UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO MAESTRÍA EN CIENCIAS AMBIENTALES

"ESTIMACIÓN DE LA BIOMASA AÉREA DE CUATRO ESPECIES FORESTALES EN MANCHAY, PACHACAMAC - LIMA, A PARTIR DE UN MÉTODO NO DESTRUCTIVO"

Presentada por:

HÉCTOR ALVA ABANTO

TESIS PARA OPTAR EL GRADO DE MAESTRO

MAGISTER SCIENTIAE EN CIENCIAS AMBIENTALES

Lima - Perú

2020

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO

MAESTRÍA EN CIENCIAS AMBIENTALES

"ESTIMACIÓN DE LA BIOMASA AÉREA DE CUATRO ESPECIES FORESTALES EN MANCHAY, PACHACAMAC - LIMA, A PARTIR DE UN MÉTODO NO DESTRUCTIVO"

TESIS PARA OPTAR EL GRADO DE MAESTRO MAGISTER SCIENTIAE

Presentada por:

HÈCTOR ALVA ABANTO

Sustentada y aprobada ante el siguiente jurado:

Víctor Miyashiro Kiyn Firmado digitalmente por Víctor Miyashiro Kiyan

Fecha: 2020.07.10 00:03:26 -05'00'

Mg.Sc. Víctor Miyashiro Kiyan **PRESIDENTE**

Mg.Sc. Víctor Barrena Arroyo

ASESOR

Mg.Sc. Jorge Chávez Salas MIEMBRO

Lic.Rer.Reg. Víctor Aguilar Vidangos **MIEMBRO**

DEDICATORIA

A Dios, por permitirme la vida y el haber podido llegar hasta acá, acompañándome y protegiéndome en todo momento.

A mis padres Olga y Héctor, por su amor, sacrificio y apoyo incondicional en cada paso que doy en mi vida.

A mi hermana Maribel, por su cariño, consejos y paciencia y a mi querida Luana.

A mi querida familia y amigos, quienes me quieren, apoyan y por la confianza que cada uno de ellos deposita en mí.

AGRADECIMIENTOS

Quiero agradecer en primer lugar a Dios, por darme salud, protección y sabiduría y por permitirme poder brindar esta enorme satisfacción a mis seres queridos.

A mis padres Olga Abanto y Héctor Alva y a mi hermana Maribel Alva, porque siempre me brindaron su apoyo y aliento durante todo el desarrollo del presente trabajo.

A mi patrocinador el Ing. Víctor barrena, quien me dio inmensurable, permanente y desinteresada ayuda y dedicación durante todo el proceso de elaboración de la presente Tesis.

Al departamento de Manejo Forestal de la Facultad de Ciencias Forestales, por facilitarme instrumentos y herramientas para permitirme desarrollar la fase de campo. De igual manera al departamento de Industria Forestal de la Facultad de Ciencias Forestales, por permitirme utilizar el laboratorio de propiedades físico mecánicas de la madera,

A los técnicos Vicente y Johnny de los laboratorios de la Facultad de Ciencias Forestales.

Un agradecimiento especial a los miembros de la comunidad campesina Collanac donde se llevó a cabo la presente investigación, por su colaboración en el desarrollo de la misma.

Al profesor Jorge Chávez, quien con su orientación contribuyó a mejorar el presente trabajo.

A Elvis Verástegui y Miguel Ángel Montoya, por su apoyo permanente durante toda la fase de campo de la tesis y a los ingenieros Claudia Romero y Jean Valverde, por ayudarme de manera inmensurable y desinteresada en la fase de procesamiento de datos.

A Mya Montoya por su cariño y apoyo constante e incondicional. A mis tías Carmen y Chita por acompañarme el día de mi sustentación.

A mis amigos Milagros Alzamora, Wendy Guerra, Marco Loaiza, Melina Bocanegra, Juan Carlos Rojas y a todas aquellas personas que de alguna manera me apoyaron o me brindaron su ayuda a lo largo de este trabajo de investigación.

ÍNDICE GENERAL

I. INT	RODUCCIÓN	1
II. REV	ISIÓN DE LITERATURA	2
2.1 B	iomasa	2
2.2 B	Siomasa forestal	2
2.3 D	Determinación de la biomasa forestal	3
2.4 N	Metodologías para estimar biomasa aérea	4
2.4.1	Métodos directos	5
2.4.2	Métodos indirectos	5
2.4.	2.1 Cálculo de biomasa aérea a partir de la densidad básica de la madera	7
2.5 S	elección de modelos	12
2.6 A	análisis estadístico para la construcción de una ecuación de biomasa	13
2.6.1	Análisis de regresión por el método de mínimos cuadrados	12
2.6.2	Coeficiente de determinación (R ²)	13
2.6.3	Prueba estadística Fisher (F)	14
2.6.4	Prueba de Student (t)	16
2.6.5	Análisis de residuos	17
2.6.6	Análisis de regresión ponderada	24
2.7 S	elección de Ecuaciones	23
2.7.1	Cuadrado Medio del Error (CME)	23
2.7.2	Índice de Furnival	23
2.8 D	Descripción general de las especies evaluadas	25
2.8.1	Tecoma Stans	25
282	Tinuana Tinu	26

	2.8.3	Schinus Molle	27
	2.8.4	Caesalpinea Spinosa	29
III.	MAT	ERIALES Y MÉTODOS	31
3.	.1 Zo	ona de estudio	31
3.	.2 M	ateriales, equipos y herramientas	36
	3.2.1	Materiales	36
	3.2.2	Equipos e instrumentos	36
	3.2.3	Herramientas	36
3.	.3 M	etodología	37
	3.3.1	Fase de campo	37
	3.3.1	.1 Presentación de la investigación a la comunidad	38
	3.3.1	.2 Planificación del trabajo de campo	38
	3.3.1	.3 Ubicación, marcado y medición de árboles	38
	a.	Georreferenciación de los árboles	38
	b.	Marcado de árboles	39
	c.	Medición de las circunferencias	39
	d.	Medición de la Altura total del árbol	39
	e.	Medición de la altura del fuste y largo de las ramas	40
	3.3.1	.4 Obtención de tarugos y muestras	41
	a.	Obtención de tarugos (fuste)	41
	b.	Obtención de muestras (ramas)	44
	3.3.1	.5 Transporte	44
	3.3.2	Fase de laboratorio	45
	3.3.2	Volumen de los tarugos y las muestras	45
	3.3.2	2.2 Masa anhidra de los tarugos y las muestras	46
	3.3.3	Fase de procesamiento de datos	46

	3.3.3.	Ingreso de datos	46
	3.3.3.	Cálculo del diámetro	46
	3.3.3.	Cálculo del área transversal de cada sección del fus	te47
	3.3.3.	3.4 Cálculo del volumen	48
	3.3.3.	Determinación de la densidad básica	50
	3.3.3.	6.6 Cálculo de la biomasa aérea	51
	3.3.3.	S.7 Selección de modelos	51
	3.3.3.	Evaluación previa de variables	53
	3.3.3.	Construcción de ecuaciones de biomasa aérea	53
	a.	Coeficiente de determinación (R ²)	53
	b.	Prueba estadística Fisher (F)	53
	c.	Prueba estadística t - Student (t)	54
	d.	Análisis de los residuos	54
	e.	Análisis de regresión ponderada	54
	f.	Análisis estadístico de los modelos ponderados	55
	3.3.3.	3.10 SELECCIÓN DE LA MEJOR ECUACIÓN	55
IV.	RESU	JLTADOS Y DISCUSIÓN	57
4.	1 Fas	se de campo	57
	4.1.1	Presentación de la investigación a la comunidad	57
	4.1.2	Planificación del trabajo de campo	58
	4.1.3	Ubicación y medición de árboles	58
	4.1.3.	Georreferenciación de árboles	99
	4.1.3.	3.2 Marcado de árboles	101
	4.1.3.	3.3 Medición de circunferencias	102
	4.1.3.	Medición de la altura total del árbol	103
	4.1.3.	Medición de la altura del fuste y largo de las ramas	105

