a través del Análisis de Correspondencia Simple (A.C.S.) de la condición de ensayo de trabajabilidad con el tipo de defecto según su Gravedad para la madera de *Tetrorchidium rubrivenium*

Ensayo	Condicion	es	Tipo de defecto	Gravedad	
	Plano de corte	: Radial	Grano arrancado		
Cepillado	Angulo de corte	: 35°	Y Grano astillado	Fuerte	
	Velocidad de alimentación	: 10 m/min	Grano astiliado		
	Perforación	: Entrada			
	Plano de corte	: Radial	Ruptura de grano V	Fuerte	
	Tipo de broca	: Para madera	Grano astillado	ruerte	
Taladrado	Velocidad de giro	: 760 rpm			
raiaurauo	Perforación	: Salida			
	Plano de corte	: Radial	Grano astillado	Fuerte	
	Tipo de broca	: Para metal	Grano astiliado	i derte	
	Velocidad de giro	: 760 rpm			

5. CONCLUSIONES

- Según el tipo de maquinado, la madera de *Tetrorchidium rub*rivenium a un contenido de humedad promedio de 13,5% proporciona una calidad de superficie variable de buena a regular.
- 2) La calidad del cepillado, mejora con un ángulo de corte de 15° en cualquier plano de corte independientemente de la velocidad de alimentación.
- 3) El ángulo de corte de 15° con la menor velocidad de alimentación, genera una superficie de baja rugosidad en el cepillado.
- 4) La calidad del moldurado en cualquier plano de corte, se mejora cuando se utiliza una mayor velocidad de giro.
- 5) La calidad de la perforación mejora cuando se utiliza broca para metal y se incrementa la velocidad angular, independientemente del plano de corte.
- 6) La calidad del torneado mejora a medida que se incrementa la velocidad de giro.
- 7) En cualquier plano de corte, el cepillado y el lijado con grano Nº 100 producen similar rugosidad superficial.
- 8) En el cepillado y taladrado, los granos arrancado y astillado fuertes se relacionan con el plano de corte radial.

6. RECOMENDACIONES

- 1) El maquinado eficiente de la madera de *Tetrorchidium rubrivenium*, debe considerar las siguientes condiciones:
 - Cepillado, con un ángulo de corte de 15°, en cualquiera de las velocidades de alimentación y planos de corte.
 - Moldurado, utilizando una velocidad angular de 7.414 rpm, en cualquiera de los planos de corte.
 - Taladrado, con broca para metal y una velocidad angular de 1.405 rpm en cualquier plano de corte.
 - Torneado, con una velocidad angular de 4.000 rpm.
 - Lijado, luego del cepillado, con números de grano mayores a 100.
- 2) Continuar con los estudios de propiedades físico-mecánicas, secado, durabilidad natural, preservado y acabado para favorecer la promoción de esta especie.
- 3) Continuar con los estudios de trabajabilidad de la madera de especies procedentes de bosques secundarios, proporcionando al sector forestal una base tecnológica que posibilite el manejo productivo rentable de estos bosques a través de la generación de productos de transformación secundaria.

BIBLIOGRAFÍA

- American Society For Testing and Materials. 1999. Standard Methods for Conducting Test of Wood and Wood-Base Materials ASTN-D-1666-87. Philadelphia, US. 19p.
- Aróstegui, A. 1982. Recopilación y Análisis de Estudios Tecnológicos de Maderas Peruanas. Documento de Trabajo Nº 2 PNUD/FAO 81/002. Lima, PE. 57p.
- Aróstegui, A.; <u>et al</u>. 1978. Estudio integral de la madera para construcción. Ministerio de Agricultura-UNALM. Lima, PE. 184p.
- Arroyo, J. 1983. Propiedades Físico-Mecánicas de la Madera. Universidad de los Andes. Mérida, VE. 196p.
- Calzada, J. 1982. Métodos Estadísticos para la Investigación. Ed. Milagros S. A. Lima, PE 202p.
- Paz Pérez, C de la.; Carmona, T. 1979. Influencia del hilo en algunas características tecnológicas de la madera. Instituto Nacional de Investigaciones Forestales. MX 59p.
- Emary A, B. 1992. Curso de Carpintería y Ebanistería. V. 1. Limusa. MX. 165p.
- FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación, IT). 2005. Situación de los bosques del mundo. Roma, IT. 153 p.
- French, G. 1977. Diseño y operación de aserraderos de maderas duras tropicales. Lima, PE 252p.
- Gonzáles, R. 1995. Manual: Rugosidad superficial una visión práctica. MITUTOYO oficina técnica. Sao Paulo, BR 33p.
- Gutiérrez, D. 1985. Algunos Usos Probables de 24 Maderas de la Zona de Madre de Dios. Tesis Ing. Forestal. Facultad de Ciencias Forestales, UNALM. Lima, PE 56p.
- Harriague H, F. 1999. Estudio de la Trabajabilidad de diez especies maderable de Santa Cruz. Documento técnico, 73/1999. 65p.

- Herrera B, A. 1981. Avance en la determinación de las características de maquinado de cinco especies de encino que vegetan en México. Ciencia Forestal: Revista del Instituto Nacional de Investigaciones Forestales 34(6): 45-63.
- Junta del Acuerdo de Cartagena. 1976. Normas y Metodología para Actividades Tecnológicas. PADT-REFORT. Lima, PE 41p.
- Junta del Acuerdo de Cartagena. 1983. Estudio de Características de Trabajabilidad de 105 maderas de los Bosques Tropicales del Grupo Andino. Parte I. PADT-REFORT. Lima, PE 184p.
- Koch, P. 1964. Wood Machining Processes. The Ronald Press Company. New York, US 530 p.
- Kuljich R, S. 2007. Caracterización longitudinal y radial de los elementos xilemáticos de la especie <u>Tetrorchidium rubrivenium</u> Poeppig (Col de Monte) proveniente de Oxapampa. Tesis Ing. Forestal. Facultad de Ciencias Forestales. UNALM. Lima, PE 55p.
- León, W; Espinoza, N. 1999. Variabilidad de la Madera de *Cordia elaeagnoides* DC Biótica 12(2): 121-129 pp.
- Lousiana State University Agricultural Center. 2001. La Madera, su naturaleza y propiedades para la carpintería. LSU. Ag Center Research and Extensión. 18p.
- Lluncor M, D. 1989. Trabajabilidad de nueve especies de la Zona Selva Baja Alpahuayo-Jenaro Herrera. Pucallpa, PE 21p.
- Mainieri; Perez J. 1989. Fichas de Características das Madeiras Brasileiras. Instituto de pesquisas tecnologicas. Fichas Nº 167. Sao Paulo, BR 418p.
- Meléndez C, A; Bustamante G, N. 2006. Cepillado, Taladrado y Torneado de las Maderas "Marupa" y "Carahuasca" Provenientes de Plantaciones de Diferentes Edades. Anales Científicos UNALM 2006 Volumen 64. Lima, PE
- Meléndez C, A; Bustamante G, N. 2003. Evaluación de la Rugosidad Superficial en la Madera Cepillada y Lijada de Seis Especies Forestales. Universidad Nacional Agraria La Molina. Departamento de Industrias Forestales. Lima, PE 29p.

- Ninin, L. 1983. Texto de Labrado Mecanizado. Universidad de los Andes. Mérida-VE. 264p.
- Palacios P, M. 2003. Comportamiento al Lijado con Granos Nº 60, 80 y 100 de las maderas de "Tornillo", "Marupa" y "Carahuasca" de diferentes edades. Tesis Ing. Forestal. Facultas de Ciencias Forestales UNALM. Lima, PE 63 p.
- Panshin, A; De Zeeuw, C. 1980. Textbook of Wood Technology. 4th Ed. McGraw-Hill. New York, US 722p.
- Peñaloza M, D. 2005. Características de Trabajabilidad de la Madera de Ingaina (Myrsine oligophylla). Tesis Ing. Forestal. Facultad de Ciencias Forestales UNALM. Lima, PE 104p.
- Reynel C; <u>et al</u>. 2007. Árboles Útiles del Ande Peruano, Un Manual con Apuntes de Identificación, Ecología y Propagación de las Especies de la Sierra y de los Bosques Montanos en el Perú. Herbario de la Facultad de Forestales de la Universidad Nacional Agraria La Molina. Royal Botanic Gardens Kew, Royal Botanic Gardens Edinburgh y APRODES. 463pp.
- Rubio D, J. 1996. Estadística Aplicada. Departamento de Estadística e Informática. Universidad Nacional Agraria La Molina. Lima, PE 179p.
- Sato A, A. <u>et al</u>. 1975. Estudio tecnológico de maderas del Perú. Volumen II. Normas y Métodos. Lima, PE 62-77 p.
- Sato A, A. 1976. Propiedades de Trabajabilidad de la Madera de 12 especies del Perú. Tesis Ing. Forestal. Programa Académico de Ciencias Forestales. UNALM. Lima, PE 110p.
- Scheelje B, M. 2002. Comportamiento del Tornillo de tres edades diferentes al Cepillado, Taladrado y Torneado. Tesis Ing. Forestal. Facultad de Ciencias Forestales. UNALM. Lima, PE 75p.
- Soria T, M. 2006. Trabajabilidad de la Madera de Pucaquiro (*Sickingia williamsii*) proveniente de bosques secundarios de la zona de San Martín Perú. Tesis Ing. Forestal. Facultad de Ciencias Forestales UNALM. Lima, PE 96p.
- Spence W, P; Griffiths L, D. 1993. Manual Moderno de Diseño y Construcción de Muebles y Gabinetes. Prentice-Hall Hispano Americanas, S. A. v. 3. MX 582p.

- Taquire A, A. 1987. Propiedades Físicas a Nivel Radial, Longitudinal y Comportamiento al Cepillado, Moldurado, Taladrado y Lijado de *Guazuma crinita* Mart. (Bolaina blanca), Pucallpa. Tesis Ing. Forestal. UNCP. Huancayo, PE 113p.
- Tuset, R; Duran, F. 1986. Manual de Maderas Comerciales, Equipos y Procesos de Utilización. Hemisferio Sur. Montevideo, UR. 688p.
- Valdivia A, H. 1993. Aptitud de la "Bolaina blanca" (*Guazuma crinita* Mart) para uso estructural en construcciones de madera. Tesis Magister Scientiae. Escuela de Post Grado UNALM. Lima, PE 53p.
- Vignote S; Jiménez F. 1996. Tecnología de la Madera. Ministerio de Agricultura, Pesca y alimentación. Mundi-Prensa. Madrid, ES 653p.
- Zavala Z, D. 1993. Factores que Influyen en las Características de Maquinado de la Madera. INIFA. MX. 145-157 p.

$ANEXO\ 1$ GRADOS DE CALIDAD PARA EL ENSAYO DE CEPILLADO

Nombre Común
Nombre CientíficoCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte15°ProcedenciaOxapampaVelocidad de Alimentación5 m/minEjecutorIris Plaza ArceN° de Cuchillas3

Ljeculo		IIIS FIAZ	.a / 1100					DEF	ECTO)S			11 00	Cucinna			J
			Grano A	Arrancado	`	1 (Grano A	Astillado			rano L	evantac	lo.	Gra	ıno Vell	റടറ	1
%	S.				,			Siliauc	,			- Varitac				030	
C.H. %	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	5	S	2	
12	1D TG	3	М	0.12	2	3	S	0.73	2	0.0	S	0.0	1	6	S	2	
12	1E OB	1	S	0.06	2	1	S	0.70	2	0.0	S	0.0	1	1	S	2	
13	1E OB	1	S	0.03	2	1	S	0.63	2	0.0	S	0.0	1	2	S	2	
12	1E RD	3	М	0.16	2	2	М	0.84	2	0.0	S	0.0	1	4	S	2	
12	1E RD	4	S	0.10	2	3	М	0.83	2	0.0	S	0.0	1	3	S	2	
15	2A OB	3	М	0.14	2	2	М	1.18	2	0.0	S	0.0	1	3	S	2	
14	2B OB	2	S	0.05	2	3	М	0.78	2	0.0	S	0.0	1	10	S	2	
13	2B RD	2	S	0.10	2	3	М	1.03	2	0.0	S	0.0	1	2	S	2	
13	2B RD	3	М	0.13	2	4	М	1.08	2	0.0	S	0.0	1	5	S	2	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	1	S	2	
12	2B TG	2	S	0.05	2	2	М	1.01	2	0.0	S	0.0	1	3	S	2	
12	3A OB	10	М	0.14	3	18	М	1.63	3	0.0	S	0.0	1	2	S	2	
11	3A RD	1	М	0.12	2	1	М	0.92	2	0.0	S	0.0	1	5	S	2	
12	3A RD	4	М	0.12	2	6	М	0.88	3	0.0	S	0.0	1	1	S	2	
15	3A TG	1	S	0.03	2	2	S	0.73	2	0.0	S	0.0	1	5	S	2	
16	3B OB	2	М	0.18	2	5	М	1.74	3	0.0	S	0.0	1	8	S	2	
14	3B TG	1	М	0.14	2	1	М	0.84	2	0.0	S	0.0	1	3	S	2	
13	4A OB	2	М	0.11	2	10	М	0.89	3	0.0	S	0.0	1	15	S	2	
12	4B OB	2	S	0.09	2	10	М	1.08	3	0.0	S	0.0	1	10	S	2	
12	4B RD	1	S	0.04	2	3	S	0.54	2	0.0	S	0.0	1	3	S	2	
13	4D RD	13	М	0.12	3	18	М	1.66	3	0.0	S	0.0	1	3	S	2	
12	4D TG	9	S	0.08	2	17	S	0.62	2	0.0	S	0.0	1	5	S	2	
12	4D TG	2	S	0.03	2	1	S	0.45	2	0.0	S	0.0	1	20	S	2	
14	5A OB	4	М	0.20	2	9	М	1.11	3	0.0	S	0.0	1	0	S	1	
14	5A TG	1	S	0.07	2	1	S	0.66	2	0.0	S	0.0	1	2	S	2	
15	5B OB	2	М	0.15	2	7	S	0.74	2	0.0	S	0.0	1	7	S	2	
12	5B RD	3	М	0.14	2	2	М	0.77	2	0.0	S	0.0	1	1	S	2	
14	5B RD	6	М	0.23	3	15	М	1.10	3	0.0	S	0.0	1	5	S	2	
13	5B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	0	S	1	

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte15°ProcedenciaOxapampaVelocidad de Alimentación5 m/minEjecutorIris Plaza ArceN° de Cuchillas3

Ejecuto	r	Iris Plaz	Iris Plaza Arce N° de Cuchillas										3				
								DE	FECT	os							
\o	0	G	irano A	rrancad	lo	(Grano <i>i</i>	Astillado)	G	irano L	evantac	do	Gra	ıno Vell	oso]
C.H. %	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	0	S	0.00	1	1	S	0.65	2	0.0	S	0	1	1	S	2	
12	1D TG	1	М	0.11	2	2	S	0.74	2	0.0	S	0	1	2	S	2	
12	1E OB	1	S	0.09	2	3	М	1.33	2	0.0	S	0	1	2	S	2	
13	1E OB	1	S	0.01	2	3	М	1.17	2	0.0	S	0	1	3	S	2	
12	1E RD	2	М	0.30	2	2	М	1.75	2	0.0	S	0	1	30	S	2	
12	1E RD	1	S	0.03	2	1	М	1.64	2	0.0	S	0	1	4	S	2	
15	2A OB	4	S	0.06	2	3	М	1.02	2	0.0	S	0	1	9	S	2	
14	2B OB	4	S	0.05	2	3	М	1.30	2	0.0	S	0	1	5	S	2	
13	2B RD	4	S	0.08	2	6	М	1.34	3	0.0	S	0	1	6	S	2	
13	2B RD	1	М	0.21	2	3	М	1.20	2	0.0	S	0	1	2	S	2	
12	2B TG	1	S	0.07	2	2	М	1.71	2	0.0	S	0	1	3	S	2	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0	1	1	S	2	
12	3A OB	7	М	0.18	3	30	F	1.91	4	0.0	S	0	1	5	S	2	
11	3A RD	1	S	0.10	2	2	S	0.75	2	0.0	S	0	1	3	S	2	
12	3A RD	4	М	0.11	2	7	М	1.05	3	0.0	S	0	1	3	S	2	
15	3A TG	3	S	0.04	2	4	М	0.88	2	0.0	S	0	1	2	S	2	
16	3B OB	3	М	0.16	2	2	F	2.14	3	0.0	S	0	1	7	S	2	
14	3B TG	0	S	0.00	1	2	S	0.68	2	0.0	S	0	1	2	S	2	
13	4A OB	4	S	0.07	2	5	S	0.62	2	0.0	S	0	1	10	S	2	
12	4B OB	1	М	0.19	2	1	М	1.63	2	0.0	S	0	1	10	S	2	
12	4B RD	3	S	0.01	2	8	M	0.96	3	0.0	S	0	1	10	S	2	
13	4D RD	10	М	0.11	3	15	F	1.84	4	0.0	S	0	1	10	S	2	
12	4D TG	1	М	0.11	2	3	S	0.56	2	0.0	S	0	1	3	S	2	
12	4D TG	4	М	0.11	2	6	М	1.06	3	0.0	S	0	1	7	S	2	
14	5A OB	1	S	0.07	2	5	М	1.60	3	0.0	S	0	1	2	S	2	
14	5A TG	0	S	0.00	1	1	M	0.88	2	0.0	S	0	1	2	S	2	
15	5B OB	2	М	0.11	2	3	М	1.19	2	0.0	S	0	1	2	S	2	
12	5B RD	2	М	0.11	2	3	M	1.60	2	0.0	S	0	1	2	S	2	
14	5B RD	4	M	0.23	2	12	F	2.45	4	0.0	S	0	1	7	S	2	
13	5B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0	1	0	S	1	L

GRADO DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE CEPILLADO

N° de Cuchilla

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte15ºProcedenciaOxapampaVelocidad de alimentaciuón5 m/min

Iris Plaza Arce

Ejecutor

Ljeculo		III3 I IQZ						C	ALIFICA	ACION				in de c	, a o a				
	0	GRA	NO AR	RANCA	DO	GR	ANO AS	STILLA	DO	GRA	NO LE	/ANTAD	00	GF	ANO V	ELLOS	o	Ë	
1 %	CODIGO	GR	ADO	Ę		GR	ADO	Ĕ		GR	ADO	Ĕ		GR	ADO	Ę		₹	САШБАБ
C.H	8	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	L1	L2	DOMINANTI	E	L1	L2	DOMINANT	E	E DOMINANTE	CAL
12	1B TG	1	1	1	1	1	2	2	1.8	1	1	1	1	2	2	2	1.5	1.8	В
12	1D TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1E OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
13	1E OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1E RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1E RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
15	2A OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
14	2B OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
13	2B RD	2	2	2	2	2	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
13	2B RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	2B TG	1	2	2	2	1	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	2B TG	2	1	2	2	2	1	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	3A OB	3	3	3	3	3	4	4	3.4	1	1	1	1	2	2	2	1.5	3.4	R
11	3A RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	3A RD	2	2	2	2	3	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
15	3A TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
16	3B OB	2	2	2	2	3	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
14	3B TG	2	1	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
13	4A OB	2	2	2	2	3	2	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
12	4B OB	2	2	2	2	3	2	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
12	4B RD	2	2	2	2	2	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
13	4D RD	3	3	3	3	3	4	4	3.4	1	1	1	1	2	2	2	1.5	3.4	R
12	4D TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	4D TG	2	2	2	2	2	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
14	5A OB	2	2	2	2	3	3	3	2.6	1	1	1	1	1	2	2	1.5	2.6	R
14	5A TG	2	1	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
15	5B OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	5B RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
14	5B RD	3	2	3	3	3	4	4	3.4	1	1	1	1	2	2	2	1.5	3.4	R
13	5B TG	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Е