4.1.4	Obtención de tarugos y muestras	108
4.1.4.	.1 Obtención de tarugos (fuste)	108
4.1.4.	.2 Obtención de muestras (ramas)	110
4.1.5	Transporte	110
4.2 Fas	se de laboratorio	111
4.2.1	Volumen de los tarugos	111
4.2.2	Volumen de las muestras de las ramas	112
4.2.3	Masa anhidra de los tarugos y las muestras	114
4.3 Fas	se de procesamiento de datos	117
4.3.1	Ingreso de datos	117
4.3.2	Cálculo del diámetro	118
4.3.3	Cálculo del área transversal de cada sección de fuste	121
4.3.4	Cálculo del volumen	124
4.3.5	Determinación de la densidad básica	128
4.3.6	Cálculo de la biomasa aérea	131
4.3.7	Selección de modelos	136
4.3.8	Evaluación previa de variables	136
4.3.9	Construcción de ecuaciones de biomasa aérea	99
4.3.9.	.1 Análisis de regresión	99
a.	Coeficiente de determinación (R ²)	99
b.	Prueba estadística Fisher (F)	102
c.	Prueba estadística t - student (t)	104
d.	Análisis de los residuos	106
4.3.9.	.2 Análisis de regresión ponderada	108
a.	Coeficiente de determinación para modelos ponderados	110
b.	Análisis de significancia Fisher para los modelos ponderados	110

	c.	Análisis de significancia t-student para los modelos ponderados	. 111
	d.	Análisis de residuos para los modelos ponderados	. 113
	e.	Selección de la mejor ecuación	. 115
V.	CONC	LUSIONES	. 120
VI.	RECO	MENDACIONES	. 121
VII.	REFEI	RENCIAS BIBLIOGRÁFICAS	. 122
VIII.	ANEX	OS	. 135

ÍNDICE DE TABLAS

Tabla 1: Modelos para la estimación de biomasa aérea	12
Tabla 2: Codificación de los tarugos	44
Tabla 3: Modelos para la estimación de biomasa aérea	52
Tabla 4: Coordenadas iniciales de las especies evaluadas	99
Tabla 5: Coordenadas UTM de acuerdo al número de individuo por especie	100
Tabla 6: Circunferencia a la altura del pecho (cap) de los árboles evaluados	102
Tabla 7: Alturas totales por especie	104
Tabla 8: Alturas parciales del árbol 1 de la especie Huaranguay	105
Tabla 9: Alturas de fuste por especie	106
Tabla 10: Volumen saturado de los tarugos por especie	111
Tabla 11: Volumen saturado de las muestras de ramas (cm³) por especie	113
Tabla 12: Masa anhidra de los tarugos por especie	115
Tabla 13: Masa anhidra de las muestras de ramas por especie	116
Tabla 14: Diámetro a la altura del pecho (dap) de los individuos evaluados	118
Tabla 15: Áreas circulares por sección de acuerdo a la especie	121
Tabla 16: Volumen del fuste por especie	124
Tabla 17: Volumen de ramas primarias por especie	126
Tabla 18: Volumen total por especie	127
Tabla 19: Densidad Básica de los tarugos extraídos del fuste	128
Tabla 20: Densidad Básica de las muestras extraídas de las ramas	129
Tabla 21: Biomasa del fuste por especie (kg)	131
Tabla 22: Biomasa de las ramas principales por especie	133
Tabla 23: Biomasa total por especie (kg)	134
Tabla 24: Selección de los mayores Coeficientes de Determinación (R ²)	99

Tabla 25: Prueba estadística Fisher (F)	103
Tabla 26: Prueba estadística t - Student (t)	105
Tabla 27: Coeficiente de determinación para los modelos ponderados	110
Tabla 28: Resultados del análisis Fisher para los modelos ponderados	111
Tabla 29: Resultados del análisis t-student para los modelos ponderados	112
Tabla 30: Índice de Furnival para la selección de la mejor ecuación	116
Tabla 31: Multiplicación de las ecuaciones ponderadas por la inversa del factor K	116
Tabla 32: Ecuaciones originales y Ecuaciones de Biomasa	117

ÍNDICE DE FIGURAS

Figura 1: Posición de extracción del tarugo del árbol	3
Figura 2: No se detecta ningún problema	22
Figura 3: El ajuste lineal no es adecuado	22
Figura 4: Ajuste lineal mal calculado	22
Figura 5: Existe heterocedasticidad	23
Figura 6: Ajuste no lineal y heterocedasticidad	23
Figura 7: Existencia de datos atípicos	23
Figura 8: Histograma de los residuos	24
Figura 9: Mapa de Pachacamac	31
Figura 10: División en zonas de Pachacamac	32
Figura 11: Centro poblado de Manchay (Zona V)	33
Figura 12: Ubicación de la zona de estudio	38
Figura 13: Mapa de Ubicación de los árboles evaluados en Manchay	39
Figura 14: Trabajo de campo para la estimación de biomasa	37
Figura 15: Medición de Alturas y circunferencias del árbol	40
Figura 16: Piezas del barreno de Pressler	41
Figura 17: Pasos en el proceso de extracción de un tarugo de madera	42
Figura 18: Tarugo de madera en el extractor	43
Figura 19: Desplazamiento del agua para medir el volumen del tarugo de madera	45
Figura 20: División del árbol en secciones papa la estimación del volumen del fuste	49
Figura 21: Ingreso al Campo Santo de la Comunidad Campesina Collanac - Manchay	57
Figura 22: Tanque de agua del Campo Santo de la Comunidad Campesina Collanac	99
Figura 23: Georreferenciación y utilización de brújula para ubicación de los árboles	100

Figura 24: Marcado de árboles
Figura 25: Medición del cap de los árboles
Figura 26: Medición de altura y dap con relascopio de Bitterlich
Figura 27: Individuos de las cuatro especies evaluadas
Figura 28: Tarugo de madera en el extractor
Figura 29: Aplicación de sulfato de cobre y tapado de hoyos
Figura 30: Preparación y guardado de tarugos
Figura 31: Muestra de rama
Figura 32: Medición del volumen de los tarugos
Figura 33: Secado de tarugos y muestras de ramas en estufa
Figura 34: Colación de muestras en desecadores para evitar aumento de humedad 115
Figura 35: Relación del dap y Altura Total
Figura 36: Relación del dap y Altura de Fuste
Figura 37: Densidad Básica promedio por especie
Figura 38: Valor promedio en la biomasa del fuste
Figura 39: Valor promedio en la biomasa de las ramas
Figura 40: Valor promedio de la biomasa total
Figura 41: Relación entre Biomasa y dap de los 30 árboles evaluados por especie 137
Figura 42: Relación entre Biomasa y Altura de los 30 árboles evaluados por especie 138
Figura 43 Análisis de Regresión donde ecuación pasa por el origen
Figura 44: Análisis de residuos Huaranguay
Figura 45: Análisis de residuos Molle serrano
Figura 46: Análisis de residuos Tipa
Figura 47: Análisis de residuos Tara
Figura 48: Biomasa real vs Biomasa estimada para la especie Huaranguay
Figura 49: Biomasa real vs Biomasa estimada para la especie Molle serrano

Figura 50: Biomasa real vs Biomasa estimada para la especie Tipa	119
Figura 51: Biomasa real vs Biomasa estimada para la especie Tara	119

ÍNDICE DE ANEXOS

Anexo 1: Formato para el levantamiento de datos en campo	135
Anexo 2: Circunferencias del fuste	136
Anexo 3: Alturas parciales del fuste	140
Anexo 4: Relación entre biomasa total, DAP y altura total	144
Anexo 5: Análisis de residuos	146
Anexo 6: Factores de ponderación	153
Anexo 7: Análisis de regresión (modelos no ponderados Huaranguay)	156
Anexo 8: Análisis de regresión (modelos no ponderados Molle serrano)	157
Anexo 9: Análisis de regresión (modelos no ponderados Tipa)	174
Anexo 10: Análisis de regresión (modelos no ponderados Tara)	183
Anexo 11: Análisis de regresión (modelo ponderado Huaranguay)	198
Anexo 12: Análisis de regresión (modelos ponderados Molle serrano)	199
Anexo 13: Análisis de regresión (modelos ponderados Tipa)	203
Anexo 14: Análisis de regresión (modelos ponderados Tara)	206

RESUMEN

El presente trabajo tuvo como objetivo estimar la biomasa aérea de las especies Tecoma stans, Tipuana tipu, Schinus molle y Caesalpinea spinosa, a partir de un método no destructivo y construir ecuaciones alométricas que estimen el contenido de biomasa aèrea de dichas especies, dentro de la comunidad campesina de Collanac en Manchay, distrito de Pachacamac. Para construir las ecuaciones de biomasa aérea, se utilizó la metodología basada en la regresión lineal aplicando el método de mínimos cuadrados y mínimos cuadrados ponderados, utilizando para ello los datos recabados en campo, provenientes del levantamiento de información de ciento veinte árboles (treinta árboles para cada una de las especies evaluadas). Los modelos seleccionados fueron sometidos a las pruebas estadísticas de coeficiente de determinación, pruebas de significancia e índice de Furnival, seleccionando el modelo con el mejor ajuste. Finalmente, se realizó una comparación entre la biomasa estimada promedio y la biomasa real promedio, para confirmar el grado de precisión de los modelos seleccionados, donde se puede apreciar que existe una tendencia lineal para todas las especies y se puede apreciar además, que las ecuaciones elegidas presentan un buen ajuste en la estimación de biomasas aéreas para las especies estudiadas en el centro poblado de Manchay.

Palabras claves: Tecoma stans, Tipuana tipu, Schinus molle, Caesalpinea spinosa, biomasa aérea

ABSTRACT

This work consists in estimating the aerial biomass of the species *Tecoma stans*, *Tipuana tipu*, *Schinus molle* and *Caesalpinea spinosa*, using a non-destructive method and construct allometric equations to estimate the content of the aerial biomass of the species, in the community of Collanac in Manchay - district of Pachacamac. To construct the equations of aerial biomass, verify the methodology based on linear regression ecuation method of least squares and weighted least squares was used, using the data collected in the field, from the information of one hundred and twenty trees (thirty trees for each one of the species evaluated). The selected models were used for statistical tests of coefficient of determination, significance tests and Furnival index, finally, selecting the model with the best fit. Furthermore, a comparison was made between the average biomass estimated and the real average biomass, these to confirm the degree of precision of the selected models, where it can be determined a linear trend for all species and showing a good estimate of the adjustment of aerial biomass for the species studied in the community of Manchay.

Key words: Tecoma stans, Tipuana tipu, Schinus molle, Caesalpinea spinosa, aerial biomass

I. INTRODUCCIÓN

Las actividades antrópicas vienen afectando la temperatura del planeta, debido, entre otras causas, al incremento en la concentración de gases de efecto invernadero (GEI) en la atmósfera. El más común de estos gases es dióxido de carbono (CO₂), el cual en conjunto con los otros GEIs necesitan ser estabilizados a fin de evitar efectos más dañinos producidos por el cambio climático (Eliasch 2008).

Para lograr este objetivo, la función de los bosques adquiere una mayor importancia por su papel regulador del CO₂ atmosférico. Bajo este contexto, se vienen implementado diversos mecanismos de mitigación que utilizan el manejo de recursos forestales para incrementar el nivel de secuestro de carbono. Una alternativa en la ciudad de Lima sería el uso de especies forestales urbanas, de rápido crecimiento las cuales contribuyan a mitigar los GEI al incorporarlos en su sistema.

Sin embargo, en el Perú se cuenta con limitada información de este tipo de investigaciones sobre estas especies que permitan hacer proyecciones sobre su capacidad de secuestro de carbono en la ciudad de Lima. Se pueden desarrollar iniciativas que permitan incluir a estas especies en propuestas dentro del mercado de carbono y contribuir al mismo tiempo al desarrollo sostenible de las comunidades dependientes de este recurso.

Además de contribuir al conocimiento de las especies *Tecoma stans, Tipuana tipu, Schinus molle y Caesalpinia spinosa* como propuesta potencial de mitigación frente al cambio climático, el presente estudio tiene como propósito estimar la biomasa aérea de las especies arbóreas urbanas mencionadas como captadoras de carbono a través de un método no destructivo y construir ecuaciones alométricas que estimen el contenido de biomasa aérea en el bosque urbano del campo santo de la comunidad campesina Collanac en Manchay, distrito de Pachacamac – Lima.

II. REVISIÓN DE LITERATURA

2.1 BIOMASA

Guerra (2001) define la biomasa como la suma total de la materia viva que se encuentra en un ecosistema en un periodo determinado y se expresa en términos de peso seco, masa o volumen.

A partir de la biomasa forestal se puede calcular la concentración de carbono en los árboles (aproximadamente el 50% de la biomasa está formada por carbono) y, por consiguiente, se pueden hacer estimaciones sobre la cantidad de dióxido de carbono que entra a la atmósfera, cada vez que se desmonta o se quema un bosque. La biomasa es una variable que sirve también para comparar las características estructurales y funcionales de un ecosistema forestal en distintas condiciones (FAO 1995).

Garzuglia y Saket (2003), definen biomasa de un rodal forestal como la cantidad total de materia orgánica aérea presente en los árboles, incluyendo hojas, ramas, tronco principal y corteza.

Hakkila (1989) define la biomasa forestal como la masa acumulada sobre y bajo el suelo, de madera, corteza y hojas producidas por las especies leñosas, tanto arbóreas como arbustivas.

MackDicken y Kenneth (1991), manifiestan que la biomasa es el peso total de los árboles o arbustos vivos y sus partes, en un determinado período de tiempo y en un área determinada, expresado en peso seco.

2.2 BIOMASA FORESTAL

Schlegel *et al.* (2000), describen a la biomasa forestal como el peso (o estimación equivalente) de la materia orgánica que existe en un determinado ecosistema forestal por encima (Aérea) y por debajo del suelo (Subterránea). Normalmente es cuantificada en

toneladas por hectárea de peso verde o seco. Es frecuente separarla en componentes, donde los más típicos corresponden a la masa del fuste, ramas, hojas, corteza, raíces, hojarasca y madera muerta. De igual manera, Oliva y García-Oliva (1998), describen que la incorporación de carbono al suelo en los ecosistemas naturales se da por dos vías principales: por el mantillo (capa superficial de materia vegetal) y por la biomasa radicular.