Nombre Común
Nombre CientíficoCol de MonteFecha
Tetrorchidium rubrivenium poe
Procedencia03/04/2006ProcedenciaOxapampaAngulo de Corte15°Velocidad de Alimentación10 m/minEjecutorIris Plaza ArceN° de Cuchillas3

Ejecuto		1110 1 102	za Arce					D.	FECT	20			14 00	Cucrinia	10		<u>3</u>
			\ A		1-		O				I		1 -	0	\/ - 1		-
		G	irano A	rrancad	10		Grano /	Astillado)	G	rano L	evantad	10	Gra	ano Vell	loso	
C.H.%	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	1	S	0.06	2	1	S	0.73	2	0.0	S	0	1	2	S	2	
12	1D TG	1	S	0.10	2	1	S	0.36	2	0.0	S	0	1	2	S	2	
12	1E OB	1	S	0.04	2	1	S	0.63	2	0.0	S	0	1	1	S	2	
13	1E OB	1	S	0.03	2	1	S	0.43	2	0.0	S	0	1	1	S	2	
12	1E RD	1	М	0.23	2	1	S	0.57	2	0.0	S	0	1	1	S	2	
12	1E RD	1	S	0.10	2	1	S	0.57	2	0.0	S	0	1	2	S	2	
15	2AOB	2	М	0.13	2	2	S	0.59	2	0.0	S	0	1	1	S	2	
14	2B OB	0	S	0.00	1	3	М	0.84	2	0.0	S	0	1	1	S	2	
13	2B RD	1	F	0.31	3	1	S	0.64	2	0.0	S	0	1	2	S	2	
13	2B RD	3	М	0.11	2	1	S	0.71	2	0.0	S	0	1	7	S	2	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0	1	0	S	1	
12	2B TG	1	S	0.02	2	1	S	0.62	2	0.0	S	0	1	1	S	2	
12	3A OB	4	S	0.06	2	10	М	1.60	3	0.0	S	0	1	3	S	2	
11	3A RD	5	M	0.22	3	1	M	0.89	2	0.0	S	0	1	3	S	2	
12	3A RD	1	M	0.19	2	3	S	0.73	2	0.0	S	0	1	5	S	2	
15	3A TG	1	M	0.15	2	1	M	1.12	2	0.0	S	0	1	1	S	2	
16	3B OB	3	М	0.12	2	2	М	0.97	2	0.0	S	0	1	1	S	2	
14	3B TG	2	S	0.07	2	2	М	0.87	2	0.0	S	0	1	1	S	2	
13	4A OB	1	S	0.03	2	2	S	0.75	2	0.0	S	0	1	17	S	2	
12	4B OB	2	М	0.20	2	2	М	0.85	2	0.0	S	0	1	4	S	2	
12	4B RD	1	S	0.09	2	1	М	0.80	2	0.0	S	0	1	6	S	2	
13	4D RD	10	М	0.25	3	12	F	2.05	4	0.0	S	0	1	10	S	2	
12	4D TG	1	S	0.04	2	1	М	0.82	2	0.0	S	0	1	6	S	2	
12	4D TG	3	S	0.08	2	3	М	0.79	2	0.0	S	0	1	20	S	2	
14	5A OB	3	М	0.12	2	4	М	1.10	2	0.0	S	0	1	3	S	2	
14	5A TG	1	S	0.07	2	1	М	0.80	2	0.0	S	0	1	2	S	2	
15	5B OB	1	S	0.07	2	5	S	0.50	2	0.0	S	0	1	20	S	2	
12	5B RD	1	S	0.06	2	1	S	0.63	2	0.0	S	0	1	1	S	2	
14	5B RD	3	М	0.27	2	8	М	1.20	3	0.0	S	0	1	3	S	2	
13	5B TG	1	S	0.10	2	0	S	0.00	1	0.0	S	0	1	0	S	1	

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte15°ProcedenciaOxapampaVelocidad de Alimentación10 m/minEjecutorIris Plaza ArceN° de Cuchillas3

Ejecuto	r	Iris Plaz	za Arce										N°de	Cuchilla	เร		3
								DE	FECT	OS							
. 0	0	G	irano A	rrancad	lo	(Grano /	Astillado)	G	irano L	evantac	lo	Gra	ıno Vell	oso	1
C.H. %	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	1	S	0.06	2	1	S	0.64	2	0.0	S	0	1	3	S	2	
12	1D TG	2	S	0.08	2	1	S	0.30	2	0.0	S	0	1	5	S	2	
12	1E OB	1	S	0.02	2	1	S	0.41	2	0.0	S	0	1	5	S	2	
13	1E OB	1	S	0.05	2	1	S	0.57	2	0.0	S	0	1	1	S	2	
12	1E RD	1	S	0.07	2	1	S	0.56	2	0.0	S	0	1	2	S	2	
12	1E RD	2	М	0.26	2	2	S	0.67	2	0.0	S	0	1	1	S	2	
15	2A OB	2	М	0.16	2	2	S	0.69	2	0.0	S	0	1	1	S	2	
14	2B OB	0	S	0.00	1	0	S	0.00	1	0.0	S	0	1	2	S	2	
13	2B RD	1	F	0.33	3	1	S	0.68	2	0.0	S	0	1	1	S	2	
13	2B RD	3	М	0.19	2	5	М	0.97	3	0.0	S	0	1	10	S	2	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0	1	1	S	2	
12	2B TG	1	S	0.03	2	2	S	0.59	2	0.0	S	0	1	5	S	2	
12	3A OB	4	М	0.22	2	14	М	1.56	3	0.0	S	0	1	5	S	2	
11	3A RD	5	F	0.37	4	1	М	1.10	2	0.0	S	0	1	1	S	2	
12	3A RD	1	М	0.15	2	2	М	0.86	2	0.0	S	0	1	5	S	2	
15	3A TG	2	М	0.12	2	2	М	1.04	2	0.0	S	0	1	1	S	2	
16	3B OB	2	S	0.08	2	2	М	0.86	2	0.0	S	0	1	2	S	2	
14	3B TG	1	S	0.09	2	1	S	0.54	2	0.0	S	0	1	1	S	2	
13	4A OB	1	S	0.02	2	2	S	0.72	2	0.0	S	0	1	25	S	2	
12	4B OB	2	М	0.21	2	2	М	0.84	2	0.0	S	0	1	3	S	2	
12	4B RD	1	S	0.09	2	1	М	0.84	2	0.0	S	0	1	5	S	2	
13	4D RD	13	М	0.19	3	15	F	2.02	4	0.0	S	0	1	3	S	2	
12	4D TG	1	S	0.01	2	1	М	0.82	2	0.0	S	0	1	7	S	2	
12	4D TG	4	S	0.07	2	5	M	0.81	3	0.0	S	0	1	15	S	2	
14	5A OB	5	М	0.14	3	3	М	1.13	2	0.0	S	0	1	3	S	2	
14	5A TG	1	S	0.04	2	1	S	0.63	2	0.0	S	0	1	2	S	2	
15	5B OB	1	S	0.09	2	5	S	0.50	2	0.0	S	0	1	30	S	2	
12	5B RD	2	S	0.07	2	1	М	0.83	2	0.0	S	0	1	1	S	2	
14	5B RD	5	F	0.31	4	10	M	1.19	3	0.0	S	0	1	4	S	2	
13	5B TG	1	М	0.12	2	0	S	0.00	1	0.0	S	0	1	0	S	1	

GRADO DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE CEPILLADO

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte15º

Procedencia Oxapampa Velocidad de alimentaciuón 10 m/min

Ejecutor Iris Plaza Arce N° de Cuchilla 3

		CALIFICACION GRANO ARRANCADO GRANO ASTILLADO GRANO LEVANTADO GRANO VELLOSO																	
	0	GI	RANO A	RRANC	ADO	G	RANO	ASTILLA	DO	GF	RANO L	EVANTA	DO	(GRANO	VELLOS	SO		۵
С.Н. %	<u>8</u>	GR	ADO	H		GR	ADO	Щ		GR/	ADO	Щ		GR	ADO	Щ		₹	Δ
ਹੋ	CODIGO	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	E DOMINANTE	САШБАБ
12	1B TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1D TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1E OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
13	1E OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1E RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	1E RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
15	2A OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
14	2B OB	1	1	1	1	2	1	2	1.8	1	1	1	1	2	2	2	1.5	1.8	В
13	2B RD	3	3	3	3	2	2	2	1.8	1	1	1	1	2	2	2	1.5	3	R
13	2B RD	2	2	2	2	2	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
12	2B TG	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	1.5	1.5	E
12	2B TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	3A OB	2	2	2	2	3	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
11	3A RD	3	4	4	4	2	2	2	1.8	1	1	1	1	2	2	2	1.5	4	М
12	3A RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
15	3A TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
16	3B OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
14	3B TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
13	4A OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	4B OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	4B RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
13	4D RD	3	3	3	3	4	4	4	3.4	1	1	1	1	2	2	2	1.5	3.4	R
12	4D TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	4D TG	2	2	2	2	2	3	3	2.6	1	1	1	1	2	2	2	1.5	2.6	R
14	5A OB	2	3	3	3	2	2	2	1.8	1	1	1	1	2	2	2	1.5	3	R
14	5A TG	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
15	5B OB	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
12	5B RD	2	2	2	2	2	2	2	1.8	1	1	1	1	2	2	2	1.5	2	В
14	5B RD	2	4	4	4	3	3	3	2.6	1	1	1	1	2	2	2	1.5	4	М
13	5B TG	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	В

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeAngulo de Corte35°ProcedenciaOxapampaVelocidad de Alimentación5 m/minEjecutorIris Plaza ArceN° de Cuchillas3

		11.0 1 10.1						DE	FECT	os				Odomine			
_	•	G	irano A	rrancad	o	(Grano A	Astillado)	G	irano L	evantac	do	Gra	ıno Vell	oso	
C.H. %	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	0	S	0.00	1	1	М	0.80	2	0.0	S	0	1	3	S	2	
12	1D TG	0	S	0.00	1	3	S	0.72	2	0.0	S	0	1	1	S	2	
12	1E OB	1	М	0.25	2	3	S	0.75	2	0.0	S	0	1	5	S	2	
13	1E OB	1	S	0.06	2	2	М	0.81	2	0.0	S	0	1	2	S	2	
12	1E RD	1	S	0.01	2	5	F	1.83	4	0.0	S	0	1	3	М	2	
12	1E RD	1	S	0.10	2	3	М	0.94	2	0.0	S	0	1	4	S	2	
15	2A OB	1	М	0.12	2	5	М	1.34	3	0.0	S	0	1	5	S	2	
14	2B OB	0	S	0.00	1	5	М	0.77	3	0.0	S	0	1	5	S	2	
13	2B RD	1	М	0.05	2	3	М	1.66	2	0.0	S	0	1	3	S	2	
13	2B RD	0	S	0.00	1	2	M	1.38.	2	0.0	S	0	1	2	S	2	
12	2B TG	0	S	0.00	1	5	S	0.62	2	0.0	S	0	1	5	S	2	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0	1	0	S	1	
12	3A OB	1	M	0.12	2	13	М	1.00	3	0.0	S	0	1	4	S	2	
11	3A RD	4	M	0.30	2	1	М	1.26	2	0.0	S	0	1	1	М	2	
12	3A RD	1	S	0.10	2	10	М	0.95	3	0.0	S	0	1	10	S	2	
15	3A TG	0	S	0.00	1	3	М	0.89	2	0.0	S	0	1	3	S	2	
16	3B OB	1	M	0.16	2	6	М	0.94	3	0.0	S	0	1	6	S	2	
14	3B TG	0	S	0.00	1	3	S	0.61	2	0.0	S	0	1	3	S	2	
13	4A OB	0	S	0.00	1	15	S	0.74	2	0.0	S	0	1	2	S	2	
12	4B OB	0	S	0.00	1	1	M	0.97	2	0.0	S	0	1	1	S	2	
12	4B RD	0	S	0.00	1	3	S	0.70	2	0.0	S	0	1	3	S	2	
13	4D RD	3	S	0.10	2	50	M	1.34	3	0.0	S	0	1	3	M	2	
12	4D TG	5	S	0.04	2	50	S	0.71	3	0.0	S	0	1	5	S	2	
12	4D TG	0	S	0.00	1	3	M	1.68	2	0.0	S	0	1	3	S	2	
14	5A OB	1	S	0.08	2	10	M	1.51	3	0.0	S	0	1	1	M	2	
14	5A TG	0	S	0.00	1	30	S	0.61	2	0.0	S	0	1	5	S	2	
15	5B OB	0	S	0.00	1	20	M	0.78	3	0.0	S	0	1	2	S	2	
12	5B RD	0	S	0.00	1	5	M	0.83	3	0.0	S	0	1	5	S	2	
14	5B RD	1	S	0.10	2	25	M	1.74	3	0.0	S	0	1	3	M	2	
13	5B TG	0	S	0.00	11	0	S	0.00	11	0.0	S	0	1	0	S	1	

Nombre Común	Col de Monte	Fecha	03/04/2006
Nombre Científico	Tetrorchidium rubrivenium poeppig	Angulo de Corte	35º
Procedencia	Oxapampa	Velocidad de Alimentación	5 m/min
Ejecutor	Iris Plaza Arce	N° de Cuchillas	3

Ejecuto	'	1113 1 142	za Arce										iv de	Cucnilla	เอ		3
									FECT	<u>os</u>							<u>l</u>
\o	0	G	irano A	rrancad	lo	(Grano /	Astillado)	G	rano L	evantac	lo	Gra	no Vell	oso	<u> </u>
C.H. %	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	0	S	0.00	1	10	М	0.94	3	0.0	S	0.0	1	1	S	2	
12	1D TG	1	S	0.05	2	14	М	0.91	3	0.0	S	0.0	1	3	S	2	
12	1E OB	0	S	0.00	1	2	М	0.83	2	0.0	S	0.0	1	2	S	2	
13	1E OB	0	S	0.00	1	12	F	1.76	4	0.0	S	0.0	1	1	М	2	
12	1E RD	1	М	0.11	2	12	М	1.22	3	0.0	S	0.0	1	1	S	2	
12	1E RD	2	S	0.10	2	15	М	0.98	3	0.0	S	0.0	1	1	S	2	
15	2A OB	1	М	0.11	2	11	М	1.28	3	0.0	S	0.0	1	3	М	2	
14	2B OB	1	S	0.08	2	7	М	1.54	3	0.0	S	0.0	1	3	М	2	
13	2B RD	1	S	0.07	2	14	М	1.01	3	0.0	S	0.0	1	1	М	2	
13	2B RD	1	S	0.10	2	10	М	1.07	3	0.0	S	0.0	1	5	М	3	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	0	S	1	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	4	S	2	
12	3A OB	5	М	0.12	3	15	М	1.46	3	0.0	S	0.0	1	18	М	3	
11	3A RD	3	М	0.16	2	13	М	1.31	3	0.0	S	0.0	1	2	S	2	
12	3A RD	1	М	0.19	2	20	F	1.88	4	0.0	S	0.0	1	7	М	3	
15	3A TG	1	S	0.09	2	8	М	1.04	3	0.0	S	0.0	1	3	S	2	
16	3B OB	3	М	0.14	2	10	М	1.35	3	0.0	S	0.0	1	5	S	2	
14	3B TG	1	M	0.13	2	15	S	0.67	2	0.0	S	0.0	1	2	S	2	
13	4A OB	1	S	0.02	2	7	M	0.94	3	0.0	S	0.0	1	5	S	2	
12	4B OB	1	М	0.14	2	9	М	0.96	3	0.0	S	0.0	1	2	S	2	
12	4B RD	1	S	0.08	2	15	М	0.80	3	0.0	S	0.0	1	5	S	2	
13	4D RD	15	М	0.23	3	10	М	1.13	3	0.0	S	0.0	1	5	S	2	
12	4D TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	1	S	2	
12	4D TG	6	S	0.08	2	4	М	1.24	2	0.0	S	0.0	1	3	S	2	
14	5A OB	3	М	0.11	2	6	М	1.03	3	0.0	S	0.0	1	3	S	2	
14	5A TG	0	S	0.00	1	1	S	0.48	2	0.0	S	0.0	1	3	S	2	
15	5B OB	1	М	0.14	2	7	М	0.80	3	0.0	S	0.0	1	5	S	2	
12	5B RD	2	S	0.09	2	3	М	1.33	2	0.0	S	0.0	1	1	S	2	
14	5B RD	3	M	0.15	2	9	М	1.02	3	0.0	S	0.0	1	5	S	2	
13	5B TG	0	S	0.00	1	0	S	0.00	1	0.0	S	0.0	1	0	S	1	

GRADO DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE CEPILLADO

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte35°ProcedenciaOxapampaVelocidad de alimentaciuón5 m/min

Iris Plaza Arce Ejecutor N° de Cuchilla **CALIFICACION GRANO LEVANTADO GRANO VELLOSO GRANO ARRANCADO GRANO ASTILLADO** CALIDAD % **GRADO GRADO GRADO GRADO DOMINANTE** 끉 Ε Ε Ε Ε L2 L2 L2 L1 L1 L2 L1 1B TG 2.6 1.5 2.6 R 1D TG 2.6 1.5 2.6 R 1E OB 1.8 1.5 В 1E OB 3.4 1.5 3.4 R 1E RD 3.4 1.5 3.4 R 1E RD 2.6 1.5 2.6 R 2A OB R 2.6 1.5 2.6 2B OB R 2.6 1.5 2.6 2B RD 2.6 1.5 2.6 R 2B RD 2.6 2.6 R 2B TG 1.8 1.5 1.8 В 2B TG 1.5 1.5 Ε 3A OB R 2.6 3A RD 2.6 1.5 2.6 R 3A RD 3.4 3.4 R 3A TG 2.6 1.5 2.6 R 3B OB R 2.6 1.5 2.6 3B TG 1.8 1.5 В 4A OB 2.6 1.5 2.6 R 4B OB 2.6 1.5 2.6 R 4B RD R 2.6 1.5 2.6 4D RD 2.6 1.5 R 4D TG 2.6 1.5 2.6 R 4D TG 1.8 1.5 В 5A OB 2.6 1.5 2.6 R 5A TG 1.5 В 1.8 1.8 5B OB 2.6 1.5 2.6 R 5B RD 2.6 1.5 2.6 R 5B RD 2.6 1.5 2.6 R

Е

5B TG

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte35°ProcedenciaOxapampaVelocidad de Alimentación10 m/minEjecutorIris Plaza ArceN° de Cuchillas3