Hakkila (1989), definió a la biomasa forestal como la masa acumulada sobre y bajo el suelo, desde la madera, corteza y hojas producidas por las especies leñosas, tanto arbóreas como la arbustivas.

Schroeder *et al.* (1993) complementan que por lo menos el 40 por ciento del carbono de la biomasa del árbol completo se encuentra en las hojas y en las ramas que se queman o se descomponen rápidamente después de la corta del árbol. Del 60 por ciento restante, solo la mitad queda capturado en el producto final; esto significa que aproximadamente el 75 por ciento del carbono almacenado en el árbol regresa a la atmósfera.

Según Couto *et al.* (2000), la biomasa forestal tiene características tales que permiten su uso como fuente de energía alternativa, ya sea por la quema de la madera, el carbón, la recuperación de los residuos de la exploración y explotación de los aceites esenciales, alquitrán y ácido piroleñoso. Soares *et al.* (2006) señalan que la biomasa forestal puede ser utilizada como una fuente de energía limpia, renovable y generadora de empleo.

2.3 DETERMINACIÓN DE LA BIOMASA FORESTAL

Schlegel *et al.* (2000), señalan que la determinación adecuada de la biomasa de un bosque, es un elemento de gran importancia debido a que esta permite determinar los montos de carbono y otros elementos químicos existentes en cada uno de sus componentes. Esta información es de especial importancia en la actualidad, debido a la necesidad de conocer los montos de carbono capturado por los bosques naturales y plantaciones, como un medio para mitigar los cambios climáticos generados por el consumo de combustibles fósiles, entre otros, que liberan gran cantidad de dióxido de carbono a la atmósfera.

Sarasíbar (2006), al analizar el ciclo de vida completo de los combustibles obtenidos a partir de biomasa forestal y al compararlo con el de los combustibles fósiles, encontró que se consiguen ahorros de entre el 50 y el 80 por ciento en las emisiones de CO₂, esto es debido a que la biomasa forestal emite un CO₂ que ha fijado en su fase de desarrollo vegetativo.

Para la estimación de la biomasa de un rodal forestal, el procedimiento más común es el método de estimación por regresión. Este consiste en el muestreo destructivo de unos cuantos árboles para relacionar alguna de sus variables fáciles de medir con el contenido de biomasa, utilizando para ello métodos de regresión; por ejemplo, el diámetro a la altura del pecho (dap, diámetro a 1,30 m de altura) (Garzuglia y Saket 2003).

Whittaker y Marks (1975), afirman que el método destructivo es el más preciso para estimar el volumen de biomasa aérea. Sin embargo, existen otros métodos para calcular la biomasa como son estimaciones de volumen, midiendo por ejemplo el dap y la altura total del árbol. Las ecuaciones alométricas se derivan de estos datos para estimar biomasa total y se usan además para realizar inventarios forestales y estudios ecológicos.

2.4 METODOLOGÍAS PARA ESTIMAR BIOMASA AÉREA

Satoo y Madgwick (1982) manifiestan que las plantas verdes utilizan la energía solar para obtener los elementos nutritivos existentes en el medio. El resultado de este proceso fotosintético es la producción primaria, la cual es incorporada a los tejidos. Este proceso se manifiesta a través del crecimiento y se expresa como biomasa.

La biomasa de una plantación presenta muchas variaciones de acuerdo a diversos factores, como son la especie, la edad, la densidad, el sitio y los tratamientos silviculturales realizados (Garcinuño 1995). La biomasa total de rodales de una misma especie bajo similares condiciones de crecimiento, es función directa de la edad del rodal. Asimismo, la producción de materia seca tenderá a aumentar con la densidad del rodal y la calidad del sitio (Satoo y Madgwick 1982). Por otro lado, la biomasa por unidad de área será máxima, al momento de alcanzar (el rodal) el fin de la etapa de establecimiento y el comienzo del autoraleo (Ferrando *et al.* 2001).

Según Segura y Kannunen (2002), para estimar la biomasa sobre el suelo se pueden emplear dos métodos: 1) los métodos directos o destructivos, y 2) los métodos indirectos, que generalmente se aplican cuando los árboles son de grandes dimensiones En ambos casos, los valores obtenidos se extrapolan a una hectárea (Parresol 1999).

2.4.1 Métodos Directos

Los métodos directos o destructivos incluyen mediciones en campo, cosecha y toma de muestras de la totalidad de la vegetación, teniendo en cuenta algunos criterios de evaluación. Aunque este método es más costoso y requiere de mayor tiempo, arroja resultados de alta confiabilidad, en comparación con los métodos indirectos.

Según ICRAF (2008), el método directo consiste en cortar los árboles de una parte del área, pesar la biomasa y extrapolar los resultados al área total. A pesar de ser el más preciso (pues omite los errores de estimación), este método es considerablemente más costoso.

Rueda (2014), indica que para obtener la biomasa aérea de una población establecida en una condición de sitio específica, carente de una base de datos, se debe utilizar un método directo, seleccionando y extrayendo árboles que representen a la población en estudio, los cuales son considerados de muestras de campo, generalmente un número igual o mayor a 30 árboles que luego son secados y pesados.

2.4.2 Métodos Indirectos

Segura y Kannunen (2002), indican que entre los métodos indirectos para estimar biomasa, se encuentra el uso de modelos de biomasa específicos para cada especie, donde los valores de inventarios forestales como diámetro (dap y dac) y altura, se transforman a términos de biomasa con la ayuda de modelos generales.

El método indirecto consiste en utilizar técnicas alométricas (análisis dimensional) generando ecuaciones a partir de análisis de regresión entre parámetros medidos en campo (ej. diámetro, altura total, etc.). A través de las ecuaciones obtenidas en el método indirecto se pueden estimar la biomasa total o de algunos componentes de los árboles existentes en el área evaluada (ICRAF 2008).

De acuerdo a Satoo y Madgwick (1982), aumentar el número de parcelas y el tamaño de la parcela a comparación de los tamaños y números "usuales" de parcela, ayudará a reducir la variabilidad de parcela a parcela, por ende reducirá la variabilidad de las muestras (árboles) en términos de diámetro, altura y pesos obtenidos en las mediciones.

Rueda (2014), menciona que si se dispone de una ecuación alométrica para las especies en estudio, se puede estimar la biomasa con métodos indirectos. Estos método indirectos o no destructivos consisten en utilizar ecuaciones y relacionarlas con diferentes dimensiones de un objeto (por ejemplo una planta, órgano vegetal o plantación), permitiendo de esta manera determinar la producción de biomasa. Este método se ha aplicado en particular en el área forestal en estudios para estimar la fijación biológica de C a nivel global (Ares *et al.* 2002).

Pereyra y Gelid (2002), manifiestan que de todos los árboles seleccionados se deben obtener muestras como material de ensayo, para lo cual se utilizan métodos no destructivos que consisten en extraer tarugos, utilizando para ello un Barreno de Pressler de 5 mm de diámetro.

Asimismo, señalan que se debe realizar esta operación en cada árbol a la altura del pecho (dap: 1,30 m sobre el nivel del suelo), tal como se aprecia en la figura 8.

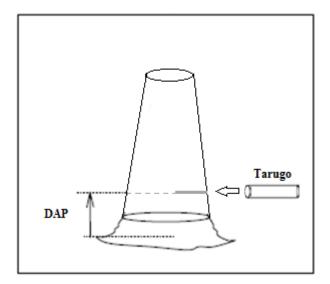


Figura 1: Posición de extracción del tarugo del árbol

FUENTE: Adaptado de Pereyra y Gelid (2002)

Por otro lado, después de tomar las muestras de los árboles con el barreno, se deben tapar los huecos con cera del mismo diámetro para evitar la entrada de insectos u hongos y al mismo tiempo facilitar la cicatrización de la herida más rápidamente. Los tarugos una vez extraídos, deben ser correctamente codificados, identificados, y se debe anotar los números de los árboles de los cuales fueron extraídos (Pereyra y Gelid 2002).