Ljoure			- u 7 11 0 0					DE	FECT			Odomine					Ī
	_	-	rano A	rrancad	0		Grano	Astillado			rano I	evantac	10	Gra	no Vell	000	
%	96				0			1 I	,			evantat I				050	1
O. H.	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1B TG	1	М	0.27	2	12	М	1.08	3	0.0	S	0.0	1	7	S	2	
12	1D TG	7	М	0.15	3	7	М	1.31	3	0.0	S	0.0	1	3	S	2	
12	1E OB	8	М	0.16	3	4	M	1.71	2	0.0	S	0.0	1	4	S	2	
13	1E OB	6	М	0.18	3	4	М	1.14	2	0.0	S	0.0	1	2	S	2	
12	1E RD	35	F	0.37	4	11	М	1.14	3	0.0	S	0.0	1	4	М	2	
12	1E RD	16	F	0.62	4	7	М	0.98	3	0.0	S	0.0	1	2	S	2	
15	2A OB	1	S	0.09	2	7	М	1.53	3	0.0	S	0.0	1	3	S	2	
14	2B OB	8	М	0.21	3	9	F	1.83	4	0.0	S	0.0	1	5	М	3	
13	2B RD	5	M	0.14	3	7	F	2.14	4	0.0	S	0.0	1	5	M	3	
13	2B RD	6	S	0.10	2	5	M	1.28	3	0.0	S	0.0	1	5	S	2	
12	2B TG	0	S	0.00	1	7	M	0.78	3	0.0	S	0.0	1	1	S	2	
12	2B TG	1	F	0.40	3	10	M	1.51	3	0.0	S	0.0	1	5	S	2	
12	3A OB	4	F	0.57	3	12	F	1.97	4	0.0	S	0.0	1	7	S	2	
11	3A RD	12	F	0.66	4	1	F	1.99	3	0.0	S	0.0	1	1	S	2	
12	3A RD	11	F	0.46	4	10	F	2.36	4	0.0	S	0.0	1	4	М	2	
15	3A TG	5	М	0.24	3	10	F	2.12	4	0.0	S	0.0	1	5	S	2	
16	3B OB	3	F	0.55	3	10	F	2.66	4	0.0	S	0.0	1	1	М	2	
14	3B TG	0	S	0.00	1	7	M	0.77	3	0.0	S	0.0	1	1	S	2	
13	4A OB	0	S	0.00	11	2	М	1.63	2	0.0	S	0.0	1	2	S	2	
12	4B OB	27	M	0.22	3	5	M	1.42	3	0.0	S	0.0	11	5	S	2	
12	4B RD	7	M	0.29	3	3	M	1.11	2	0.0	S	0.0	1	3	S	2	
13	4D RD	7	M	0.22	3	19	F	2.31	4	0.0	S	0.0	1	8	F	4	
12	4D TG	3	S	0.04	2	5	M	1.23	3	0.0	S	0.0	1	3	S	2	
12	4D TG	1	S	0.02	2	25	M	1.17	3	0.0	S	0.0	1	13	S	2	
14	5A OB	25	F	0.33	4	25	F	2.15	4	0.0	S	0.0	1	10	M	3	
14	5A TG	1	S	0.09	2	15	M	1.33	3	0.0	S	0.0	1	7	S	2	
15	5B OB	3	S	0.06	2	10	M	1.67	3	0.0	S	0.0	1	5	S	2	
12	5B RD	6	F	0.62	4	6	M	1.42	3	0.0	S	0.0	1	2	S	2	
14	5B RD	15	F	0.42	4	20	F	2.01	4	0.0	S	0.0	1	10	M	3	
13	5B TG	1	S	0.02	2	7	S	0.68	2	0.0	S	0.0	1	1	S	2	

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Corte35°ProcedenciaOxapampaVelocidad de Alimentación10 m/minEjecutorIris Plaza ArceN° de Cuchillas3

Ljeculo	<u>'</u>	IIIS FIAZ	-a 7 11 00					DE	FECT	OS.			14 00	Cucillia			<u> </u>
		G	rano A	rrancad	lo.	(Grano	Astillado			irano I e	evantac	lo.	Gra	no Vell	loso	
C.H. %	Codigo	Extensión (%)	Gravedad	Profundidad (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Ancho (mm)	Grado	Extensión (%)	Gravedad	Grado	OBSERVACIONES
12	1BTG	6	F	0.45	4	20	М	1.73	3	0	S	0.0	1	7	S	2	
12	1D TG	12	F	0.31	4	30	М	1.26	3	1	F	6.46	3	12	S	2	
12	1E OB	16	F	0.37	4	10	М	1.72	3	0	S	0.0	1	5	М	3	
13	1E OB	20	F	1.13	4	12	S	0.75	2	0	S	0.0	1	5	S	2	
12	1E RD	10	F	0.35	4	12	F	2.10	4	0	S	0.0	1	6	S	2	
12	1E RD	40	F	0.38	4	30	M	0.90	3	0	S	0.0	1	12	S	2	
15	2A OB	4	М	0.13	2	10	F	1.85	4	0	S	0.0	1	5	S	2	
14	2B OB	15	F	0.55	4	7	F	1.81	4	0	S	0.0	1	4	М	2	
13	2B RD	22	F	0.52	4	10	М	1.75	3	0	S	0.0	1	5	М	3	
13	2B RD	6	М	0.22	3	15	F	3.08	4	0	S	0.0	1	5	М	3	
12	2B TG	4	F	0.57	3	40	F	2.03	4	0	S	0.0	1	10	М	3	
12	2B TG	0	S	0.00	1	0	S	0.00	1	0	S	0.0	1	0	S	1	
12	3A OB	50	F	0.84	4	35	М	1.10	3	0	S	0.0	1	10	F	4	
11	3A RD	75	F	1.04	5	5	F	2.03	4	0	S	0.0	1	3	М	2	
12	3A RD	20	F	0.69	4	6	F	2.61	4	0	S	0.0	1	2	S	2	
15	3A TG	18	F	0.42	4	25	F	1.94	4	1	F	5.88	3	10	М	3	
16	3B OB	13	М	0.28	3	12	М	1.71	3	0	S	0.0	1	6	М	3	
14	3B TG	20	F	0.48	4	50	М	1.53	3	0	S	0.0	1	15	S	2	
13	4A OB	1	S	0.04	2	0	S	0.00	1	0	S	0.0	1	0	S	1	
12	4B OB	30	F	0.94	4	0	S	0.00	1	0	S	0.0	1	0	S	1	
12	4B RD	16	F	0.86	4	0	S	0.00	1	0	S	0.0	1	0	S	1	
13	4D RD	5	М	0.14	3	30	F	2.15	4	0	S	0.0	1	6	М	3	
12	4D TG	4	М	0.10	2	0	S	0.00	1	0	S	0.0	1	0	S	1	
12	4D TG	5	М	0.17	3	65	F	1.91	4	0	S	0.0	1	20	М	3	
14	5A OB	33	F	0.56	4	7	F	2.21	4	0	S	0.0	1	3	М	2	
14	5A TG	5	F	0.43	4	10	F	2.15	4	0	S	0.0	1	6	М	3	
15	5B OB	8	М	0.24	3	50	М	1.65	3	0	S	0.0	1	15	S	2	
12	5B RD	9	F	0.48	4	7	М	1.60	3	0	S	0.0	1	4	S	2	
14	5B RD	35	F	0.63	4	40	M	1.34	3	1	M	1.86	2	10	S	2	
13	5B TG	2	S	0.05	2	0	S	0.00	1	0	S	0.0	1	0	S	1	

GRADO DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE CEPILLADO

03/04/2006 Nombre Común Fecha Col de Monte Nombre Científico Tetrorchidium rubrivenium poeppig Angulo de Corte Procedencia Oxapampa Velocidad de alimentaciuón 10 m/min Iris Plaza Arce 3

N° de Cuchilla

Ejecutor

Ljeculoi									CALIFIC	CACION						Judillia			
		GR	ANO AF	RANCA	ADO	GF	RANO A	STILLA	DO	GR	ANO LE	VANTA	ADO	G	RANO \	VELLOS	SO		
C.H. %	cobigo	GR	ADO	Ę		GRA	ADO	Ë		GR	ADO	Ę		GR	ADO	Ę		₹	САШБАБ
S	100	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	L1	L2	DOMINANTE	E	E DOMINANTE	CAL
12	1B TG	2	4	4	4	3	3	3	2.6	1	1	1	1	2	2	2	1.5	4	M
12	1D TG	3	4	4	4	3	3	3	2.6	1	3	3	2	2	2	2	1.5	4	M
12	1E OB	3	4	4	4	2	3	3	2.6	1	1	1	1	2	3	3	2	4	M
13	1E OB	3	4	4	4	2	2	2	1.8	1	1	1	1	2	2	2	1.5	4	М
12	1E RD	4	4	4	4	3	4	4	3.4	1	1	1	1	2	2	2	1.5	4	М
12	1E RD	4	4	4	4	3	3	3	2.6	1	1	1	1	2	2	2	1.5	4	М
15	2A OB	2	2	2	2	3	4	4	3.4	1	1	1	1	2	2	2	1.5	3.4	R
14	2B OB	3	4	4	4	4	4	4	3.4	1	1	1	1	3	2	3	2	4	М
13	2B RD	3	4	4	4	4	3	4	3.4	1	1	1	1	3	3	3	2	4	M
13	2B RD	2	3	3	3	3	4	4	3.4	1	1	1	1	2	3	3	2	3.4	R
12	2B TG	1	3	3	3	3	4	4	3.4	1	1	1	1	2	3	3	2	3.4	R
12	2B TG	3	1	3	3	3	1	3	2.6	1	1	1	1	2	1	2	1.5	3	R
12	3A OB	3	4	4	4	4	3	4	3.4	1	1	1	1	2	4	4	2.5	4	М
11	3A RD	4	5	5	5	3	4	4	3.4	1	1	1	1	2	2	2	1.5	5	D
12	3A RD	4	4	4	4	4	4	4	3.4	1	1	1	1	2	2	2	1.5	4	M
15	3A TG	3	4	4	4	4	4	4	3.4	1	3	3	2	2	3	3	2	4	М
16	3B OB	3	3	3	3	4	3	4	3.4	1	1	1	1	2	3	3	2	3.4	R
14	3B TG	1	4	4	4	3	3	3	2.6	1	1	1	1	2	2	2	1.5	4	M
13	4A OB	1	2	2	2	2	1	2	1.8	1	1	1	1	2	1	2	1.5	2	В
12	4B OB	3	4	4	4	3	1	3	2.6	1	1	1	1	2	1	2	1.5	4	M
12	4B RD	3	4	4	4	2	1	2	1.8	1	1	1	1	2	1	2	1.5	4	M
13	4D RD	3	3	3	3	4	4	4	3.4	1	1	1	1	4	3	4	2.5	3.4	R
12	4D TG	2	2	2	2	3	1	3	2.6	1	1	1	1	2	1	2	1.5	2.6	R
12	4D TG	2	3	3	3	3	4	4	3.4	1	1	1	1	2	3	3	2	3.4	R
14	5A OB	4	4	4	4	4	4	4	3.4	1	1	1	1	3	2	3	2	4	M
14	5A TG	2	4	4	4	3	4	4	3.4	1	1	1	1	2	3	3	2	4	M
15	5B OB	2	3	3	3	3	3	3	2.6	1	1	1	1	2	2	2	1.5	3	R
12	5B RD	4	4	4	4	3	3	3	2.6	1	1	1	1	2	2	2	1.5	4	M
14	5B RD	4	4	4	4	4	3	4	3.4	1	2	2	1.5	3	2	3	2	4	M
13	5B TG	2	2	2	2	2	1	2	1.8	1	1	1	1	2	1	2	1.5	2	В

ANEXO 2 RUGOSIDAD PARA EL ENSAYO DE CEPILLADO

LECTURA DE RUGOSIDAD SUPERFICIAL EN EL CEPILLADO

Nombre Común Col de Monte Fecha 03/04/2006 Tetrorchidium rubrivenium poeppig Nombre Científico Angulo de Cuchilla 15º Procedencia Oxapampa Velocidad de Aliment. 5 m/min Iris Plaza Arce Ejecutor N° de Cuchillas 3

%	Q.					R	a				
%НЭ	Oódigo		L	ectura 1			L	ectura 2		PROMEDIO	Observacion
I^{\smile}	O	Dato 1	Dato 2	Dato 3	Promedio	Dato 1	Dato 2	Dato 3	Promedio	THOMEDIO	
12	1B TG	8.57	6.23	6.55	7.12	6.88	6.79	6.70	6.79	6.95	
12	1D TG	7.33	7.48	7.47	7.43	6.07	6.20	5.06	5.78	6.60	
12	1E OB	8.07	6.01	6.67	6.92	7.11	7.88	5.19	6.73	6.82	
13	1E OB	7.01	6.54	7.21	6.92	6.77	7.15	7.69	7.20	7.06	
12	1E RD	8.33	7.28	6.42	7.34	6.85	6.15	6.55	6.52	6.93	
12	1E RD	9.04	6.48	7.76	7.76	8.76	8.53	7.70	8.33	8.05	
15	2A OB	6.33	6.31	6.66	6.43	6.62	7.11	5.66	6.46	6.45	
14	2B OB	6.08	4.52	5.77	5.46	6.29	6.57	6.63	6.50	5.98	
12	2B RD	4.65	6.56	6.91	6.04	8.84	6.13	6.71	7.23	6.63	
13	2B RD	6.92	5.32	7.23	6.49	6.88	6.84	6.89	6.87	6.68	
12	2B TG	5.31	7.27	6.98	6.52	5.33	6.32	6.36	6.00	6.26	
12	2B TG	5.10	6.01	6.53	5.88	7.57	6.73	5.81	6.70	6.29	
12	3A OB	5.36	7.07	6.70	6.38	7.27	8.63	8.84	8.25	7.31	
11	3A RD	6.76	6.57	6.35	6.56	6.78	5.40	5.39	5.86	6.21	
12	3A RD	5.77	7.95	6.32	6.68	7.77	6.16	4.44	6.12	6.40	
15	3A TG	5.17	5.09	6.02	5.43	4.95	6.74	4.65	5.45	5.44	
16	3B OB	7.45	8.35	8.37	8.06	7.66	8.61	6.58	7.62	7.84	
14	3B TG	7.81	7.79	8.30	7.97	6.64	8.18	7.20	7.34	7.65	
13	4A OB	7.62	6.96	8.26	7.61	8.23	8.28	8.18	8.23	7.92	
12	4B OB	7.95	7.29	7.87	7.70	6.91	5.27	5.49	5.89	6.80	
12	4B RD	7.20	7.59	7.88	7.56	6.53	7.07	7.36	6.99	7.27	
13	4D RD	8.34	7.62	5.42	7.13	7.37	6.67	7.39	7.14	7.14	
12	4D TG	8.62	8.38	7.23	8.08	5.98	7.18	7.29	6.82	7.45	
12	4D TG	7.50	8.11	7.06	7.56	6.35	5.34	7.06	6.25	6.90	
14	5A OB	8.57	8.35	5.49	7.47	8.08	8.21	6.35	7.55	7.51	
	5A TG	7.26	6.85	6.95	7.02	5.55	7.16	5.71	6.14	6.58	
15	5B OB	7.92	8.57	6.03	7.51	6.99	7.50	8.38	7.62	7.57	
12	5B RD	8.00	8.97	7.95	8.31	8.50	6.14	8.90	7.85	8.08	
	5B RD	8.25	6.99	6.29	7.18	9.08	7.15	8.11	8.11	7.65	
13	5B TG	7.01	6.12	7.23	6.79	5.27	5.70	5.82	5.60	6.19	

LECTURA DE RUGOSIDAD SUPERFICIAL EN EL CEPILLADO

Nombre Común Col de Monte Fecha 03/04/2006 Nombre Científico Tetrorchidium rubrivenium poeppig Angulo de Cuchilla 15⁰ Oxapampa Procedencia Velocidad de Aliment. 10 m/min Ejecutor Iris Plaza Arce N° de Cuchillas 3

%	8					Ra					
%НЭ	Código		L	ectura 1			Le	ectura 2		PROMEDIO	Observación
	0	Dato 1	Dato 2	Dato 3	Promedio	Dato 1	Dato 2	Dato 3	Promedio	THOMEDIO	
12	1B TG	5.41	8.84	5.20	6.48	5.30	7.46	8.55	7.10	6.79	
12	1D TG	7.80	8.87	4.58	7.08	7.62	7.38	5.92	6.97	7.03	
12	1E OB	7.01	8.36	8.69	8.02	7.44	4.64	4.81	5.63	6.83	
13	1E OB	7.58	8.36	5.99	7.31	8.33	8.92	7.60	8.28	7.80	
12	1E RD	6.98	10.42	9.36	8.92	5.50	7.63	9.75	7.63	8.27	
12	1E RD	9.81	7.08	6.38	7.76	8.09	6.33	8.33	7.58	7.67	
15	2A OB	8.54	8.89	8.34	8.59	8.63	5.35	7.24	7.07	7.83	
14	2B OB	5.95	6.70	6.32	6.32	8.05	8.39	5.02	7.15	6.74	
13	2B RD	6.58	7.03	7.50	7.04	6.36	8.77	7.27	7.47	7.25	
13	2B RD	8.55	8.78	6.10	7.81	7.51	7.42	6.10	7.01	7.41	
12	2B TG	7.97	8.04	6.91	7.64	7.22	7.80	5.73	6.92	7.28	
12	2B TG	7.57	4.56	6.45	6.19	5.98	5.11	5.04	5.38	5.79	
12	за ов	3.80	8.42	8.62	6.95	7.27	5.37	6.51	6.38	6.67	
11	3A RD	6.67	5.18	6.14	6.00	3.27	7.27	7.04	5.86	5.93	
12	3A RD	8.20	4.89	5.96	6.35	9.52	8.22	5.61	7.78	7.07	
15	3A TG	5.80	4.10	7.04	5.65	5.40	7.00	6.22	6.21	5.93	
16	3B OB	8.67	8.72	9.21	8.87	8.80	4.98	7.94	7.24	8.05	
14	3B TG	8.35	8.82	8.99	8.72	6.38	5.88	6.18	6.15	7.43	
13	4A OB	7.98	8.42	8.76	8.39	8.06	8.61	9.25	8.64	8.51	
12	4B OB	7.85	7.63	6.66	7.38	7.49	7.81	7.50	7.60	7.49	
12	4B RD	8.93	8.03	4.88	7.28	6.28	8.10	7.93	7.44	7.36	
13	4D RD	7.29	9.30	9.00	8.53	9.84	9.43	7.31	8.86	8.70	
12	4D TG	6.73	9.23	8.45	8.14	7.45	7.06	5.10	6.54	7.34	
12	4D TG	7.74	8.48	7.00	7.74	7.45	7.93	8.67	8.02	7.88	
14	5A OB	8.42	7.16	8.90	8.16	7.52	8.70	9.00	8.41	8.28	
14	5A TG	6.61	8.49	8.07	7.72	8.19	7.76	8.72	8.22	7.97	
15	5B OB	8.14	6.45	8.69	7.76	8.61	7.23	8.68	8.17	7.97	
12	5B RD	5.49	4.89	5.67	5.35	7.60	8.02	7.36	7.66	6.51	
14	5B RD	6.31	8.26	6.26	6.94	8.92	8.45	8.55	8.64	7.79	
13	5B TG	7.88	9.62	8.27	8.59	7.62	8.11	8.07	7.93	8.26	