2.4.2.1 Cálculo de biomasa aérea a partir de la densidad básica de la madera

Ananías, citado por Díaz *et al.* (s.f.) describe que la densidad de la madera expresa la relación entre la masa de los distintos tipos de elementos que forman la madera y el volumen que ellos ocupan.

Chave (2006) sostiene que la densidad básica de la madera se define como el cociente entre la masa del material seco con estufa, dividido entre su volumen verde. Este valor requiere de mediciones del peso de la madera seca, combinado con mediciones del volumen verde. Asimismo, la densidad básica representa el peso seco de la madera encerrado en un volumen invariante, como es el volumen existente cuando las paredes celulares están saturadas de agua. Para la mayoría de las especies, las paredes se encuentran saturadas cuando el contenido de humedad está en torno al 30% (Cisternas s.f.).

Durante mucho tiempo las muestras de madera para estimar la densidad básica de las especies de árboles han sido tomadas como discos o secciones transversales de la parte inferior del tronco. Si bien es cierto, el disco es representativo de la variación radial de la densidad de la madera en el sitio donde se toma, pero para su obtención se requiere destruir el árbol (Nogueira *et al.* 2008).

Recientemente se ha popularizado el uso de herramientas como el "barreno de Pressler" que permite obtener una muestra en forma de cilindrica entre 5-12 mm de diámetro de longitud variable dependiendo del diámetro y la dureza del árbol. (Grissino-Mayer 2003). Asimismo, el cilindro obtenido con el barreno no requiere sacrificar el árbol, pero la muestra es demasiado pequeña en comparación con el disco y en la mayoría de estudios no se tiene en cuenta la variación radial de la Dm para efectos de corregir el sesgo (Williamson y Wiemann 2010). Pese a sus limitaciones estos tipos de muestra son los más usados en los estudios de Dm de los árboles tropicales, asumiendo que son representativos de la densidad del árbol (Nogueira *et al.* 2008).

Para calcular la biomasa aérea, se puede relacionar la densidad básica de la madera y el volumen saturado de la misma. Chave (2006), menciona que la madera es un tejido biológico compuesto de células o traqueidas, y de paredes compuestas de lignina. Las traqueidas son vías de conducción, algo así como canales estrechos repletos de agua, que transportan la savia a lo largo del tronco. El mismo autor señala, que la densidad de la madera de un árbol es una variable importante porque informa sobre la cantidad de carbono que la planta destina para formar madera. Asimismo indica, que la densidad de la madera varía dentro de la planta, durante la vida de la planta y entre individuos, aun tratándose de una misma especie.

De acuerdo al MINAM (2015), la forma clásica para determinar la biomasa de los árboles en el tronco, es a partir

del cálculo del volumen maderable en pie y de la densidad básica de la madera, y la fórmula utilizada es la siguiente:

$$B = DB \times V$$

Donde:

B = Biomasa o peso seco del material vivo en gramos o toneladas (t)

DB = densidad básica de la madera en g/cm³ o t/m³

 $V = \text{volumen maderable del árbol en pie en m}^3$

Por otro lado, las ramas y las partes exteriores del tronco tienden a presentar densidades de madera más bajas que la parte central del tronco (Chave 2006).

Para medir el peso seco de un determinado volumen de madera, es necesario secar la madera con aire o con estufas para eliminar el contenido de humedad. La densidad básica de la madera se define como el cociente entre la masa del material seco con estufa, dividido entre su volumen saturado. Este valor requiere de mediciones del peso de la madera seca, combinado con mediciones de volumen verde o saturado (Chave 2006).

Según Pereyra y Gelid (2002), para obtener la densidad básica de las muestras de madera, es preciso calcular su volumen saturado, aplicando para ello el principio de Arquímedes, ya que se considera uno de los más prácticos y precisos.

Se utiliza este método, debido a que los valores encontrados en trabajos previos, presentaron diferencias poco significativas respecto a otros métodos más precisos como la determinación del volumen utilizando el Volumenómetro de Breuil (Pereyra y Gelid 2002). Los mismos autores señalan, que este método consiste en medir el volumen de la muestra de madera en función del peso del líquido desplazado por inmersión, o sea por medición del empuje, y al sumergir la pieza en un recipiente con agua, se produce una diferencia, equivalente al peso del agua desplazada, que equivale al volumen de la pieza sumergida.

De acuerdo a lo señalado por Pereyra y Gelid (2002), se puede establecer una ecuación de equilibrio:

$$P = E$$

Donde:

P: Peso del líquido desplazado (g)

E: Empuje del líquido desplazado (g)

De igual manera por hidrostática se tiene:

$$E = V x D$$

Donde:

V: volumen del líquido (cm³)

D: densidad del líquido (g/cm³)

Entonces, despejando el peso del líquido desplazado (P) tenemos:

P = VxD, de donde se tendrá que: $V = P(cm^3)$, asumiendo que la densidad del líquido (agua) es 1 g/cm³.

2.5 SELECCIÓN DE MODELOS

Antes de seleccionar una ecuación, se debe previamente identificar y establecer relaciones entre la variable dependiente (biomasa aérea) y las variables independientes (dap y altura), para de esta manera detectar posibles errores o datos "outlier", los cuales podrían sesgar el análisis de regresión.

Según Philip (1983), el trabajo de construcción de una ecuación de volumen consiste en tres etapas:

- a) Medición de los volúmenes individuales de árboles seleccionados que constituyen una muestra representativa de la población.
- b) Establecimiento de las relaciones entre las mediciones tomadas sobre los árboles y volúmenes.
- c) Elección del mejor modelo y verificación de la precisión de la ecuación de volumen elaborada.

Simbaña (2011), estableció una relación entre la biomasa total, el dap y altura total a través de dos modelos lineales generales. Ensayó un análisis de regresión de mínimos cuadrados para 24 ecuaciones obteniendo resultados satisfactorios y concluyendo que "la metodología utilizada permite elaborar estimaciones precisas y detalladas de biomasa y carbono". Asimismo, menciona que para seleccionar un modelo, se debe tomar un número de modelos o ecuaciones alométricas que dentro de sus variables consideren los datos tomados en campo en la plantación. Alder, citado por Simbaña (2011), prioriza y selecciona aquellos modelos que consideran en sus ecuaciones las mismas variables que las obtenidas en campo durante el muestreo, teniendo como variables independientes el diámetro a la altura del pecho (dap) y la altura (h), y como variable dependiente la biomasa aérea. Estos modelos se muestran en la Tabla 1:

Tabla 1: Modelos para la estimación de biomasa aérea

Número	Modelo para Biomasa
1	Biomasa aérea = $b_0 + b_1 dap^2$
2	Biomasa aérea = $b_0 + b_1 dap^2 h$
3	Biomasa aérea = $b_0 + b_1$ dap
4	Biomasa aérea = $b_0 + b_1 dap^3$