LECTURA DE RUGOSIDAD SUPERFICIAL EN EL CEPILLADO

Nombre Común Col de Monte Fecha 03/04/2006 Tetrorchidium rubrivenium poeppig Nombre Científico Angulo de Cuchilla 35⁰ Oxapampa Procedencia Velocidad de Aliment. 5 m/min Iris Plaza Arce Ejecutor N° de Cuchillas 3

%	og.					Ra					
СН	Código		Lect	ura 1			Lec	tura 2		PROMEDIO	Observación
	0	Dato 1	Dato 2	Dato 3	Promedio	Dato 1	Dato 2	Dato 3	Promedio	PROMEDIO	
12	1B TG	9.39	7.21	10.11	8.90	9.69	8.92	9.39	9.33	9.12	
12	1D TG	5.18	5.48	6.45	5.70	8.97	8.19	7.79	8.32	7.01	
12	1E OB	8.85	5.57	8.37	7.60	5.31	8.23	9.92	7.82	7.71	
13	1E OB	8.72	6.40	9.51	8.21	7.64	6.57	8.89	7.70	7.96	
12	1E RD	5.81	6.12	10.61	7.51	8.19	8.91	9.14	8.75	8.13	
12	1E RD	9.43	7.34	8.53	8.43	9.19	9.25	6.99	8.48	8.46	
15	2A OB	5.29	7.22	6.17	6.23	6.00	5.29	7.57	6.29	6.26	
14	2B OB	7.16	9.37	6.42	7.65	6.31	6.53	7.65	6.83	7.24	
13	2B RD	5.78	4.87	6.12	5.59	7.65	7.61	6.30	7.19	6.39	
13	2B RD	7.73	7.01	4.21	6.32	4.23	7.77	5.50	5.83	6.08	
12	2B TG	6.16	8.14	6.46	6.92	6.29	6.67	5.85	6.27	6.60	
12	2B TG	5.66	4.43	6.50	5.53	5.40	6.46	6.91	6.26	5.89	
12	3A OB	5.83	7.67	8.96	7.49	7.26	6.09	7.05	6.80	7.14	
11	3A RD	5.13	5.72	5.71	5.52	7.04	7.06	7.09	7.06	6.29	
12	3A RD	5.76	5.87	5.44	5.69	6.73	8.08	6.83	7.21	6.45	
15	3A TG	7.50	5.03	7.46	6.66	8.17	3.61	8.17	6.65	6.66	
16	3B OB	6.65	5.68	8.22	6.85	8.06	7.64	6.83	7.51	7.18	
14	3B TG	6.30	6.42	6.96	6.56	7.33	6.06	4.48	5.96	6.26	
13	4A OB	8.08	8.52	5.70	7.43	5.10	6.99	6.55	6.21	6.82	
12	4B OB	7.19	9.67	8.97	8.61	5.49	7.62	9.52	7.54	8.08	
12	4B RD	8.82	7.10	5.44	7.12	7.69	7.22	5.03	6.65	6.88	
13	4D RD	5.95	5.55	7.56	6.35	7.98	5.59	5.97	6.51	6.43	
12	4D TG	8.25	8.03	6.81	7.70	7.94	9.66	8.62	8.74	8.22	
12	4D TG	5.77	8.62	7.11	7.17	7.27	7.61	7.50	7.46	7.31	
14	5A OB	8.96	4.40	6.45	6.60	7.54	5.10	7.50	6.71	6.66	
14	5A TG	6.54	6.88	7.06	6.83	7.76	5.75	4.47	5.99	6.41	
15	5B OB	8.75	8.89	8.89	8.84	7.62	7.62	8.44	7.89	8.37	
12	5B RD	7.69	8.45	7.66	7.93	7.23	7.28	7.51	7.34	7.64	
14	5B RD	6.88	5.87	8.21	6.99	6.78	7.36	7.11	7.08	7.04	
13	5B TG	6.63	6.91	5.80	6.45	6.95	7.32	4.51	6.26	6.35	

LECTURA DE RUGOSIDAD SUPERFICIAL EN EL CEPILLADO

Nombre ComúnCol de MonteFecha03/04/2006Nombre CientíficoTetrorchidium rubrivenium poeppigAngulo de Cuchilla35°ProcedenciaOxapampaVelocidad de Aliment.10 m/min

Ejecutor Iris Plaza Arce N° de Cuchillas 3

%	g.					Ra					
エ	Código		Lec	tura 1			Lec	tura 2		PROMEDIO	Observaciones
0		Dato 1	Dato 2	Dato 3	Promedio	Dato 1	Dato 2	Dato 3	Promedio	PROMEDIO	
12	1B TG	8.26	9.15	7.72	8.38	9.64	7.53	10.24	9.14	8.76	
12	1D TG	7.69	9.88	6.69	8.09	7.17	8.13	9.08	8.13	8.11	
12	1E OB	8.98	10.72	12.56	10.75	11.48	12.93	7.11	10.51	10.63	
13	1E OB	10.38	9.36	8.14	9.29	9.90	7.82	5.93	7.88	8.59	
12	1E RD	6.16	8.86	9.57	8.20	10.40	9.43	6.16	8.66	8.43	
12	1E RD	6.46	6.15	10.01	7.54	9.71	6.97	7.98	8.22	7.88	
15	2A OB	6.98	6.63	5.98	6.53	6.18	6.34	5.84	6.12	6.33	
14	2B OB	7.41	9.05	8.60	8.35	6.24	5.48	5.30	5.67	7.01	
13	2B RD	11.35	8.52	6.79	8.89	7.97	9.91	7.51	8.46	8.68	
	2B RD	7.98	7.08	9.87	8.31	7.94	6.33	8.51	7.59	7.95	
12	2B TG	6.52	6.20	7.86	6.86	9.50	5.63	8.53	7.89	7.37	
12	2B TG	6.92	5.83	6.97	6.57	7.83	6.00	7.23	7.02	6.80	
12	3A OB	8.83	9.63	9.40	9.29	9.45	7.60	7.09	8.05	8.67	
11	3A RD	8.41	8.82	9.25	8.83	7.37	8.06	8.03	7.82	8.32	
	3A RD	7.84	9.04	9.79	8.89	4.56	6.72	10.63	7.30	8.10	
	3A TG	8.62	5.77	5.60	6.66	7.18	9.78	6.72	7.89	7.28	
16	3B OB	9.98	8.72	9.48	9.39	7.29	9.20	7.86	8.12	8.76	
14	3B TG	9.29	7.50	6.98	7.92	9.17	8.00	8.75	8.64	8.28	
13	4A OB	7.05	9.77	6.92	7.91	7.36	6.82	9.99	8.06	7.99	
12	4B OB	13.76	6.51	9.79	10.02	8.80	7.48	6.83	7.70	8.86	
12	4B RD	11.65	10.93	7.00	9.86	10.56	11.56	7.32	9.81	9.84	
13	4D RD	8.42	11.28	8.70	9.47	9.36	5.48	10.18	8.34	8.90	
12	4D TG	9.10	5.00	7.42	7.17	9.66	6.07	7.49	7.74	7.46	
12	4D TG	10.94	7.67	8.48	9.03	10.00	6.44	5.63	7.36	8.19	
14	5A OB	13.42	8.38	5.38	9.06	6.45	10.03	8.86	8.45	8.75	
14	5A TG	7.54	5.54	7.55	6.88	9.06	7.65	7.07	7.93	7.40	
15	5B OB	10.42	7.61	9.92	9.32	7.12	9.45	5.48	7.35	8.33	
12	5B RD	9.13	7.65	9.25	8.68	4.52	7.45	7.29	6.42	7.55	
14	5B RD	12.56	8.10	9.95	10.20	6.39	8.16	7.88	7.48	8.84	
13	5B TG	5.92	7.99	8.85	7.59	9.00	7.86	11.77	9.54	8.57	

$ANEXO\ 3$ GRADOS DE CALIDAD PARA EL ENSAYO DE MOLDURADO

DEFECTOS EN EL ENSAYO DE MOLDURADO

Nombre Común Nombre Cientifico Col de Monte

Tetrorchidium rubrivenium poeppig

Procedencia Oxapampa
Fiecutor Iris Plaza Ar

Fecha Velocidad de Giro (rpm) 30/01/2006 3750

Ejecutor Iris Plaza Arce

													DEFE	CTOS											
	0		(Grano A	rrancad	0				Grano /	Astillado				(Grano L	evantad	0				Grano	Velloso		
%	ğ	-	orte Dob	le	C	orte Sim	ole	C	orte Dob	le		orte Sim	ole	C	orte Dob	le	C	orte Simp	ole	С	orte Dob	le	C	orte Simp	le
C.H.	CODIG	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado
16	1B OB	12	М	3	3	S	2	10	М	3	3	S	2	0	S	1	7	M	3	15	S	2	3	S	2
14	1B RD	10	S	2	0	S	1	10	S	2	0	S	1	0	S	1	0	S	1	5	S	2	0	S	1
13	1D RD	7	S	2	1	S	2	10	S	2	0	S	1	3	S	2	0	S	1	15	S	2	0	S	1
12	1D TG	8	F	4	20	F	4	40	F	4	40	F	4	1	M	2	5	M	3	10	S	2	0	S	1
14	1D TG	9	F	4	5	S	2	20	S	2	30	М	3	0	S	1	0	S	1	20	S	2	5	S	2
17	1E OB	4	F	3	5	F	4	80	S	3	20	М	3	6	F	4	0	S	1	40	S	3	0	S	1
12	2A RD	2	M	2	15	М	3	7	S	2	2	S	2	1	S	2	0	S	1	15	S	2	5	S	2
12	2A RD	8	S	2	9	M	3	7	S	2	0	S	1	0	S	1	1	S	2	5	S	2	3	S	2
11	2B OB	2	F	3	4	S	2	50	M	3	30	S	2	2	F	3	0	S	1	10	S	2	0	S	1
14	2B OB	11	M	3	15	М	3	50	S	3	25	М	3	0	S	1	2	M	2	10	S	2	5	S	2
12	2B TG	10	M	3	5	F	4	15	М	3	10	S	2	2	M	2	1	S	2	30	S	2	5	S	2
13	2B TG	7	S	2	6	M	3	7	M	3	2	М	2	2	S	2	1	S	2	6	S	2	2	S	2
14	3A OB	15	М	3	10	S	2	25	F	4	0	S	1	4	F	3	0	S	1	10	S	2	0	S	1
14	3A OB	10	M	3	20	M	3	5	M	3	10	F	4	0	S	1	3	S	2	2	S	2	5	S	2
10	3A RD	50	S	3	5	М	3	25	М	3	5	S	2	0	S	1	0	S	1	15	S	2	5	S	2
16	3D RD	20	М	3	5	F	4	25	S	2	5	S	2	0	S	1	1	S	2	5	S	2	3	S	2
14	3D TG	20	S	2	10	F	4	7	F	4	10	F	4	0	S	1	3	M	2	3	S	2	10	S	2
15	3D TG	15	М	3	12	F	4	20	S	2	20	F	4	2	S	2	0	S	1	10	S	2	10	S	2
11	4B OB	15	S	2	8	M	3	15	М	3	5	М	3	3	М	2	2	S	2	25	S	2	5	S	2
10	4C RD	25	М	3	7	F	4	20	М	3	15	F	4	2	М	2	1	S	2	20	S	2	10	S	2
10	4D OB	15	М	3	7	M	3	50	М	3	1	S	2	1	S	2	0	S	1	10	S	2	2	S	2
11	4D RD	12	М	3	4	F	3	30	S	2	40	М	3	2	М	2	7	S	2	10	S	2	3	S	2
14	4D TG	8	М	3	10	F	4	15	М	3	50	S	3	0	S	1	3	М	2	5	S	2	10	S	2
14	4D TG	25	М	3	7	F	4	20	М	3	30	М	3	0	S	1	0	S	1	30	S	2	25	S	2
12	5B OB	10	М	3	15	S	2	40	М	3	5	S	2	4	F	3	0	S	1	25	S	2	0	S	1
14	5B RD	12	М	3	3	F	3	30	S	2	10	S	2	1	М	2	0	S	1	25	S	2	5	S	2
14	5B TG	20	М	3	10	F	4	25	F	4	20	F	4	4	М	2	0	S	1	15	S	2	15	S	2
14	5C OB	11	М	3	15	F	4	50	S	3	50	S	3	0	S	1	1	S	2	20	S	2	10	S	2
11	5C RD	3	М	2	10	F	4	10	S	2	15	S	2	0	S	1	0	S	1	3	S	2	5	S	2
15	5C TG	10	М	3	7	S	2	25	S	2	20	М	3	0	S	1	2	М	2	20	S	2	20	S	2
				•	•	•										•	•								

GRADOS DE CALIDAD DE LOS DEFECTOS EN EL MOLDURADO

Nombre Común

Nombre Científico

Col de Monte
Tetrorchidium rubrivenium poeppig

Procedencia

Oxapampa

Fecha Velocidad de Giro (rpm) 30/01/2006 3750

Ejecutor

Iris Plaza Arce

Ejecut	.01		IIIS FIA	za Arce					CALIFIC	246101	vI								
		GB	ΔΝΟ Δ	RRANC	:ADO	GE	RANO A	STILL			ANO L	FVΔNIT	ΔΠΩ	G	RANO	VELLO	SO	1	
%	Q		ADO		ADO	GRA					ADO		ADO		ADO		50		P
ů,	ωDIGO			DOMINANTE		111	SIMPLE	DOMINANTE				DOMINANTE				DOMINANTE		DOMINANTE	CALIDAD
Ŋ	8	DOBLE	SIMPLE	Ž	Е	DOBLE	€	Ž	E	DOBLE	SIMPLE	⋛	E	DOBLE	SIMPLE	₹	E	Σ	8
			ਲ	8				8				8				8			Ŭ
		Ċ	Ŋ	Δ		C.	Ŋ			Ŋ	J	Δ		Ċ	Ŋ	Δ			
16	1B OB	3	2	3	3	3	2	3	2.6	1	3	3	2	2	2	2	1.2	3.00	R
14	1B RD	2	1	2	2	2	1	2	1.8	1	1	1	1	2	1	2	1.2	2.00	В
13	1D RD	2	2	2	2	2	1	2	1.8	2	1	2	1.5	2	1	2	1.2	2.00	В
12	1D TG	4	4	4	4	4	4	4	3.4	2	3	3	2	2	1	2	1.2	4.00	М
14	1D TG	4	2	4	4	2	3	3	2.6	1	1	1	1	2	2	2	1.2	4.00	М
17	1E OB	3	4	4	4	3	3	3	2.6	4	1	4	2.5	3	1	3	1.4	4.00	M
12	2A RD	2	3	3	3	2	2	2	1.8	2	1	2	1.5	2	2	2	1.2	3.00	R
12	2A RD	2	3	3	3	2	1	2	1.8	1	2	2	1.5	2	2	2	1.2	3.00	R
11	2B OB	3	2	3	3	3	2	3	2.6	3	1	3	2	2	1	2	1.2	3.00	R
14	2B OB	3	3	3	3	3	3	3	2.6	1	2	2	1.5	2	2	2	1.2	3.00	R
12	2B TG	3	4	4	4	3	2	3	2.6	2	2	2	1.5	2	2	2	1.2	4.00	M
13	2B TG	2	3	3	3	3	2	3	2.6	2	2	2	1.5	2	2	2	1.2	3.00	R
14	3A OB	3	2	3	3	4	1	4	3.4	3	1	3	2	2	1	2	1.2	3.40	R
14	3A OB	3	3	3	3	3	4	4	3.4	1	2	2	1.5	2	2	2	1.2	3.40	R
10	3A RD	3	3	3	3	3	2	3	2.6	1	1	1	1 -	2	2	2	1.2	3.00	R
16	3D RD	3	4	4	4	2	2	2	1.8	1	2	2	1.5	2	2	2	1.2	4.00	M
14	3D TG	2	4	4	4	4	4	4	3.4	1	2	2	1.5	2	2	2	1.2	4.00	M
15	3D TG	3	4	4	4	2	4	4	3.4	2	1	2	1.5	2	2	2	1.2	4.00	M
11	4B OB 4C RD	2	3	3	3	3	3 4	3	2.6	2	2	2	1.5	2	2	2	1.2	3.00	R M
10	4D OB	3	3	3	3	3	2	3	3.4 2.6	2	1	2	1.5 1.5	2	2	2	1.2 1.2	4.00 3.00	
10	4D OB	3	3	3	3	2	3	3	2.6	2	2	2	1.5	2	2	2	1.2	3.00	R R
14	4D RD	3	4		4	3	3	3	2.6	1	2	2	1.5	2	2	2	1.2	4.00	M
14	4D TG	3	4	4	4	3	3	3	2.6	1	1	1	1.5	2	2	2	1.2	4.00	M
12	5B OB	3	2	3	3	3	2	3	2.6	3	1	3	2	2	1	2	1.2	3.00	R
14	5B RD	3	3	3	3	2	2	2	1.8	2	1	2	1.5	2	2	2	1.2	3.00	R
14	5B TG	3	4	4	4	4	4	4	3.4	2	1	2	1.5	2	2	2	1.2	4.00	М
14	5C OB	3	4	4	4	3	3	3	2.6	1	2	2	1.5	2	2	2	1.2	4.00	M
11	5C RD	2	4	4	4	2	2	2	1.8	1	1	1	1.5	2	2	2	1.2	4.00	M
15	5C TG	3	2	3	3	2	3	3	2.6	1	2	2	1.5	2	2	2	1.2	3.00	R
10	JU 10	J		J	י	_	٥	٥	۷.۵		_		د.			_	1.4	3.00	