5	Biomasa aérea = $b_0 + b_1 dap^2 h^3$
6	Biomasa aérea = $b_0 + b_1 dap^3h$
7	Biomasa aérea = $b_0 + b_1 dap^3 h^3$
8	Biomasa aérea = $b_0 + b_1 dap^2 h^2$
9	Biomasa aérea = $b_0 + b_1 dap^3h^2$
10	Biomasa aérea = $b_0 + b_1 LN(dap)$
11	Biomasa aérea = $b_0 + b_1 (dap)^{0.5}$
12	$Biomasa \ a\acute{e}rea = b_0 + b_1(LN(dap))1/dap$
13	Biomasa aérea = $b_0 + b_1 dap + b_2 dap^2 h$
14	$Biomasa \ a\acute{e}rea = b_0 + b_1 dap + b_2 dap^2h^2$
15	$Biomasa a\'erea = b_0 + b_1 dap^2 + b_2 dap^2 h^2$
16	$Biomasa a\'erea = b_0 + b_1 dap^3 + b_2 dap^2h^2$
17	Biomasa aérea = $b_0 + b_1 dap^3 + b_2 dap^2h$
18	$Biomasa a\'erea = b_0 + b_1 dap^3 + b_2 dap^2 h^3$
19	$Biomasa a\'erea = b_0 + b_1 dap^3h + b_2 dap^2h^3$
20	Biomasa aérea = $b_0 + b1dap^2 + b_2dap^3$
21	Biomasa aérea = $b_0 + b_1 dap + b_2 dap^3$
22	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap)$
23	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(h)$
24	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap) + b_2 ln(h)$
25	$Ln(Biomasa a\'erea) = b_0 + b_1[ln(dap)]^2 + b_2ln(h)$
26	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap) + b_2 [ln(dap)]^2$
27	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap^2h)$
28	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap^2h) + b_2 ln(h)$

FUENTE: Simbaña (2011), Ruiz (2007)

2.6 ANÁLISIS ESTADÍSTICO PARA LA CONSTRUCCIÓN DE UNA ECUACIÓN DE BIOMASA

Rueda (2014), indica que para la selección de la ecuación de biomasa es importante considerar elementos de decisión de estadística tales como el coeficiente de determinación (R²), prueba de significancia del conjunto de variables (prueba estadística

fisher), prueba de significancia de los coeficientes del modelo de regresión (t- student), análisis de residuos, Análisis de regresión ponderada e Índice de Furnival (IF), el cual sirve para comparar modelos con y sin transformación de variables, como por ejemplo logarítmicos. El IF en modelos sin transformar es igual al error estándar de la estimación o RCME. Entre más pequeño es el IF el modelo tiene mejor ajuste (Furnival 1961).

Asimismo, antes de elaborar una ecuación, se debe contar además con los datos de biomasa seca del árbol y a partir de estos, generarse ecuaciones de regresión lineal (simple o múltiple), siendo la Biomasa Seca la variable dependiente y las otras variables independientes (Rueda 2014).

2.6.1 Análisis de regresión por el método de mínimos cuadrados

Montgomery *et al.* (2006) indican que el análisis de regresión por el método de mínimos cuadrados, es una técnica estadística para investigar y modelar la relación entre variables. El mismo autor señala también que son numerosas las aplicaciones, y las hay en casi cualquier campo, incluyendo la ingeniería, economía, administración y las ciencias físicas, químicas, biológicas y sociales,

Barrena (1988) menciona que para un correcto uso del método de regresión por mínimos cuadrados, los datos deben cumplir con 3 supuestos:

- La muestra debe ser obtenida al azar.
- Debe presentarse una distribución normal
- Debe presentarse homogeneidad de variancia.

Montgomery *et al.* (2006) mencionan algunas consideraciones sobre el uso de la regresión por mínimos cuadrados:

- Los modelos de regresión tienen por objetivo servir de ecuaciones de interpolación dentro de un intervalo de la o las variables regresoras usadas para el ajuste.
- La disposición de los valores de x juega un papel importante en el ajuste por mínimos cuadrados, ya que la pendiente queda más influenciada por los valores de esta variable.
- Los valores atípicos o los valores erróneos pueden afectar el ajuste por mínimos cuadrados.

- Que el análisis de regresión indique que existe una fuerte relación entre dos variables,

no implica que éstas tengan relación alguna en el sentido causal; la causalidad implica,

necesariamente, la correlación.

Por otro lado Simbaña (2011), estableció una relación entre biomasa, dap y altura a

través de dos modelos lineales generales. Realizó un análisis de regresión de mínimos

cuadrados para 24 ecuaciones obteniendo resultados satisfactorios y llegando a la

conclusión que la metodología utilizada permite elaborar estimaciones precisas y

detalladas de biomasa y carbono.

2.6.2 Coeficiente de determinación (R²)

Según Uriel (2013), el coeficiente de determinación es una medida que permite decidir

si el ajuste lineal es suficiente o se deben buscar modelos alternativos. El mismo autor

menciona que el R² se define de la siguiente manera:

 $R^2 = 1 - \underline{SCE} \\ \underline{SCT}$

Dónde:

SCE: Suma de Cuadrados del Error

SCT: Suma de Cuadrados Total

Machado et al. (2002), señala el coeficiente de determinación es la cantidad de

variación de la variable dependiente que se da por las variables independientes. Cuanto

más próximo de uno (1) es el valor de R², mejor fue realizado el ajuste. Mientras más

cercano a 1, la variabilidad de los datos estará explicada por el modelo o ecuación.

Asimismo, Vélez (2003) indica que los valores de R² se encuentran entre 0 y 1. Si todos

los puntos observados estuvieran en la línea de regresión, R² sería igual a 1, lo que

significaría que existe un ajuste perfecto. Por tal motivo un R² cercano a 1, quiere decir

que existe un buen ajuste y un R² cercano a cero, quiere decir que existe un mal ajuste.

Hanke y Wichern (2006) manifiestan que este valor es de suma importancia y es una de

las pruebas estadísticas más empleadas en todo tipo de análisis de regresión, ya que

mide el porcentaje de variabilidad en la variable "y" que puede explicarse a través del

conocimiento de la variable "x".

13

Vilar (2006) manifiesta también que el R² mide la proporción de variabilidad total de la

variable dependiente respecto a su media que es explicada por el modelo de regresión.

Acuña (2010) manifiesta que un R² mayor a 0,7 indica una buena asociación lineal entre

las variables. Además, Alvarado y Obagi (2008) recomiendan que el R² sea mayor a

0,64 para que la asociación se considere aceptable, y que el mínimo valor para aceptar

una ecuación en el estudio de ciencias exactas es de 0,75.

Rojo (2007) expresa que a diferencia de la varianza residual (otra manera de medir la

bondad de ajuste), el coeficiente de determinación es adimensional; esto quiere decir

que no está afectado por transformaciones lineales de las variables; por ello, si

cambiamos las unidades de medida, el coeficiente de determinación permanecerá

invariante.

De igual manera, Martínez (2005) concuerda con que el R² es una medida adimensional,

de fácil cálculo e interpretación; pero que debido a su recorrido acotado entre cero y

uno, conduce a una profusa utilización de la misma, con interpretaciones abusivas en

unos casos y erróneas en otros. Por tal motivo, el mismo autor señala que, sin tratar de

disminuir la importancia de este estadígrafo, el R² debe tomarse como una primera

medida y completarse con otras pruebas estadísticas, para evaluar el modelo lineal de

regresión ajustado y obtener conclusiones válidas sobre su grado de ajuste al conjunto

de observaciones, ya que su exclusiva consideración puede, en muchas ocasiones,

conducir a errores importantes en los análisis de regresión.