DEFECTOS EN EL ENSAYO DE MOLDURADO

Nombre Común Nombre Cientifico Col de Monte

Tetrorchidium rubrivenium poeppig

Procedencia Oxapampa

Ejecutor Iris Plaza Arce

Fecha Velocidad de Giro (rpm) 30/01/2006 7414

										_			DEFE	CTOS											
. 0					rrancad					Grano A							evantad						Velloso		
%		_	orte Dob	le		orte Simp	ole	_	orte Dob	le		orte Simp	ole	_	orte Dob	le		orte Simp	ole	_	orte Dob	le	_	orte Simp	le
C.H.	CODIGO	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado
16	1B OB	10	S	2	3	S	2	7	М	3	3	S	2	0	S	1	0	S	1	8	S	2	2	S	2
14	1B RD	4	S	2	8	S	2	10	S	3	5	М	3	0	S	1	10	M	3	7	S	2	5	S	2
13	1D RD	4	S	2	2	S	2	15	M	3	3	S	2	0	S	1	2	S	2	10	S	2	3	S	2
12	1D TG	10	S	2	10	S	2	20	M	3	12	M	3	0	S	1	0	S	1	30	S	2	5	S	2
14	1D TG	5	M	3	5	М	3	10	М	3	3	S	2	5	M	3	0	S	1	10	S	2	5	S	2
17	1E OB	2	М	2	7	S	2	7	М	3	15	М	3	1	S	2	0	S	1	15	S	2	10	S	2
12	2A RD	13	S	2	3	S	2	8	S	2	4	S	2	0	S	1	0	S	1	15	S	2	5	S	2
12	2A RD	7	S	2	0	S	1	5	S	2	0	S	1	2	S	2	0	S	1	10	S	2	2	S	2
11	2B OB	8	М	3	1	S	2	30	М	3	0	S	1	2	S	2	1	S	2	30	S	2	5	S	2
14	2B OB	4	S	2	3	S	2	25	F	4	2	S	2	0	S	1	2	S	2	5	S	2	3	S	2
12	2B TG	10	S	2	6	S	2	10	S	2	7	S	2	1	S	2	3	S	2	10	S	2	3	S	2
13	2B TG	8	S	2	7	S	2	4	М	2	5	S	2	0	S	1	0	S	1	5	S	2	2	S	2
14	3A OB	7	М	3	3	М	2	20	F	4	50	F	4	0	S	1	2	S	2	5	S	2	5	S	2
14	3A OB	8	S	2	2	S	2	6	М	3	10	S	2	3	F	3	0	S	1	3	S	2	0	S	1
10	3A RD	20	S	2	5	S	2	15	S	2	0	S	1	1	S	2	0	S	1	15	S	2	0	S	1
16	3D RD	15	S	2	1	S	2	8	М	3	2	S	2	0	S	1	1	S	2	5	S	2	0	S	1
14	3D TG	7	М	3	10	М	3	5	М	3	15	F	4	0	S	1	0	S	1	0	S	1	10	S	2
15	3D TG	15	М	3	15	М	3	30	М	3	20	М	3	0	S	1	0	S	1	10	S	2	10	S	2
11	4B OB	10	S	2	7	S	2	7	S	2	20	S	2	0	S	1	2	М	2	12	S	2	10	S	2
10	4C RD	25	S	2	7	М	3	25	S	2	15	М	3	0	S	1	2	S	2	20	S	2	5	S	2
10	4D OB	4	S	2	2	S	2	3	S	2	7	S	2	0	S	1	4	S	2	3	S	2	3	S	2
11	4D RD	10	F	4	4	S	2	15	М	3	2	S	2	2	S	2	0	S	1	10	S	2	3	S	2
14	4D TG	1	М	2	7	S	2	10	М	3	5	S	2	0	S	1	0	S	1	5	S	2	10	S	2
14	4D TG	10	S	2	5	S	2	8	М	3	10	М	3	0	S	1	0	S	1	10	S	2	3	S	2
12	5B OB	20	S	2	13	М	3	15	S	2	15	S	2	1	М	2	0	S	1	15	S	2	10	S	2
14	5B RD	8	S	2	3	S	2	8	F	4	2	S	2	0	S	1	0	S	1	10	S	2	3	S	2
14	5B TG	10	М	3	5	М	3	10	М	3	10	F	4	10	F	4	0	S	1	5	S	2	3	S	2
14	5C OB	7	М	3	0	S	1	15	М	3	0	S	1	0	S	1	0	S	1	15	S	2	0	S	1
11	5C RD	30	S	2	4	S	2	5	S	2	15	S	2	0	S	1	0	S	1	0	S	1	5	S	2
15	5C TG	7	М	3	5	М	3	10	S	2	3	S	2	3	F	3	0	S	1	5	S	2	3	S	2

GRADOS DE CALIDAD DE LOS DEFECTOS EN EL MOLDURADO

Nombre Común

Procedencia

5C TG

1.8

Col de Monte

Nombre Científico

Tetrorchidium rubrivenium poeppig

Oxapampa

Fecha Velocidad de Giro (rpm) 30/01/2006

Ejecutor Iris Plaza Arce CALIFICACION DOMINANTE GRANO ARRANCADO GRANO ASTILLADO GRANO LEVANTADO GRANO VELLOSO % GRADO GRADO GRADO GRADO DOMINANTE DOMINANTE DOMINANTE DOMINANTE SIMPLE DOBLE Ï SIMPLE SIMPLE Ε Ε Ε Ε Ö Ö Ċ Ö Q 1B OB 2.6 1.2 2.60 R 1B RD 2.6 1.2 2.60 R 1D RD 1.5 2.60 2.6 1.2 R 1D TG 2.6 1.2 2.60 R 1D TG 2.6 1.2 3.00 R 1E OB 2.6 1.5 1.2 2.60 R 2A RD 1.8 1.2 2.00 В 2A RD 1.8 1.5 В 1.2 2.00 2B OB 1.5 R 2.6 1.2 3.00 2B OB 3.4 1.5 1.2 3.40 R 2B TG 1.8 1.5 1.2 2.00 В 2B TG 1.8 1.2 2.00 В 3A OB 1.5 3.4 1.2 3.40 R 3A OB 2.6 1.2 2.60 R 3A RD 1.8 1.5 1.2 2.00 В 3D RD R 2.6 1.5 1.2 2.60 3D TG 3.40 3.4 1.2 R 3D TG 2.6 1.2 3.00 R 4B OB 1.8 1.5 1.2 2.00 В 4C RD 2.6 1.5 1.2 3.00 R 4D OB 1.8 1.5 1.2 2.00 В 4D RD 2.6 М 1.5 1.2 4.00 4D TG R 2.6 1.2 2.60 4D TG 2.6 1.2 2.60 R 5B OB 1.8 1.5 1.2 3.00 R 5B RD 3.4 3.40 R 1.2 5B TG 3.4 2.5 1.2 3.40 R 5C OB 2.6 1.2 3.00 R 5C RD 1.8 1.2 2.00 В

3.00

1.2

R

$ANEXO\ 4$ GRADOS DE CALIDAD PARA EL ENSAYO DE TALADRADO

DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre Común
Nombre Científico

Col de Monte

Tetrorchidium rubrivenium poeppig

Procedencia Oxapampa
Ejecutor Iris Plaza Arce

Fecha <u>16/02/2006</u>

Datos de la Broca 1/2" Ø para Metal

 Carga
 30 Kg

 Velocidad de Giro (rpm)
 760

Ejecu	tor		Iris Plaza Arce	2							Velocidad de G	Giro (rpm)	760					
		uo									EFECTOS							
. 0	0	Penetracion (seg)				Grano	Astillado							Ruptura	de Grano			
C.H. %	coblgo	Pene (seg)		Entrac	da			Salida	ı			Entr	ada			Sal	ida	
0	CC	Tiem. de	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Profundidad (mm)	Extensión	Gravedad	Grado	Profundidad (mm)
15	1A TG	0.93	50	S	3	1.88	5	S	2	1.26	5	S	2	0.64	10	S	2	0.74
16	1A TG	0.99	10	S	2	1.51	30	M	3	2.63	20	S	2	0.74	5	S	2	0.85
15	1D RD	0.83	7	S	2	0.59	5	M	3	2.58	5	S	2	0.34	10	М	3	2.07
15	1D RD	0.86	20	S	2	1.48	10	М	3	4.54	10	S	2	0.32	10	М	3	1.28
15	1E OB	0.97	2	S	2	0.24	30	M	3	3.06	0	S	1	0.00	10	S	2	0.71
16	1E OB	0.84	10	S	2	1.46	30	S	2	1.58	3	S	2	0.62	10	S	2	0.57
	2A OB	0.99	40	S	3	1.34	30	S	2	1.39	40	F	5	3.08	15	M	3	2.37
16	2A OB	0.94	0	S	1	0.00	40	S	3	1.61	5	S	2	0.17	30	S	2	0.24
12	2B RD	0.97	5	S	2	1.72	30	M	3	4.98	5	S	2	0.71	10	M	3	1.54
12	2B RD	0.94	25	М	3	4.09	50	M	4	4.69	3	M	2	2.33	10	S	2	0.92
11	2B TG	0.81	30	M	3	2.77	25	М	3	2.52	15	M	3	1.60	5	S	2	0.28
13	2B TG	0.84	30	M	3	3.96	15	S	2	1.56	10	S	2	0.67	20	M	3	1.24
	3A OB	1.29	2	S	2	0.52	10	M	3	2.97	0	S	1	0.00	15	M	3	1.22
14	3A OB	1.02	0	S	1	0.00	5	S	2	1.56	25	M	3	1.45	10	M	3	2.47
13	3D RD	0.97	40	М	3	6.41	70	М	4	4.18	25	M	3	1.25	5	M	3	1.33
	3D RD	0.84	25	М	3	3.68	40	М	4	4.26	10	S	2	0.74	5	S	2	0.80
17	3D TG	1.13	10	S	2	0.89	0	S	1	0.00	20	M	3	1.24	10	М	3	1.64
	3D TG	0.97	5	S	2	1.18	5	S	2	1.23	20	M	3	2.08	10	M	3	1.81
	4B RD	0.94	25	М	3	3.60	50	М	4	3.95	0	S	1	0.00	5	М	3	1.15
	4B RD	0.96	50	М	3	2.10	50	М	4	4.23	0	S	1	0.00	5	S	2	0.63
11	4B TG	0.98	5	М	3	2.49	5	М	3	2.17	20	M	3	1.39	25	М	3	1.14
11	4B TG	0.95	5	M	3	2.90	10	S	2	1.49	5	M	3	1.71	20	M	3	1.50
	4D OB	0.88	20	М	3	2.18	10	М	3	2.07	10	M	3	1.72	15	М	3	1.22
	4D OB	1.04	10	М	3	3.70	70	М	4	3.10	10	М	3	1.03	10	М	3	1.68
	5A OB	0.86	20	М	3	4.24	20	М	3	6.96	10	М	3	1.50	15	М	3	1.73
	5A OB	1.09	30	М	3	2.49	60	М	4	4.95	10	S	2	0.97	10	М	3	1.21
	5A TG	0.86	50	М	3	6.78	80	М	4	6.97	10	S	2	0.39	0	S	1	0.00
	5A TG	0.87	40	S	3	1.97	50	М	4	2.30	5	М	3	1.44	10	S	2	0.95
	5B RD	0.91	3	S	2	1.66	30	S	2	1.97	10	М	3	1.50	20	М	3	2.12
12	5B RD	0.84	10	М	3	3.06	10	М	3	2.18	15	М	3	1.26	10	М	3	1.33

GRADOS DE CALIDAD PARA LOS DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre	Común	Col de Mo	onte						Fecha		16/02/2006	
Nombre	Científico	Tetrorchic	dium rubriver	nium poeppi	g				Diámetro de I	oroca	13mm Meta	al
Procede	ncia	Oxapamp	а						Carga		30 Kg.	
Ejecutor		Iris Plaza	Arce						Velocidad An	gular	760	
		_				CALIFIC	CACION				Ш	
%	Я	ğ. Çe			A I						1 5 1	P
- '	\geq	em c netrac (seg)		Grand	Astillado			Ruptur	a de grano		JŽ∣	Ď
C.H.	ODIGO:	Tiem de Penetracion (seg)		GRADO				GRADO			DOMINANTE	CALIDAD
	O	_ &	ENTRADA	SALIDA	PROMEDIO	E	ENTRADA	SALIDA	PROMEDIO	E	Ш	
15	1A TG	0.93	3	2	2.50	2.05	2	2	2.00	2.00	2.05	В
16	1A TG	0.99	2	3	2.50	2.05	2	2	2.00	2.00	2.05	В
15	1D RD	0.83	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
15	1D RD	0.86	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
15	1E OB	0.97	2	3	2.50	2.05	1	2	1.50	1.50	2.05	В
16	1E OB	0.84	2	2	2.00	1.70	2	2	2.00	2.00	2.00	В
15	2A OB	0.99	3	2	2.50	2.05	5	3	4.00	4.00	4.00	M
16	2A OB	0.94	1	3	2.00	1.70	2	2	2.00	2.00	2.00	В
12	2B RD	0.97	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
12	2B RD	0.94	3	4	3.50	2.75	2	2	2.00	2.00	2.75	R
11	2B TG	0.81	3	3	3.00	2.40	3	2	2.50	2.50	2.50	В
13	2B TG	0.84	3	2	2.50	2.05	2	3	2.50	2.50	2.50	В
13	3A OB	1.29	2	3	2.50	2.05	1	3	2.00	2.00	2.05	В
14	3A OB	1.02	1	2	1.50	1.35	3	3	3.00	3.00	3.00	R
13	3D RD	0.97	3	4	3.50	2.75	3	3	3.00	3.00	3.00	R
17	3D RD	0.84	3	4	3.50	2.75	2	2	2.00	2.00	2.75	R
17	3D TG	1.13	2	1	1.50	1.35	3	3	3.00	3.00	3.00	R
17	3D TG	0.97	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
14	4B RD	0.94	3	4	3.50	2.75	1	3	2.00	2.00	2.75	R
14	4B RD	0.96	3	4	3.50	2.75	1	2	1.50	1.50	2.75	R
11	4B TG	0.98	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
11	4B TG	0.95	3	2	2.50	2.05	3	3	3.00	3.00	3.00	R
13	4D OB	0.88	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
13	4D OB	1.04	3	4	3.50	2.75	3	3	3.00	3.00	3.00	R
14	5A OB	0.86	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
16	5A OB	1.09	3	4	3.50	2.75	2	3	2.50	2.50	2.75	R
14	5A TG	0.86	3	4	3.50	2.75	2	1	1.50	1.50	2.75	R
15	5A TG	0.87	3	4	3.50	2.75	3	2	2.50	2.50	2.75	R
12	5B RD	0.91	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
12	5B RD	0.84	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R

DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre Común
Nombre Científico

Col de Monte
Tetrorchidium rubrivenium poeppig

Procedencia Ejecutor Iris Plaza Arce

16/02/2006 1/2" Ø para Metal Fecha Datos de la Broca

Carga 30 Kg Velocidad de Giro (rpm) 1405 30 Kg

		g)								DE	FECTOS							
%	GO	Tiem. de Penetracion (seg)				Grano /	Astillado							Ruptura	de Grano			
C.H.	CODIG	Tiem. etracio		Entra	da			Salid	a			Entr	ada			Sal	ida	
		Pene	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Profundidad (mm)	Extensión	Gravedad	Grado	Profundidad (mm)
15	1A TG	0.66	10	S	2	1.44	20	М	3	2.53	10	S	2	0.66	20	S	2	0.85
16	1A TG	0.58	50	S	3	1.61	10	М	3	3.29	10	S	2	0.65	5	М	3	1.01
15	1D RD	0.54	30	S	2	1.52	5	М	3	2.06	3	S	2	0.35	15	S	2	0.76
15	1D RD	0.55	15	М	3	2.72	10	S	2	2.08	5	S	2	0.80	10	М	3	1.34
15	1E OB	0.68	15	М	3	2.25	5	М	3	2.88	10	М	3	1.66	5	S	2	0.76
16	1E OB	0.56	10	S	2	1.34	10	М	3	4.57	15	S	2	0.88	0	S	1	0.00
15	2A OB	0.51	10	S	2	1.64	5	М	3	3.33	10	М	3	1.40	10	М	3	1.84
16	2A OB	0.69	15	М	3	2.40	20	М	3	3.25	20	М	3	1.54	5	М	3	1.64
12	2B RD	0.59	50	S	3	0.61	50	M	3	2.12	0	S	1	0.00	3	S	2	0.86
12	2B RD	0.65	30	М	3	2.89	30	М	3	2.34	20	М	3	1.08	5	S	2	0.56
11	2B TG	0.55	5	S	2	0.70	5	S	2	1.26	10	М	3	1.24	20	M	3	1.63
13	2B TG	0.54	50	М	4	2.45	20	М	3	2.65	5	S	2	0.50	10	М	3	1.28
13	3A OB	0.66	5	S	2	0.80	10	S	2	1.92	5	S	2	0.66	10	М	3	1.34
14	3A OB	0.53	10	S	2	1.40	5	S	2	1.53	5	М	3	1.01	5	М	3	1.12
13	3D RD	0.56	0	S	1	0.00	5	S	2	1.12	5	S	2	0.42	15	S	2	0.89
17	3D RD	0.66	20	М	3	2.04	70	F	5	9.01	20	S	2	0.71	0	S	1	0.00
17	3D TG	0.63	10	S	2	1.21	10	S	2	0.90	50	S	3	1.00	25	М	3	2.26
17	3D TG	0.58	15	М	3	2.85	80	М	4	5.07	3	S	2	0.51	0	S	1	0.00
14	4B RD	0.54	30	М	3	3.44	20	М	3	4.32	5	М	3	1.11	5	M	3	1.41
14	4B RD	0.51	50	М	4	2.98	25	M	3	3.96	10	S	2	1.00	5	M	3	1.65
11	4B TG	0.59	30	S	2	1.92	15	S	2	1.92	10	М	3	1.06	10	M	3	1.57
11	4B TG	0.57	5	S	2	1.21	75	S	3	1.60	5	S	2	0.62	25	M	3	1.11
13	4D OB	0.69	10	S	2	1.04	25	M	3	3.00	10	M	3	1.65	5	M	3	1.10
13	4D OB	0.61	20	М	3	3.06	80	М	4	4.18	10	М	3	1.17	5	M	3	1.42
14	5A OB	0.54	10	М	3	2.53	25	М	3	5.66	0	S	1	0.00	5	S	2	0.86
16	5A OB	0.56	10	S	2	1.08	30	М	3	3.81	5	S	2	0.54	5	M	3	1.23
14	5A TG	0.51	30	М	3	7.17	10	М	3	2.87	5	М	3	1.24	20	S	2	0.74
15	5A TG	0.54	20	S	2	1.27	50	M	3	2.77	5	М	3	1.40	0	S	1	0.00
12	5B RD	0.58	10	S	2	0.51	10	М	3	3.65	0	S	1	0.00	15	S	2	0.74
12	5B RD	0.66	15	S	2	1.52	10	М	3	3.78	10	М	3	1.52	10	S	2	0.74

GRADOS DE CALIDAD PARA LOS DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre Común
Nombre Científico
Procedencia
Ejecutor
Oxapampa
Iris Plaza Arce

Fecha 16/02/2006 Diámetro de broca 13mm Metal Carga 30 Kg. Velocidad Angular 1405

	0	Ę				CALIFIC	CACION				Ę	
% :	ODIGO	Tiem. de Penetracion (seg)		Grano	Astillado			Ruptura	a de grano		DOMINANTE	CALIDAD
C.H.	Ø	Tiem.c enetrac (seg)		GRADO		-		GRADO		_	Ø	7
	J	. 4	ENTRADA	SALIDA	PROMEDIO	E	ENTRADA	SALIDA	PROMEDIO	E	ED	
15	1A TG	0.66	2	3	2.50	2.05	2	2	2.00	2.00	2.05	В
16	1A TG	0.58	3	3	3.00	2.40	2	3	2.50	2.50	2.50	В
15	1D RD	0.54	2	3	2.50	2.05	2	2	2.00	2.00	2.05	В
15	1D RD	0.55	3	2	2.50	2.05	2	3	2.50	2.50	2.50	В
15	1E OB	0.68	3	3	3.00	2.40	3	2	2.50	2.50	2.50	В
16	1E OB	0.56	2	3	2.50	2.05	2	1	1.50	1.50	2.05	В
15	2A OB	0.51	2	3	2.50	2.05	3	3	3.00	3.00	3.00	R
16	2A OB	0.69	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
12	2B RD	0.59	3	3	3.00	2.40	1	2	1.50	1.50	2.40	В
12	2B RD	0.65	3	3	3.00	2.40	3	2	2.50	2.50	2.50	В
11	2B TG	0.55	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
13	2B TG	0.54	4	3	3.50	2.75	2	3	2.50	2.50	2.75	R
13	3A OB	0.66	2	2	2.00	1.70	2	3	2.50	2.50	2.50	В
14	за ов	0.53	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
13	3D RD	0.56	1	2	1.50	1.35	2	2	2.00	2.00	2.00	В
17	3D RD	0.66	3	5	4.00	3.10	2	1	1.50	1.50	3.10	R
17	3D TG	0.63	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
17	3D TG	0.58	3	4	3.50	2.75	2	1	1.50	1.50	2.75	R
14	4B RD	0.54	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
14	4B RD	0.51	4	3	3.50	2.75	2	3	2.50	2.50	2.75	R
11	4B TG	0.59	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
11	4B TG	0.57	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
13	4D OB	0.69	2	3	2.50	2.05	3	3	3.00	3.00	3.00	R
13	4D OB	0.61	3	4	3.50	2.75	3	3	3.00	3.00	3.00	R
14	5A OB	0.54	3	3	3.00	2.40	1	2	1.50	1.50	2.40	В
16	5A OB	0.56	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
14	5A TG	0.51	3	3	3.00	2.40	3	2	2.50	2.50	2.50	В
15	5A TG	0.54	2	3	2.50	2.05	3	1	2.00	2.00	2.05	В
12	5B RD	0.58	2	3	2.50	2.05	1	2	1.50	1.50	2.05	В
12	5B RD	0.66	2	3	2.50	2.05	3	2	2.50	2.50	2.50	В

DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre Común
Nombre CientíficoCol de MonteFecha16/02/2006Nombre CientíficoTetrorchidium rubrivenium poeppigDatos de la Broca1/2" Ø para Madera

 Procedencia
 Oxapampa
 Carga
 30 Kg

 Eiecutor
 Iris Plaza Arce
 Velocidad de Giro (rom)
 760

Ejecuto	r	Iris Plaza	Arce										Velocidad	de Giro (rpm)	760			
		_								D	EFECTOS	1						
%	GO	de cicior				Grano A	Astillado							Ruptura o	de Grano			
C.H.	CODIGO	Tiem. de enetracion (seq)		Entra	da			Salid	a			Ent	rada			Sa	lida	
0	Ö	Per	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Profundidad (mm)	Extensión	Gravedad	Grado	Profundidad (mm)
15	1A TG	0.88	80	М	4	6.65	15	S	2	1.35	25	F	4	3.02	15	М	3	1.17
16	1A TG	0.74	60	М	3	4.59	15	S	2	1.98	0	S	1	0.00	30	М	3	1.77
15	1D RD	0.81	40	S	3	1.89	25	М	3	2.45	25	F	4	3.38	10	М	3	1.28
15	1D RD	0.84	100	F	5	9.21	95	М	4	7.49	0	S	1	0.00	10	М	3	1.72
15	1E OB	0.79	75	М	4	6.88	15	М	3	4.67	0	S	1	0.00	10	S	2	0.28
16	1E OB	0.87	75	М	4	5.05	30	М	3	5.42	0	S	1	0.00	25	М	3	1.46
15	2A OB	0.89	95	F	5	8.93	30	S	2	1.58	20	М	3	2.21	10	M	3	2.15
16	2A OB	0.82	50	М	3	6.36	10	S	2	1.04	30	S	2	0.67	30	М	3	1.21
12	2B RD	0.78	80	F	5	8.21	10	М	3	6.33	10	F	4	3.12	25	М	3	1.12
12	2B RD	0.70	95	М	4	7.36	25	М	3	4.78	10	М	3	1.31	7	М	3	2.00
11	2B TG	0.71	30	М	3	2.67	10	S	2	1.04	25	F	4	2.97	50	М	3	2.02
13	2B TG	0.80	50	М	3	4.20	5	S	2	1.86	50	F	4	2.65	30	М	3	2.00
13	3A OB	0.82	60	М	3	7.16	5	S	2	1.26	10	F	4	3.08	10	М	3	2.00
14	3A OB	0.83	30	М	3	3.26	5	S	2	2.00	15	М	3	1.46	10	S	2	0.98
13	3D RD	0.86	80	М	4	6.23	50	М	3	4.44	5	S	2	0.87	15	М	3	1.82
17	3D RD	0.78	100	F	5	10.24	100	М	4	5.47	0	S	1	0.00	10	М	3	1.69
17	3D TG	0.75	35	F	4	8.16	20	М	3	2.09	10	М	3	2.00	20	М	3	1.68
17	3D TG	0.79	20	М	3	2.62	10	S	2	1.55	50	F	4	3.46	10	F	4	2.54
14	4B RD	0.81	50	F	4	10.73	15	М	3	3.31	10	М	3	1.45	10	М	3	1.72
14	4B RD	0.75	50	F	4	8.85	10	М	3	2.03	20	М	3	1.97	20	М	3	1.07
11	4B TG	0.72	15	М	3	3.49	15	S	2	1.44	50	F	4	3.16	30	S	2	0.67
11	4B TG	0.77	90	F	5	8.27	20	М	3	2.84	5	F	4	3.05	15	М	3	1.16
13	4D OB	0.84	90	F	5	8.97	70	М	4	4.59	10	S	2	0.78	15	М	3	2.39
13	4D OB	0.86	40	М	3	7.74	3	S	2	1.04	50	F	4	2.80	60	F	4	3.15
14	5A OB	0.81	100	F	5	8.69	20	М	3	5.73	15	М	3	1.99	20	М	3	2.14
16	5A OB	0.89	95	F	5	10.80	30	F	4	8.78	10	М	3	2.09	25	М	3	1.47
14	5A TG	0.72	80	F	5	9.14	20	М	3	3.15	20	F	4	3.54	15	М	3	2.24
15	5A TG	0.77	95	F	5	8.95	20	S	2	1.08	5	М	3	2.34	20	S	2	0.77
12	5B RD	0.74	60	М	3	3.96	15	М	3	2.70	20	F	4	3.43	15	F	4	2.70
12	5B RD	0.72	50	М	3	6.41	5	S	2	1.05	10	F	4	3.33	5	М	3	1.54

GRADOS DE CALIDAD PARA LOS DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre C	Común	Col de Mo	onte						Fecha		16/02/20	06
Nombre C	Científico	Tetrorchic	dium rubriveniu	ım poeppig	-				Diámetro de	broca	13mm Ma	adera
Proceden	cia	Oxapamp	а		_				Carga		30 Kg.	
Ejecutor		Iris Plaza	Arce		-				Velocidad An	gular	760	
		_				CALIFIC	ACION				Ш	
%	l &	Tiem. de Penetracion (seg)		Grano	Astillado			Ruptura	a de grano		DOMINANTE	Ð
L CH	cobigo	Tiem. de enetracio (seg)		GRADO				GRADO			₹	CALIDAD
Ċ	18	E E				E				Е	δ	Ϋ́
			ENTRADA	SALIDA	PROMEDIO		ENTRADA	SALIDA	PROMEDIO		Е	
15	1A TG	0.88	4	2	3.00	2.40	4	3	3.50	3.50	3.50	R
16	1A TG	0.74	3	2	2.50	2.05	1	3	2.00	2.00	2.05	В
15	1D RD	0.81	3	3	3.00	2.40	4	3	3.50	3.50	3.50	R
15	1D RD	0.84	5	4	4.50	3.45	1	3	2.00	2.00	3.45	R
15	1E OB	0.79	4	3	3.50	2.75	1	2	1.50	1.50	2.75	R
16	1E OB	0.87	4	3	3.50	2.75	1	3	2.00	2.00	2.75	R
15	2A OB	0.89	5	2	3.50	2.75	3	3	3.00	3.00	3.00	R
16	2A OB	0.82	3	2	2.50	2.05	2	3	2.50	2.50	2.50	В
12	2B RD	0.78	5	3	4.00	3.10	4	3	3.50	3.50	3.50	R
12	2B RD	0.70	4	3	3.50	2.75	3	3	3.00	3.00	3.00	R
11	2B TG	0.71	3	2	2.50	2.05	4	3	3.50	3.50	3.50	R
13	2B TG	0.80	3	2	2.50	2.05	4	3	3.50	3.50	3.50	R
13	3A OB	0.82	3	2	2.50	2.05	4	3	3.50	3.50	3.50	R
14	3A OB	0.83	3	2	2.50	2.05	3	2	2.50	2.50	2.50	В
13	3D RD	0.86	4	3	3.50	2.75	2	3	2.50	2.50	2.75	R
17	3D RD	0.78	5	4	4.50	3.45	1	3	2.00	2.00	3.45	R
17	3D TG	0.75	4	3	3.50	2.75	3	3	3.00	3.00	3.00	R
17	3D TG	0.79	3	2	2.50	2.05	4	4	4.00	4.00	4.00	М
14	4B RD	0.81	4	3	3.50	2.75	3	3	3.00	3.00	3.00	R
14	4B RD	0.75	4	3	3.50	2.75	3	3	3.00	3.00	3.00	R
11	4B TG	0.72	3	2	2.50	2.05	4	2	3.00	3.00	3.00	R
11	4B TG	0.77	5	3	4.00	3.10	4	3	3.50	3.50	3.50	R
13	4D OB	0.84	5	4	4.50	3.45	2	3	2.50	2.50	3.45	R
13	4D OB	0.86	3	2	2.50	2.05	4	4	4.00	4.00	4.00	М
14	5A OB	0.81	5	3	4.00	3.10	3	3	3.00	3.00	3.10	R
16	5A OB	0.89	5	4	4.50	3.45	3	3	3.00	3.00	3.45	R
14	5A TG	0.72	5	3	4.00	3.10	4	3	3.50	3.50	3.50	R
15	5A TG	0.77	5	2	3.50	2.75	3	2	2.50	2.50	2.75	R
12	5B RD	0.74	3	3	3.00	2.40	4	4	4.00	4.00	4.00	М
12	5B RD	0.72	3	2	2.50	2.05	4	3	3.50	3.50	3.50	R

DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre Común

Col de Monte

Tetrorchidium rubrivenium poeppig

Nombre Científico Procedencia

Oxapampa

Ejecutor

Iris Plaza Arce

Fecha

38764

Datos de la Broca

1/2" Ø para Madera

Carga 30 Kg Velocidad de Giro (rpm) 1405

		(ge								DI	EFECTOS							
%	GO	de on (se				Grano	Astillado							Ruptura o	de Grano			
C.H.	CODIG	Tiem. de etracion		Entrac	da			Salid	da			Ent	rada			Sa	alida	
	0	- Pene	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Ancho (mm)	Extensión	Gravedad	Grado	Profundidad (mm)	Extensión	Gravedad	Grado	Profundidad (mm)
15	1A TG	0.48	30	М	3	3.14	20	S	2	1.40	5	М	3	1.30	10	S	2	0.69
16	1A TG	0.49	50	М	3	3.74	50	М	3	5.34	30	F	4	2.73	0	S	1	0.00
15	1D RD	0.59	25	S	2	1.88	20	М	3	6.37	5	S	2	0.30	5	М	3	1.63
15	1D RD	0.55	20	S	2	1.89	10	М	3	4.35	3	S	2	0.51	7	М	3	1.33
15	1E OB	0.49	50	S	3	1.58	20	М	3	2.88	10	М	3	1.07	20	М	3	1.46
16	1E OB	0.57	30	M	3	2.72	20	S	2	1.60	0	S	1	0.00	15	М	3	2.05
15	2A OB	0.55	30	М	3	4.74	20	М	3	3.90	20	F	4	3.34	20	М	3	1.86
16	2A OB	0.58	40	М	3	2.32	5	S	2	1.93	10	М	3	1.21	35	М	3	1.52
12	2B RD	0.47	80	S	3	1.43	50	М	3	4.10	3	S	2	0.24	25	S	2	0.94
12	2B RD	0.48	50	S	3	1.46	10	S	2	1.40	0	S	1	0.00	15	F	4	2.55
11	2B TG	0.49	25	S	2	1.78	5	S	2	1.75	0	S	1	0.00	20	F	4	4.99
13	2B TG	0.41	25	S	2	1.50	15	S	2	1.33	15	М	3	1.02	20	М	3	1.67
13	3A OB	0.58	20	М	3	3.78	5	S	2	0.95	5	М	3	1.33	10	S	2	0.90
14	3A OB	0.54	60	М	3	2.40	20	S	2	1.38	10	М	3	1.22	15	М	3	1.59
13	3D RD	0.68	80	F	5	8.72	100	F	5	8.48	7	M	3	1.01	5	M	3	1.07
17	3D RD	0.54	90	M	4	6.33	80	М	4	6.32	10	S	2	0.76	20	М	3	2.01
17	3D TG	0.58	50	М	3	4.00	10	S	2	1.73	50	М	3	1.28	30	М	3	1.62
17	3D TG	0.53	10	M	3	2.99	5	S	2	1.62	5	F	4	2.99	30	М	3	1.03
14	4B RD	0.54	60	F	4	8.91	20	S	2	1.36	30	F	4	2.68	20	M	3	1.38
14	4B RD	0.44	25	М	3	3.48	10	М	3	4.09	15	М	3	1.35	25	S	2	0.65
11	4B TG	0.48	50	М	3	4.72	50	М	3	3.46	10	М	3	2.22	15	М	3	1.01
11	4B TG	0.43	40	M	3	5.78	15	S	2	1.88	10	M	3	1.62	10	S	2	0.66
13	4D OB	0.49	40	М	3	4.38	20	М	3	2.54	40	F	4	3.15	50	М	3	1.30
13	4D OB	0.51	30	М	3	5.79	30	М	3	2.96	20	М	3	1.15	15	F	4	4.07
14	5A OB	0.44	95	F	5	9.55	50	М	3	3.24	25	М	3	2.29	15	М	3	1.55
16	5A OB	0.45	95	F	5	11.43	25	M	3	2.17	5	M	3	1.04	25	М	3	1.76
14	5A TG	0.46	50	F	4	10.50	2	S	2	1.66	5	M	3	1.62	25	М	3	1.76
15	5A TG	0.56	40	M	3	3.88	50	М	3	2.84	10	S	2	0.77	10	S	2	0.84
12	5B RD	0.55	35	M	3	6.01	0	S	1	0.00	3	М	2	2.36	30	S	2	0.44
12	5B RD	0.57	50	F	4	9.81	2	S	2	1.87	2	M	2	2.30	10	S	2	0.46

GRADOS DE CALIDAD PARA LOS DEFECTOS EN EL ENSAYO DE TALADRADO

Nombre Nombre Procede Ejecutor	Científico ncia	Col de Mo Tetrorchio Oxapamp Iris Plaza	dium rubriveniu a	um poeppi <u>(</u>	9				Fecha Diámetro de Carga Velocidad An		16/02/200 13mm Ma 30 Kg. 1405	
	_	Ē				CALIFIC	CACION				E	
% 7	copidoc	Tiem. de Penetracion (seg)		Grand	Astillado			Ruptura	a de grano		DOMINANTE	CALIDAD
J.	ğ	Tien anet (se		GRADO		-		GRADO		_	VO	<u> </u>
	O	 	ENTRADA	SALIDA	PROMEDIO	E	ENTRADA	SALIDA	PROMEDIO	E	ED	
15	1A TG	0.48	3	2	2.50	2.05	3	2	2.50	2.50	2.50	В
16	1A TG	0.49	3	3	3.00	2.40	4	1	2.50	2.50	2.50	В
15	1D RD	0.59	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
15	1D RD	0.55	2	3	2.50	2.05	2	3	2.50	2.50	2.50	В
15	1E OB	0.49	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
16	1E OB	0.57	3	2	2.50	2.05	1	3	2.00	2.00	2.05	В
15	2A OB	0.55	3	3	3.00	2.40	4	3	3.50	3.50	3.50	R
16	2A OB	0.58	3	2	2.50	2.05	3	3	3.00	3.00	3.00	R
12	2B RD	0.47	3	3	3.00	2.40	2	2	2.00	2.00	2.40	В
12	2B RD	0.48	3	2	2.50	2.05	1	4	2.50	2.50	2.50	В
11	2B TG	0.49	2	2	2.00	1.70	1	4	2.50	2.50	2.50	В
13	2B TG	0.41	2	2	2.00	1.70	3	3	3.00	3.00	3.00	R
13	3A OB	0.58	3	2	2.50	2.05	3	2	2.50	2.50	2.50	В
14	3A OB	0.54	3	2	2.50	2.05	3	3	3.00	3.00	3.00	R
13	3D RD	0.68	5	5	5.00	3.80	3	3	3.00	3.00	3.80	M
17	3D RD	0.54	4	4	4.00	3.10	2	3	2.50	2.50	3.10	R
17	3D TG	0.58	3	2	2.50	2.05	3	3	3.00	3.00	3.00	R
17	3D TG	0.53	3	2	2.50	2.05	4	3	3.50	3.50	3.50	R
14	4B RD	0.54	4	2	3.00	2.40	4	3	3.50	3.50	3.50	R
14	4B RD	0.44	3	3	3.00	2.40	3	2	2.50	2.50	2.50	В
11	4B TG	0.48	3	3	3.00	2.40	3	3	3.00	3.00	3.00	R
11	4B TG	0.43	3	2	2.50	2.05	3	2	2.50	2.50	2.50	В
13	4D OB	0.49	3	3	3.00	2.40	4	3	3.50	3.50	3.50	R
13	4D OB	0.51	3	3	3.00	2.40	3	4	3.50	3.50	3.50	R
14	5A OB	0.44	5	3	4.00	3.10	3	3	3.00	3.00	3.50	R
16	5A OB	0.45	5	3	4.00	3.10	3	3	3.00	3.00	2.50	R
14	5A TG	0.46	4	2	3.00	2.40	3	3	3.00	3.00	3.00	R
15	5A TG	0.56	3	3	3.00	2.40	2	2	2.00	2.00	2.50	R
12	5B RD	0.55	3	1	2.00	1.70	2	2	2.00	2.00	3.50	В
12	5B RD	0.57	4	2	3.00	2.40	2	2	2.00	2.00	3.50	В

$ANEXO\ 5$ GRADOS DE CALIDAD PARA EL ENSAYO DE TORNEADO

DEFECTOS EN EL ENSAYO DE TORNEADO

N. Común Col de Monte Fecha: 24/01/2007

N. CientíficoTetrorchidium ruvribenium PoepigAngulo de Cuchilla35ºProcedenciaOxapampaVelocidad de Giro6000 rpm

Ejecutor Iris Plaza Arce

							D	EFECTOS								
N°de Árbol	Gran	no Arrancado	0	Grar	no Levantado	0	Gra	ano Velloso		Gr	ano Astillado)	Grand	o Comprimic	do	OBSERVACIONES
	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	
3A	0	S	1	80	М	4	0	S	1	10	М	3	0	S	1	Un plano inclinado quemado
4D	0	S	1	100	М	4	0	S	1	3	М	2	0	S	1	Cuatro planos inclinados quemados
1B	0	S	1	100	М	4	0	S	1	25	F	4	0	S	1	Un plano inclinado quemado
5B	0	S	1	80	М	4	0	S	1	10	М	3	0	S	1	Cuatro planos inclinados quemados
2B	0	S	1	20	F	4	0	S	1	25	F	4	0	S	1	Un plano inclinado quemado
3B	0	S	1	100	M	4	0	S	1	20	М	3	0	S	1	Un plano inclinado quemado
4A	0	S	1	20	M	3	0	S	1	15	М	3	0	S	1	Un plano inclinado quemado
1B	0	S	1	30	М	3	0	S	1	10	F	4	0	S	1	Un plano inclinado quemado
5A	0	S	1	10	F	4	0	S	1	10	М	3	0	S	1	Un plano inclinado quemado
2A	0	S	1	100	М	4	0	S	1	5	F	4	0	S	1	Un plano inclinado quemado