2.6.3 Prueba estadística Fisher (F)

Mendiburu (s.f.), afirma que la prueba de significancia de Fisher (F) permite establecer

si la regresión lineal simple es globalmente significativa. Por otro lado, Vélez (2003),

indica que el valor F se obtiene de la siguiente manera:

 $F = \underline{CMR}$

Dónde:

CMR: Cuadrado Medio de la Regresión

CME: Cuadrado Medio del Error

14

El mismo autor manifiesta que el valor de F es una comparación entre la variabilidad del modelo y la variabilidad de los errores. Asimismo, Da Cunha y Guimaraes (2009) expresan que cuanto mayor es la variación explicada por el modelo y menor es la variación dada por el error, el valor de F será mayor lo cual nos indica que el modelo tiene buen ajuste.

Montgomery (2004) menciona que la prueba de significancia F de la regresión es un procedimiento para determinar si existe una relación lineal entre la variable respuesta Y y su subconjunto de regresores x_1, x_2, \ldots, x_k .

Por otro lado, Mendiburu (s.f.) expresa que en la prueba estadística F se evalúan las siguientes hipótesis:

 H_0 : $\beta_1 = 0$. No existe regresión lineal entre "x" e "y"

 H_1 : $\beta_1 \neq 0$. Existe regresión lineal de "y" en función de "x"

La Ft (F tabular) se obtiene directamente de la tabla Fisher para un nivel de significancia (σ) igual a 0.05, donde:

Fc \geq Ft, se rechaza la H₀ (nula)

Fc < Ft, no se rechaza la H₀ (nula)

Si el valor F calculado (Fc) es mayor o igual al valor tabular; entonces, se rechaza la Hipótesis nula (H₀), caso contrario se acepta.

Los programas del ordenador ofrecen, junto al estadístico F, un contraste de probabilidad (Uriel 2013). Esta probabilidad, a la cual se le denomina "*p-value*" o p-valor, conocida también como nivel de significación crítico o exacto, Gujarati (1992) lo define como el menor nivel de significación al que se puede rechazar una hipótesis planteada cuando es verdadera. Vélez (2003), afirma que el p-value es la probabilidad de que el valor de F ocurra por azar y no porque las variables están relacionadas linealmente entre sí.

Romero (2012), menciona que el p-valor proporciona el grado de credibilidad de la hipótesis nula: si el p-valor es "muy pequeño" (inferior a 0,001), significaría que la hipótesis nula es del todo no creíble (de acuerdo a las observaciones obtenidas), y por lo tanto sería descartada. Por otro lado, si el p-valor oscilase entre 0,05 y 0,001 significaría

que existen fuertes evidencias en contra de la hipótesis nula, por lo que sería rechazada

o no en función del valor que hubiésemos propuesto (a priori). Finalmente, si el p-valor

es "grande" (superior a 0,05), no habría motivos suficientes como para descartar la

hipótesis nula, por lo que sería tomada como cierta.

2.6.4 Prueba de Student (t)

Rueda (2014), afirma que la prueba t - Student sirve para probar que la variable "x"

aporta información suficiente para predecir la variable "y". Asimismo, en un análisis de

regresión, se halla el intercepto y el coeficiente estimado.

Vélez (2003) menciona que lo que interesa saber es si los coeficientes son

estadísticamente diferentes de cero, y una manera de determinarlo es a través de del

estadístico t- Student (t). Uriel (2013) expresa que en una regresión lineal, el estadístico

t (t calculada) se determina de la siguiente manera:

$$t = \underline{b_1 - \mu}$$
$$SE(b_1)$$

Donde:

SE: Error estándar

Como nos interesa examinar la hipótesis de que el coeficiente es cero, de la anterior

expresión definimos µ igual a cero, b₁ es el estimado del coeficiente y en el

denominador se incluye el error típico o estándar (SE (b1)) del coeficiente. De esta

manera, el estadístico t evalúa las siguientes hipótesis:

H0: $\beta 1 = 0$. El coeficiente es estadísticamente igual a cero.

H1: $\beta 1 \neq 0$. El coeficiente es estadísticamente diferente a cero.

Si el valor de t calculado es mayor o igual al valor tabular; entonces, se rechaza la

Hipótesis nula (H₀), caso contrario se acepta.

Vélez (2003), menciona que es también importante evaluar el "p-valor" de este

estadístico, ya que mide la probabilidad de que el valor obtenido para t ocurra por azar,

dentro de una situación en la que al menos un coeficiente sea igual a cero. Asimismo,

Uriel (2013), indica que la determinación del p-valor es la operación inversa de

16

encontrar el valor en las tablas estadísticas para un determinado nivel de significación. Por tal razón, se debe proponer un nivel de significación (α) y una vez que el p-valor haya sido determinado, sabemos que se rechaza la H_0 cuando α > p-valor; caso contrario, la H_0 no se rechaza cuando α < p-valor.

2.6.5 Análisis de residuos

Montgomery (2004), describe el análisis de residuos como el proceso con mayor importancia cuando se realiza el diagnóstico del modelo de regresión para su validación, destacando su necesidad en: 1) examinar el modelo ajustado para asegurarse de que proporciona una aproximación adecuada del verdadero sistema y 2) verificar que no se infringe ninguno de los supuestos de la regresión de mínimos cuadrados.

Escobar (2015) afirma que los residuos, son en realidad las estimaciones de los valores de las perturbaciones aleatorias en cada observación. Mackay (1984), señala que los primeros fundamentos sobre el método de los mínimos cuadrados están en la distribución de los residuos y en las propiedades elementales de la probabilidad compuesta, obteniendo de esta manera los mejores ajustes cuando el tipo de curva o función se ha elegido con acierto.

Ruiz (2007) expresa también, que para decidir si ponderar o no las ecuaciones se debe hacer un gráfico de residuos y posteriormente realizar un análisis de los mismos.

Philip (1983), citado por Barrena (1988), sostiene que para lograr la homogeneidad de variancias es necesario transformar las variables o ponderarlas aplicando la regresión ponderada basada en los Mínimos Cuadrados Ponderados. Así mismo Furnival (1961) señala que la ponderación de las ecuaciones por el método de Mínimos Cuadrados Ponderados mejora la precisión de la estimación.

Montgomery (2006) manifiesta que los residuales deben ser graficados en función de los volúmenes estimados y no de los volúmenes reales, porque los residuos y los volúmenes estimados no están correlacionados, mientras que los residuos y los volúmenes reales si suelen estar correlacionados.

Da Cunha, *et al.* (2009) mencionan que la gráfica de residuos es el elemento más importante para visualizar el desempeño de la ecuación de regresión, a partir de la cual es posible observar tendencias en las estimaciones propiciadas por las mismas.

Cailliez (1980), indica que el análisis de residuos es un instrumento que debe emplearse con el siguiente propósito:

- Determinar cuándo los residuales de la regresión confirman los supuestos del modelo, es decir no están correlacionados, están normalmente distribuidos y tienen varianza uniforme.
- Evaluar la "falta de ajuste" en el modelo por una tendencia sistemática de los residuales.
- Examinar visualmente la forma de las relaciones entre los residuales y posibles variables independientes todavía no introducidas en el modelo de regresión.

Chatterjee y Price (1977), indican que el Análisis de residuos es un método simple y eficaz para la detección de deficiencias en el modelo es el análisis de regresión, donde el residuo i-ésimo lo definen como:

$$ei = yi - \hat{y}i$$

Los mismos autores indican que con un gráfico apropiado de residuos a menudo se exponen los errores de cada modelo, además de ser la principal herramienta en el análisis para este tipo de estudios.

Vilar (2006) presenta los siguientes gráficos, que evidencian el cumplimiento de las hipótesis del modelo y los ajustes no adecuados del mismo.