GRADOS DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE TORNEADO

N. ComúnCol de MonteFecha24/01/2007N. CientíficoTetrorchidium ruvribenium PoepigAngulo de Cuchilla35ºProcedenciaOxapampaVelocidad de Giro6000 rpm

Ejecutor Iris Plaza Arce

3OL					CALIFICA	CION						
DE ARBOL	GRA ARRAN		GRA ASTILI		GRAI LEVAN		GRA COMPR		GRAI VELLO		E DOMINANTE	CALIDAD
N° DE	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Ш	GRADO	Е		
3A	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
4D	1	1	2	1.9	4	3.4	1	1	1	1	3.4	Regular
1B	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo
5B	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
2B	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo
3B	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
4A	1	1	3	2.8	3	2.6	1	1	1	1	2.8	Regular
1B	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
5A	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
2A	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo

<u>DEFECTOS EN EL ENSAYO DE TORNEADO</u>

N. Común Col de Monte

N. Científico Tetrorchidium ruvribenium Poepig

Procedencia Oxapampa

Ejecutor Iris Plaza Arce

Fecha 24/01/2007Angulo de Cuchilla 35°

Velocidad de Giro 4000 rpm

100							DI	EFECTOS								
de Árb	Gran	no Arrancado)	Gra	no Levantado	0	Gr	rano Velloso		Gra	ano Astillado		Grand	Comprimido	0	OBSERVACIONES
N ° C	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	
5B	0	S	1	40	М	3	0	S	1	30	М	3	0	S	1	Un plano inclinado quemado
1B	0	S 1 40 M			3	0	S	1	25	F	4	0	S	1	Un plano inclinado quemado	
4B	0	S	1	100	М	4	0	S	1	12	F	4	0	S	1	Cuatro planos inclinados quemados
5E	0	S	1	90	М	4	0	S	1	25	М	3	0	S	1	Cuatro planos inclinados quemados
2B	0	S	1	50	М	3	0	S	1	30	F	4	0	S	1	Un plano inclinado quemado
4A	0	S	1	60	F	4	0	S	1	20	М	3	0	S	1	Un plano inclinado suavemente quemado
3B	0	S	1	40	М	3	0	S	1	13	М	3	0	S	1	Un plano inclinado suavemente quemado
3A	0	S	1	20	М	3	0	S	1	10	F	4	0	S	1	Un plano inclinado suavemente quemado
2A	0	S	1	30	F	4	0	S	1	20	М	3	0	S	1	Un plano inclinado quemado
5C	0	S	1	80	М	4	0	S	1	10	М	3	0	S	1	Cuatro planos inclinados quemados

GRADOS DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE TORNEADO

N. Común Col de Monte N. Científico Tetrorchidium ruvribenium Poepig Fecha Angulo de Cuchilla

24/01/2007 35º

Procedencia

Velocidad de Giro

4000 rpm

Oxapampa Ejecutor

Iris Plaza Arce

ARBOL					CALIFICA	CION						
DE ARE	GRA ARRAN		GRA ASTILI		GRAI LEVAN		GRA COMPR		GRA VELLO		E DOMINANTE	CALIDAD
° N	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Е		
5B	1	1	3	2.8	3	2.6	1	1	1	1	2.8	Regular
1B	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
4B	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo
5E	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
2B	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
4A	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
3B	1	1	3	2.8	3	2.6	1	1	1	1	2.8	Regular
3A	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
2A	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
5C	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular

<u>DEFECTOS EN EL ENSAYO DE TORNEADO</u>

N. Común Col de Monte

Tetrorchidium ruvribenium Poepig

Procedencia Oxapampa

N. Científico

Ejecutor Iris Plaza Arce

Fecha 24/01/2007

Angulo de Cuchilla
Velocidad de Giro
2500 rpm

	ı															
							D	EFECTOS								
N°de Árbol	Gran	no Arrancado)	Grar	no Levantado	ı	Gra	ano Velloso		Gra	no Astillado		Grand) Comprimido)	OBSERVACIONES
	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	
1E	0	S	1	100	М	4	0	S	1	20	F	4	0	S	1	Un plano inclinado quemado
3D	0	S	1	80	М	4	0	S	1	30	М	3	0	S	1	Un plano inclinado quemado
2B	0	S	1	25	F	4	0	S	1	25	F	4	0	S	1	
5C	0	S	1	50	М	3	0	S	1	20	F	4	0	S	1	
3D	0	S	1	10	F	4	0	S	1	10	F	4	0	S	1	
4C	0	S	1	80	М	4	0	S	1	20	М	3	0	S	1	Un plano inclinado quemado
4B	0	S	1	40	F	4	0	S	1	20	М	3	0	S	1	
3B	0	S	1	20	М	3	0	S	1	10	М	3	0	S	1	
1B	0	S	1	15	М	3	0	S	1	25	F	4	0	S	1	
1D	0	S	1	70	М	4	0	S	1	25	F	4	0	S	1	Un plano inclinado suavemente quemado

GRADOS DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE TORNEADO

N. ComúnCol de MonteFecha24/01/2007N. CientíficoTetrorchidium ruvribenium PoepigAngulo de Cuchilla35ºProcedenciaOxapampaVelocidad de Giro2500 rpmEjecutorIris Plaza Arce

ARBOL					CALIFICA	CION						
DE ARE	GRA ARRAN		GRA ASTILI		GRAI LEVAN		GRAI COMPR		GRA VELLO		E DOMINANTE	CALIDAD
» N	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Е		
1E	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo
3D	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
2B	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo
5C	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
3D	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo
4C	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
4B	1	1	3	2.8	4	3.4	1	1	1	1	3.4	Regular
3B	1	1	3	2.8	3	2.6	1	1	1	1	2.8	Regular
1B	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
1D	1	1	4	3.7	4	3.4	1	1	1	1	3.7	Malo

DEFECTOS EN EL ENSAYO DE TORNEADO

N. ComúnCol de MonteFecha24/01/2007N. CientíficoTetrorchidium ruvribenium PoepigAngulo de Cuchilla35ºProcedenciaOxapampaVelocidad de Giro1500 rpmEjecutorIris Plaza Arce

rbol							D	EFECTOS								IO N E 9
de Á	Gra	ano Arrancao	do	Gra	no Levantac	do	Gı	rano Velloso		Gr	ano Astillado)	Gra	no Comprim	ido	OBSERVACIONE
° Z	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	Extensión	Gravedad	Grado	OBSE
2B	0	S	1	40	F	4	0	S	1	30	F	4	10	S	2	
5C	0	S	1	50	F	4	0	S	1	2	M	2	20	S	2	
5A	1	S	2	40	F	4	0	S	1	15	F	4	10	S	2	
3D	2	S	2	30	F	4	0	S	1	10	F	4	0	S	1	
2B	1	S	2	35	F	4	0	S	1	10	F	4	5	S	2	
2B	3	S	2	30	M	3	0	S	1	15	M	3	5	S	2	
4D	0	S	1	50	М	3	0	S	1	20	F	4	0	S	1	
4A	0	S	1	40	M	3	0	S	1	15	F	4	0	S	1	
1D	3	S	2	60	М	3	0	S	1	20	F	4	1	S	2	
1E	0	S	1	30	M	3	0	S	1	20	F	4	5	S	2	

GRADOS DE CALIDAD DE LOS DEFECTOS EN EL ENSAYO DE TORNEADO

N. ComúnCol de MonteFecha24/01/2007N. CientíficoTetrorchidium ruvribenium PoepigAngulo de Cuchilla35ºProcedenciaOxapampaVelocidad de Giro1500 rpm

Ejecutor Iris Plaza Arce

ARBOL					CALIFICA	CION						
DE ARE	GRA ARRAN		GRA ASTILI		GRAI LEVAN		GRAI COMPR		GRA VELLO		E DOMINANTE	CALIDAD
°N	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Е	GRADO	Е		
2B	1	1	4	3.7	4	3.4	2	1.6	1	1	3.7	Malo
5C	1	1	2	1.9	4	3.4	2	1.6	1	1	3.4	Regular
5A	2	2	4	3.7	4	3.4	2	1.6	1	1	3.7	Malo
3D	2	2	4	3.7	4	3.4	1	1	1	1	3.7	Malo
2B	2	2	4	3.7	4	3.4	2	1.6	1	1	3.7	Malo
2B	2	2	3	2.8	3	2.6	2	1.6	1	1	2.8	Regular
4D	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
4A	1	1	4	3.7	3	2.6	1	1	1	1	3.7	Malo
1D	2	2	4	3.7	3	2.6	2	1.6	1	1	3.7	Malo
1E	1	1	4	3.7	3	2.6	2	1.6	1	1	3.7	Malo

$ANEXO\ 6$ GRADOS DE CALIDAD PARA EL ENSAYO DE LIJADO

GRADOS DE CALIDAD DE LOS DEFECTOS Y RUGOSIDAD EN EL ENSAYO DE LIJADO

Nombre Común

Col de Monte

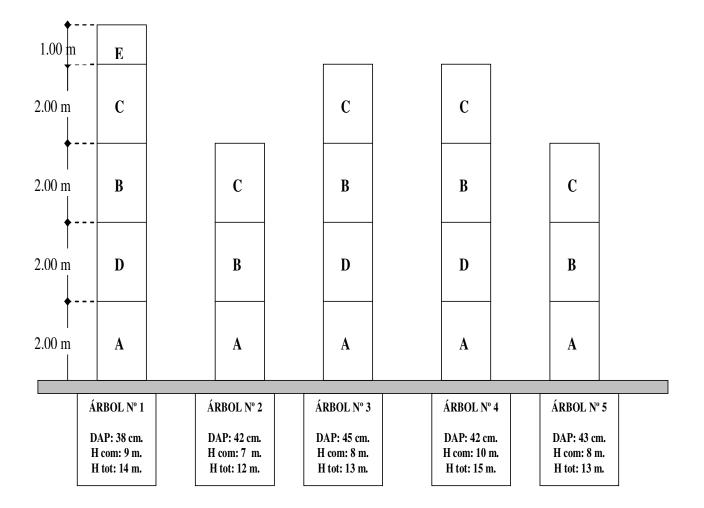
Nombre Científico

Tetrorchidium rubrivenium poeppig

Procedencia Oxapampa
Ejecutor Iris Plaza Arce

	0						CALIF	ICACION						
%	<u> </u>						LIJA	Nº 100						
C.H.	codigo		Vellosida	ad			Rayado			E dom		Rι	ıgosidadd	
	0	Extensión %	Gravedad	Grado	E	Extensión %	Gravedad	Grado	E	E dom	Ra1	Ra2	Ra3	Prom
12	1B TG	60	S	3	3	0	S	1	1	3.00	6.61	7.22	7.26	7.03
12	1D TG	21	S	2	2	0	S	1	1	2.00	7.00	6.75	6.76	6.84
12	1E OB	25	S	2	2	0	S	1	1	2.00	6.50	7.39	6.14	6.68
13	1E OB	21	М	3	3	0	S	1	1	3.00	7.09	7.41	7.34	7.28
12	1E RD	25	F	4	4	0	S	1	1	4.00	6.37	5.57	6.70	6.21
12	1E RD	40	F	4	4	0	S	1	1	4.00	7.38	7.34	7.24	7.32
15	2A OB	70	S	3	3	0	S	1	1	3.00	7.57	7.44	7.91	7.64
14	2B OB	33	М	3	3	0	S	1	1	3.00	6.84	7.22	5.72	6.59
12	2B RD	30	F	4	4	0	S	1	1	4.00	6.78	7.46	6.82	7.02
13	2B RD	92	М	4	4	0	S	1	1	4.00	7.74	7.21	7.72	7.56
12	2B TG	90	S	3	3	0	S	1	1	3.00	7.46	7.35	6.78	7.20
12	2B TG	95	М	4	4	0	S	1	1	4.00	7.92	7.19	7.38	7.50
12	3A OB	50	F	4	4	0	S	1	1	4.00	7.25	7.24	7.72	7.40
11	3A RD	75	М	4	4	0	S	1	1	4.00	7.05	7.99	7.06	7.37
12	3A RD	71	S	3	3	0	S	1	1	3.00	7.93	6.92	7.01	7.29
15	3A TG	70	М	4	4	0	S	1	1	4.00	6.85	7.95	7.42	7.41
16	3B OB	50	М	3	3	0	S	1	1	3.00	7.88	7.56	7.78	7.74
14	3B TG	100	S	3	3	0	S	1	1	3.00	7.17	6.91	6.87	6.98
13	4A OB	100	М	4	4	0	S	1	1	4.00	7.53	7.37	7.54	7.48
12	4B OB	11	S	2	2	0	S	1	1	2.00	7.06	7.56	7.10	7.24
12	4B RD	18	S	2	2	0	S	1	1	2.00	7.38	7.02	7.13	7.18
13	4D RD	80	М	4	4	0	S	1	1	4.00	7.93	7.69	7.79	7.80
12	4D TG	5	М	3	3	0	S	1	1	3.00	7.73	7.89	7.59	7.74
12	4D TG	95	S	3	3	0	S	1	1	3.00	7.74	7.22	6.90	7.29
14	5A OB	50	F	4	4	0	S	1	1	4.00	7.83	7.93	7.88	7.88
14	5A TG	100	S	3	3	0	S	1	1_	3.00	5.43	6.02	6.84	6.10
15	5B OB	95	S	3	3	0	S	1	1	3.00	7.42	7.67	7.40	7.50
12	5B RD	40	М	3	3	0	S	1	1	3.00	7.30	6.13	6.89	6.77
14	5B RD	50	F	4	4	0	S	1	1	4.00	7.36	7.16	7.84	7.45
13	5B TG	40	S	3	3	0	S	1	1	3.00	7.72	7.87	7.15	7.58

TEMPERATURA, TIEMPO Y ENSUCIAMIENTO EN EL LIJADO


Nombre Común

<u>Col de Mon</u>te <u>Tetrorchidi</u>um rubrivenium poeppig Nombre Científico

Procedencia Oxapampa Iris Plaza Arce Ejecutor

CH %	COD	LIJA Nº 60				LIJA № 100				ENSUCIAMIENTO
		Tº Lija	Tº Madera	t (min)	t (seg)	Tº Lija	Tº Madera	t (min)	t (seg)	ENSUCIAIVIIENTO
12	1B TG					47	36	4	59	Bajo
12	1D TG					43	38	3	40	Medio
12	1E OB					45	34	4	57	Medio
13	1E OB					48	36	4	49	Alto
12	1E RD					46	36	4	50	Bajo
12	1E RD					44	35	4	41	Alto
15	2A OB					46	33	3	50	Alto
14	2B OB					50	40	5	48	Alto
12	2B RD					48	31	5	50	Medio
13	2B RD					46	32	5	40	Alto
12	2B TG					44	36	5	47	Medio
12	2B TG					46	39	4	48	Alto
12	3A OB	41	38	5	12	41	38	3	52	Medio
11	3A RD					49	37	4	40	Bajo
12	3A RD					46	36	5	40	Medio
15	3A TG					49	38	4	49	Alto
16	3B OB	50	30	5	30	50	40	4	52	Bajo
14	3B TG					41	30	4	49	Alto
13	4A OB					43	35	4	58	Alto
12	4B OB					48	37	4	54	Alto
12	4B RD					45	36	4	53	Medio
13	4D RD	52	35	5	18	52	40	5	47	Medio
12	4D TG	39	32	4	55	39	32	3	51	Medio
12	4D TG					45	38	4	47	Alto
14	5A OB	44	36	5	8	44	36	3	56	Medio
14	5A TG					45	37	3	40	Medio
15	5B OB					48	30	4	41	Bajo
12	5B RD					52	41	4	46	Alto
14	5B RD	46	36	5	12	46	36	4	55	Medio
13	5B TG					46	35	5	42	Medio

ANEXO 7 CARACTERISTICA DE LOS ÁRBOLES

ANEXO 8 CONSTANCIA DE DETERMINACION BOTANICA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE CIENCIAS FORESTALES: FAX: 349-2041, TEF: 349-5647 / 349-5669, Anexo .203 / 244, APDO. 12 -056 LA MOLINA LIMA PERU

CONSTANCIA DE DETERMINACIÓN BOTÁNICA

A solicitud de la señorita Iris Plaza Arce ex alumna de la Facultad de Ciencias Forestales UNAL se proporciona la identidad del especimen indicado, el cual se halla depositado en el Herbario Forestal (MOL), con la sigla consignada.

Zona de colección

: Oxapampa

Colector

: Isris Plaza A. (Tesis)

SIGLA

NOMBRE CIENTÍFICO

NOMBRE

FAMILIA

COMUN

01-IPA

Tetrochidium rubrivenium

Col de monte

Euphorbiaceae

Poeppig

Determinador:

Carlos Reynel Rodríguez Ph. D.

Profesor Principal Dpto. Manejo Forestal Director del Laboratorio de Dendrología Y Herbario Forestal UNALM (MOL)

La Molina, 22 de diciembre de 2008

* ROGAMOS A LOS USUARIOS DE LOS SERVICIOS DEL HERBARIO FORESTAL (MOL) TENER ESPECIAL CUIDADO EN TRANSCRIBIR CORRECTAMENTE LOS NOMBRES PROPORCIONADOS

ANEXO 9 DEFECTOS EN EL ENSAYO DE CEPILLADO

FOTO 1: DEFECTO DE GRANO ARRANCADO EN EL ENSAYO DE CEPILLADO

FOTO 2: DEFECTO DE GRANO ASTILLADO EN EL ENSAYO DE CEPILLADO

ANEXO 10 DEFECTOS EN EL ENSAYO DE MOLDURADO

FOTO 1: DEFECTO DE GRANO ARRANCADO FUERTE EN EL ENSAYO DE MOLDURADO

FOTO 2: DEFECTO DE GRANO ARRANCADO MODERADO EN EL ENSAYO DE MOLDURADO

FOTO 3: DEFECTO DE GRANO ARRANCADO SUAVE EN EL ENSAYO DE MOLDURADO

FOTO 4: DEFECTO DE GRANO ASTILLADO FUERTE EN EL ENSAYO DE MOLDURADO

FOTO 5: DEFECTO DE GRANO ASTILLADO MODERADO EN EL ENSAYO DE MOLDURADO

FOTO 6: DEFECTO DE GRANO ASTILLADO SUAVE EN EL ENSAYO DE MOLDURADO

FOTO 7: DEFECTO DE GRANO LEVANTADO FUERTE EN EL ENSAYO DE MOLDURADO

FOTO 8: DEFECTO DE GRANO LEVANTADO MODERADO EN EL ENSAYO DE MOLDURADO

FOTO 9: DEFECTO DE GARNO LEVANTADO SUAVE EN EL ENSAYO DE MOLDURADO

FOTO 10: DEFECTO DE GRANO VELLOSO FUERTE EN EL ENSAYO DE MOLDURADO

FOTO 11: DEFECTO DE GRANO VELLOSO MODERADO EN EL ENSAYO DE MOLDURADO

FOTO 12: DEFECTO DE GRANO VELLOSO SUAVE EN EL ENSAYO DE MOLDURADO

ANEXO 11 DEFECTOS EN EL ENSAYO DE TALADRADO

FOTO 1: DEFECTO RUPTURA DE GRANO **FUERTE**

FOTO 2: DEFECTO MODERADO

FOTO 3: DEFECTO RUPTURA DE GRANO RUPTURA DE GRANO **SUAVE**

FOTO 4: DEFECTO GRANO ASTILLADO GRANO **FUERTE**

FOTO 5: DEFECTO GRANO ASTILLADO MODERADO

FOTO 6: DEFECTO GRANO ASTILLADO **SUAVE**

ANEXO 12 DEFECTOS EN EL ENSAYO DE TORNEADO

FOTO 1: DEFECTO GRANO ARRANCADO

FOTO 2: DEFECTO GRANO ASTILLADO

FOTO 3: DEFECTO GRANO LEVANTADO

FOTO 4: ARISTAS QUEMADAS POR FRICCION

ANEXO 13 DEFECTOS EN EL ENSAYO DE LIJADO

FOTO 1: DEFECTO DE GRANO VELLOSO FUERTE EN EL ENSAYO DE LIJADO

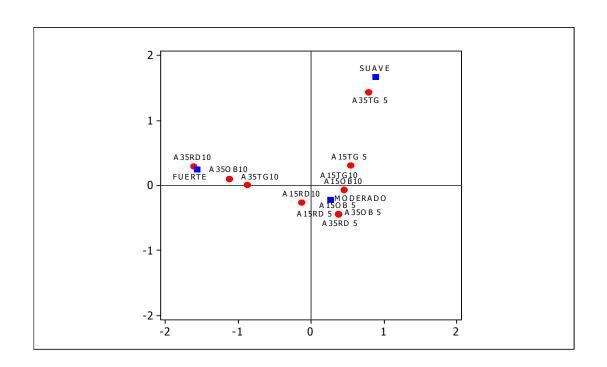
FOTO 2: DEFECTO DE GRANO VELLOSO MODERADO EN EL ENSAYO DE LIJADO

FOTO 3: DEFECTO DE GRANO VELLOSO SUAVE EN EL ENSAYO DE LIJADO

ANEXO 14

ANALISIS DE CORRESPONDENCIA SIMPLE DE DEFECTOS EN LOS ENSAYOS DE TRABAJABILIDAD

CEPILLADO - GRANO ARRANCADO

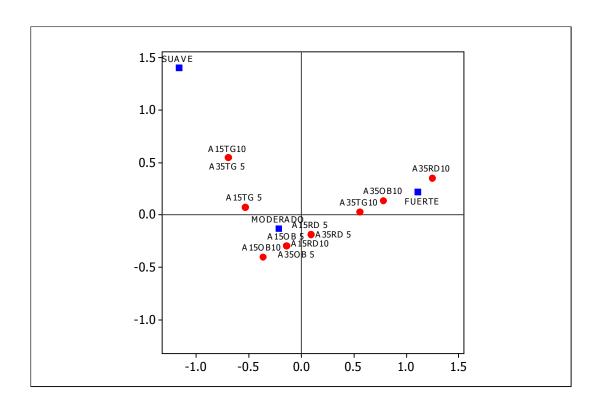

Simple Correspondence Analysis:

FUERTE

Analysis of Contingency Table Axis Inertia Proportion Cumulative Histogram 0.6802 **************** 0.5463 0.6802 1 1.0000 ********* 2 0.2568 0.3198 Total 0.8032 Row Contributions Component 1 Component 2 TD Name Qual Mass Inert Coord Corr Contr Coord Corr Contr A35TG10 1.000 0.083 0.079 -0.873 1.000 0.116 0.017 0.000 0.000 A35RD10 1.000 0.083 0.281 -1.620 0.969 0.400 0.292 0.031 0.028 -1.122 0.991 0.192 A350B10 1.000 0.083 0.132 0.109 0.009 0.004 4 A35TG 5 1.000 0.083 0.277 0.792 0.235 0.096 1.428 0.765 0.662 A35RD 5 1.000 0.083 0.035 0.373 0.418 0.021 -0.441 0.582 0.063 0.083 0.035 0.373 0.418 A350B 5 1.000 0.021 -0.4410.582 0.063 A15TG10 1.000 0.083 0.022 0.457 0.979 0.032 -0.067 0.021 0.001 8 A15RD10 1.000 0.083 0.008 -0.257 0.809 0.021 -0.125 0.191 0.002 9 A150B10 1.000 0.083 0.022 0.457 0.979 0.032 -0.067 0.021 0.001 0.541 0.757 0.045 10 A15TG 5 1.000 0.083 0.040 0.307 0.243 0.031 11 A15RD 5 1.000 0.083 0.035 0.373 0.418 0.021 -0.441 0.582 0.063 12 A150B 5 1.000 0.083 0.035 0.373 0.418 0.021 -0.4410.582 0.063 Column Contributions Component 2 Component 1 ID Name Qual Mass Inert Coord Corr Contr Coord Corr Contr 1 SUAVE 1.000 0.075 0.335 0.896 0.223 0.110 1.670 0.777 0.815 -0.223 0.396 2 MODERADO 1.000 0.750 0.118 0.276 0.604 0.104 0.146

1.000 0.175 0.547 -1.566 0.977 0.785

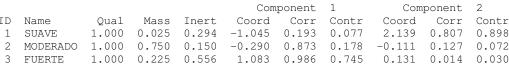
0.241 0.023 0.040

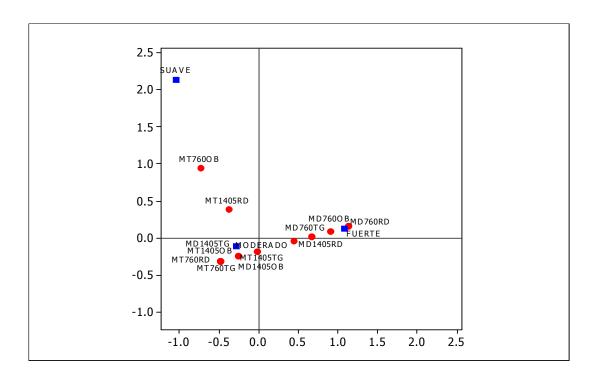

CEPILLADO - GRANO ASTILLADO

Simple Correspondence Analysis:

Analysis of Contingency Table Axis Inertia Proportion Cumulative Histogram 0.7618 0.7618 1 0.3309 ****** 2 0.1035 0.2382 1.0000 0.4343 Total Row Contributions Component 1 Component 2 ID Name Qual Mass Inert Coord Corr Contr Coord Corr Contr 1 A35TG10 1.000 0.083 0.058 0.551 0.997 0.076 0.028 0.003 0.001 2 A35RD10 1.000 0.083 0.321 1.245 0.926 0.390 0.353 0.074 0.100 A350B10 1.000 0.083 0.121 0.782 0.971 0.154 0.136 0.029 0.015 A35TG 5 1.000 0.083 0.152 -0.706 0.627 0.126 0.544 0.373 0.239 A35RD 5 1.000 0.083 0.008 0.088 0.180 0.002 -0.1890.820 0.029 A350B 5 1.000 0.083 0.021 -0.143 0.188 0.005 -0.297 0.812 0.071 A15TG10 1.000 0.083 0.152 -0.706 0.627 0.126 0.544 0.373 0.239 A15RD10 1.000 0.083 0.021 -0.1430.188 0.005 -0.2970.812 9 A150B10 1.000 0.083 0.058 -0.374 0.460 -0.405 0.540 0.132 0.035 10 A15TG 5 1.000 0.083 0.057 -0.540 0.984 0.073 0.069 0.016 0.004 11 A15RD 5 1.000 0.083 0.008 0.088 0.180 0.002 -0.1890.820 0.029 12 A150B 5 1.000 0.083 0.021 -0.143 0.188 0.005 -0.297 0.812 0.071

Column Contributions

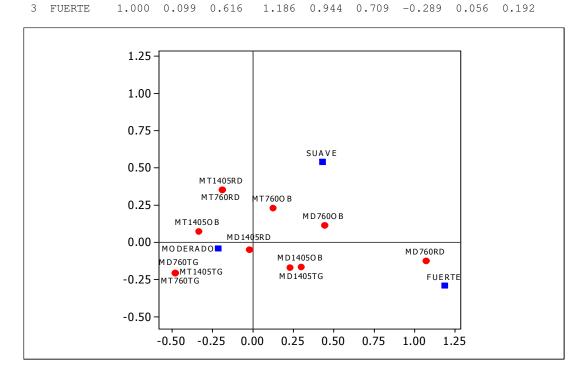

					Com	ponent	1	Com	ponent	2
ID	Name	Qual	Mass	Inert	Coord	Corr	Contr	Coord	Corr	Contr
1	SUAVE	1.000	0.042	0.318	-1.170	0.412	0.172	1.397	0.588	0.786
2	MODERADO	1.000	0.767	0.112	-0.215	0.731	0.107	-0.130	0.269	0.126
3	FUERTE	1.000	0.192	0.570	1.115	0.963	0.720	0.218	0.037	0.088



TALADRADO - ENTRADA

GRANO ASTILLADO

Simple Correspondence Analysis: Analysis of Contingency Table Axis Inertia Proportion Cumulative Histogram ********* 1 0.3541 0.7355 0.7355 2 0.1274 0.2645 1.0000 Total 0.4815 Row Contributions Component 1 Component 2 Coord Corr Contr Coord Corr Contr ID Name Qual Mass Inert 1 MT760TG 1.000 0.083 0.058 -0.487 0.712 0.056 -0.310 0.288 0.063 1.000 0.083 0.058 -0.487 0.712 0.056 -0.310 0.288 0.063 2 MT760RD 3 MT7600B 1.000 0.083 0.252 -0.741 0.378 0.129 0.951 0.622 0.592 MT1405TG 1.000 0.083 0.022 -0.257 0.529 0.015 -0.242 0.471 0.038 0.052 -0.384 0.494 0.035 0.388 0.506 MT1405RD 1.000 0.083 0.099 0.083 0.058 -0.487 0.712 6 MT14050B 1.000 0.056 -0.310 0.288 0.063 7 MD760TG 1.000 0.083 0.077 0.666 0.998 0.104 0.028 0.002 0.001 8 MD760RD 1.127 0.979 1.000 0.083 0.225 0.299 0.164 0.021 0.017 MD7600B 1.000 0.083 0.141 0.897 0.989 0.189 0.096 9 0.011 0.006 10 MD1405TG 1.000 0.083 0.022 -0.257 0.529 0.015 -0.2420.471 0.038 11 MD1405RD 1.000 0.083 0.033 0.435 0.992 0.045 -0.039 0.008 0.001 12 MD14050B 1.000 0.083 0.005 -0.026 0.022 0.000 -0.174 0.978 0.020 Column Contributions Component 1 Component ID Name Qual Coord Corr Contr Coord Corr Mass Inert


TALADRADO - ENTRADA

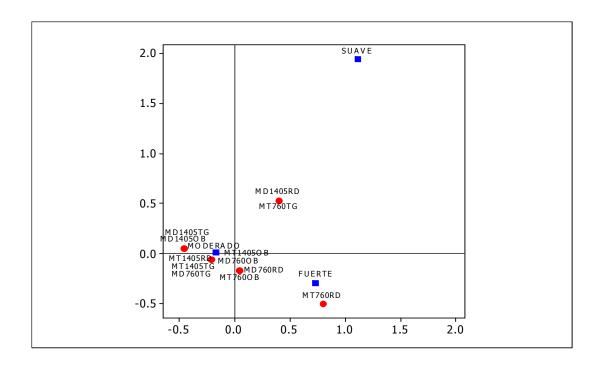
RUPTURA DE GRANO

Simple Correspondence Analysis:

Analysis of Contingency Table

Ax Tot	1 0.196 2 0.043	7 3	0.8195 0.1805		tive 8195 0000	Histogra ******				
Row Contributions										
					C	omponent	t 1	Con	nponent	2
ID	Name	Qual	Mass	Inert	Coor	d Cori	r Conti	r Coord	Corr	Contr
1	MT760TG	1.000	0.083	0.094	-0.48	1 0.845	5 0.097	7 -0.206	0.155	0.081
2	MT760RD	1.000	0.083	0.055	-0.19	0 0.225	5 0.015	0.353	0.775	0.238
3	MT7600B	1.000	0.083	0.024	0.12	5 0.223	1 0.00	7 0.235	0.779	0.105
4	MT1405TG	1.000	0.083	0.094	-0.48	1 0.845	5 0.097	7 -0.206	0.155	0.081
5	MT1405RD	1.000	0.083	0.055	-0.19	0 0.225	5 0.015	0.353	0.775	0.238
6	MT14050B	1.000	0.083	0.041	-0.33	6 0.954	4 0.04	7 0.074	0.046	0.010
7	MD760TG	1.000	0.083	0.094	-0.48	1 0.845	5 0.097	7 -0.206	0.155	0.081
8	MD760RD	1.000	0.083	0.400	1.07	2 0.98	7 0.482	2 -0.121	0.013	0.028
9	MD7600B	1.000	0.083	0.071	0.44	1 0.935	5 0.082	2 0.116	0.065	0.026
10	MD1405TG	1.000	0.091	0.030	0.22	5 0.644	4 0.023	3 -0.167	0.356	0.059
11	MD1405RD	1.000	0.083	0.001	-0.02	0 0.169	9 0.000	-0.045	0.831	0.004
12	MD14050B	1.000	0.083	0.039	0.29	5 0.766	6 0.03	7 -0.163	0.234	0.051
Column Contributions										
					С	omponent	t 1	Con	nponent	2
ID	Name	Qual	Mass	Inert	Coor	d Cori	r Conti	r Coord	Corr	Contr
1	SUAVE	1.000	0.116	0.229	0.43	1 0.390	0.109	9 0.539	0.610	0.775
2	MODERADO	1.000	0.785	0.155	-0.21	3 0.963	1 0.182	2 -0.043	0.039	0.033

TALADRADO - SALIDA


GRANO ASTILLADO

Simple Correspondence Analysis:

Analysis of Contingency Table Axis Inertia Proportion Cumulative 0.1293 0.6297 0.6297 1 1.0000 ********** 0.0761 0.3703 0.2054 Total Row Contributions Component 1 Component ID Name Qual Mass Inert Coord Corr Contr Coord Corr 1 MT760TG 1.000 0.083 0.181 0.401 0.360 0.104 0.534 0.640 0.313 -0.495 0.278 2 MT760RD 0.411 1.000 0.083 0.358 0.798 0.722 0.268 MT7600B 1.000 0.083 0.012 0.045 0.072 0.001 -0.162 0.928 -0.206 MT1405TG 1.000 0.083 0.018 0.941 0.027 -0.0510.059 0.003 -0.206 MT1405RD 1.000 0.083 0.018 0.941 0.027 -0.051 0.059 0.003 6 MT14050B 1.000 0.083 0.018 -0.206 0.941 0.027 -0.051 0.059 0.003 1.000 0.083 0.018 -0.206 0.941 0.027 -0.051 0.059 0.003 MD760TG MD760RD 1.000 0.083 0.012 0.045 0.072 0.001 0.928 -0.1620.029 9 MD7600B 1.000 0.083 0.012 0.045 0.072 0.001 -0.1620.928 0.029 10 MD1405TG 1.000 0.083 0.086 -0.457 0.983 0.134 0.059 0.017 0.004 11 MD1405RD 1.000 0.083 0.181 0.401 0.360 0.104 0.534 0.640 0.313 12 MD14050B 1.000 0.083 0.086 -0.457 0.983 0.134 0.059 0.017 0.004

Column Contributions

					Component		1	Component		2
ID	Name	Qual	Mass	Inert	Coord	Corr	Contr	Coord	Corr	Contr
1	SUAVE	1.000	0.017	0.406	1.116	0.249	0.160	1.938	0.751	0.823
2	MODERADO	1.000	0.825	0.109	-0.164	0.990	0.172	0.016	0.010	0.003
3	FUERTE	1.000	0.158	0.485	0.738	0.867	0.667	-0.289	0.133	0.174

ANEXO 15 ANALISIS DE VARIANCIA DE LOS ENSAYOS DE TRABAJABILIDAD

15.1. Análisis de Variancia del Ensayo de Cepillado para la madera de *Tetrorchidium rubrivenium* de la zona de Oxapampa

Fuente de variabilidad	GI	Suma de cuadrados	Suma de cuadrados ajustados	Cuadrado medio ajustado	Valor de f	Significancia
Plano de corte (bloque)	2	7.8207	7.8207	3.9103	14.5	Significativo
Angulo de corte	1	19.8453	19.8453	19.8453	73.57	Significativo
Velocidad de alimentación	1	10.5613	10.5613	10.5613	39.16	Significativo
Interacción ángulo-velocidad	1	9.747	9.747	9.747	36.14	Significativo
Error	114	30.7493	30.7493	0.2697		
TOTAL	119	78.7237			_	

15.2. Análisis de Variancia del Ensayo de Moldurado para la madera de *Tetrorchidium rubrivenium* de la zona de Oxapampa

Fuente de variabilidad	GI	Suma de cuadrados	Suma de cuadrados ajustados	Cuadrado medio ajustado	Valor de f	Significancia
Plano de corte (bloque)	2	1.7973	1.7973	0.8987	2.9100	No significativo
Velocidad de giro	1	6.9360	6.9360	6.9360	22.4500	Significativo
Error	54	16.6800	16.6800	0.3089		
TOTAL	59	26.3893			•	

15.3. Análisis de Variancia del Ensayo de Taladrado para la madera de *Tetrorchidium rubrivenium* de la zona de Oxapampa

Fuente de variabilidad	GI	Suma de cuadrados	Suma de cuadrados ajustados	Cuadrado medio ajustado	Valor de f	Significancia
Planos de corte (bloque)	2	0.0849	0.0849	0.0424	0.2200	No significativo
Tipo de broca	1	4.3892	4.3892	4.3892	22.6900	Significativo
Velocidad de giro	1	1.6685	1.6685	1.6685	8.6300	Significativo
Interacción tipo de broca- velocidad	1	0.5400	0.5400	0.5400	2.7900	No significativo
Error	114	22.0497	22.0497	0.1934		
TOTAL	119	28.7323			_	

15.4. Análisis de Variancia del Ensayo de Torneado para la madera de *Tetrorchidium rubrivenium* de la zona de Oxapampa

Fuente de variabilidad	GI	Suma de cuadrados	Sumatoria de cuadrados ajustados	Valor de f	Significancia
Velocidad de giro	3	0.1800	0.0600	0.6600	No significativo
Error	36	3.2760	0.0910		
TOTAL	39	3.4560			

15.5. Análisis de Variancia del Ensayo de Lijado para la madera de *Tetrorchidium rubrivenium* de la zona de Oxapampa

Fuente de variabilidad	GI	Suma de cuadrados	Sumatoria de cuadrados ajustados	Valor de f	Significancia
Plano de corte	2	1.6670	0.8330	1.8400	No significativo
Error	27	12.2000	0.4520		
TOTAL	29	13.8670		-	