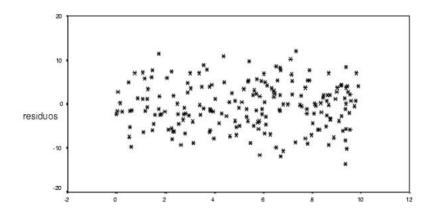


Figura 2: No se detecta ningún problema

FUENTE: Vilar (2006)

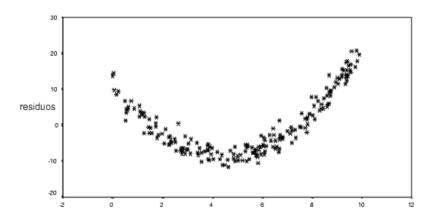


Figura 3: El ajuste lineal no es adecuado

FUENTE: Vilar (2006)



Figura 4: Ajuste lineal mal calculado

FUENTE: Vilar (2006)

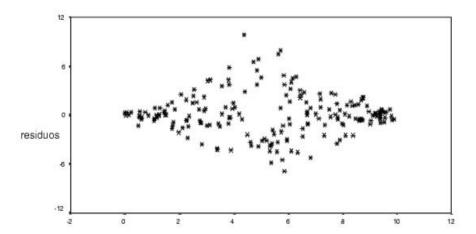


Figura 5: Existe heterocedasticidad

FUENTE: Vilar (2006)

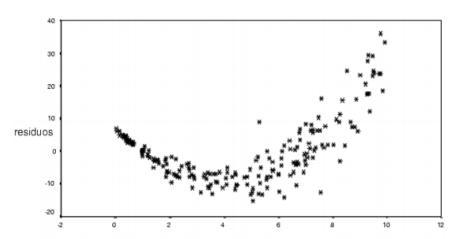


Figura 6: Ajuste no lineal y heterocedasticidad

FUENTE: Vilar (2006)

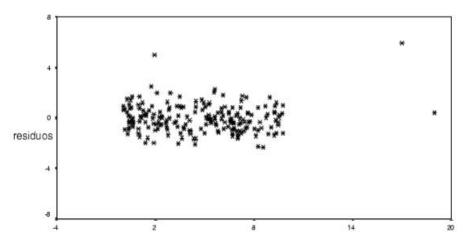


Figura 7: Existencia de datos atípicos

FUENTE: Vilar (2006)

Por otro lado, Murillo y Gonzáles (2000) indican que el mantenimiento de la hipótesis de homocedasticidad se da cuando la distribución de los residuos no varía sistemáticamente al hacerlo "y", o la variable explicativa "x", el caso contrario se puede apreciar en la Figura 4 y en la Figura 5. Asimismo, sobre la normalidad mencionan que se utiliza el grafico de la distribución de frecuencias (histograma) de los valores de los residuos, buscando encontrar la forma aproximada a la que teóricamente presenta la distribución normal (unimodal, simétrica y acampanada), tal como se muestra en la Figura 8.

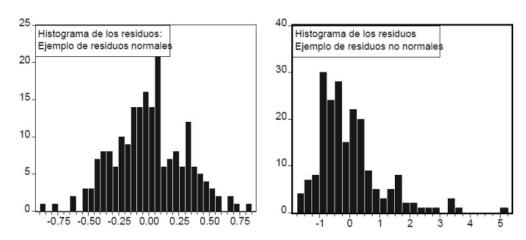


Figura 8: Histograma de los residuos

FUENTE: Murillo y Gonzáles (2000)

2.6.6 Análisis de regresión ponderada

Cunia (1964), manifiesta que en la estimación de volúmenes o biomasa de árboles, la hipótesis más importante es la homogeneidad de varianzas, pero esta no se cumple. Para lograr la homogeneidad de varianzas, es necesario transformar logarítmicamente las variables o ponderarlas aplicando para ello la regresión ponderada, la cual se basa en los mínimos cuadrados ponderados.

Según Bouchon, citado por Barrena (1988), al transformar logarítmicamente las variables, los valores estimados por la regresión siempre serán sesgados, pues no pasan por el promedio de los datos observados. Cailliez (1980) añade que si la transformación es logarítmica, la estimación siempre subestimará el volumen.

Ruiz (2007) expresa que la regresión debe ser ajustada con ponderaciones cuando la varianza del volumen o biomasa depende de las variables explicativas. Barrena (1988) menciona que utilizar la regresión ponderada basada en los mínimos cuadrados ponderados, es la mejor alterativa en la elaboración de ecuaciones, puesto que permite resolver las violaciones a las hipótesis de los mínimos cuadrados que presentan las poblaciones forestales. De la misma forma, Furnival (1961) señala que la ponderación de las ecuaciones por el método de Mínimos Cuadrados Ponderados mejora la precisión de la estimación.

Philip (1983), citado por Barrena (1988), afirma que para lograr la homogeneidad de variancias es necesario transformar las variables o ponderarlas aplicando la regresión ponderada basada en los Mínimos Cuadrados Ponderados. De la misma manera, Pecé *et al.* (1997), señalan que cuando se posee un amplio rango de diámetros, el empleo de mínimos cuadrados no es el adecuado, por lo que se debe recurrir a transformaciones logarítmicas o de ponderación, donde se ha comprobado que este último método produce un mayor acercamiento de la curva a los puntos de los árboles pequeños y medianos.

Montgomery *et al.* (2006) sostienen que en el método de los mínimos cuadrados ponderados, se multiplica la diferencia entre los valores observados y esperados de la variable dependiente, por un peso o factor de ponderación. El factor de ponderación a usarse con este método debe ser inversamente proporcional a las varianzas de los valores por predecir. Por otro lado Escobar (2015), indica que el criterio para la determinación de los factores de ponderación (1/k) se realiza en función a las variables independientes presentes en cada ecuación en particular, como pesos de la misma. Es decir, si la ecuación presenta dos variables independientes, estas dos variables se toman como pesos, así como las mismas variables elevadas a diferentes exponentes.

Barrena (1988), sostiene que el factor de ponderación puede cambiar de acuerdo a cómo el volumen y/o biomasa está relacionada con las variables independientes; debido a que la variabilidad de la variable respuesta depende de la variabilidad de las variables predictivas, tales como dap, diámetro de copa y altura.

2.7 SELECCIÓN DE ECUACIONES

2.7.1 Cuadrado Medio del Error (CME)

Barrena *et al.* (1986), afirman que el Cuadrado Medio del Error (CME), estima la varianza de los errores residuales de la regresión, el cual se usa para comparar directamente ecuaciones de regresión con variables dependientes iguales. El mismo autor indica que la mejor ecuación es aquella cuyo valor de CME es menor. Asimismo, Rueda (2014), señala que se debe buscar que el Cuadrado Medio del Error (CME) sea el menor valor, para que el ajuste al modelo sea el mayor posible. Este estadígrafo no permite las comparaciones entre modelos lineales con variables transformadas y sin transformar, por lo que en estos casos se debe usar el estadígrafo Índice de Furnival (Rueda 2014).

2.7.2 Índice de Furnival

Furnival (1961), indica que el Índice de Furnival (IF) fue desarrollado para comparar modelos forestales, siendo un método eficaz para comparar distintos modelos con diferentes transformaciones. El mismo autor señala, que el IF permite comparar las ecuaciones teniendo la ventaja de reflejar la dimensión de los residuales y al mismo tiempo las infracciones contra las condiciones de los mínimos Cuadrados: linealidad, normalidad y homocedasticidad.

Según Parresol (1999), el Índice de Furnival es la mejor alternativa cuando la variable respuesta no se encuentra en la misma escala, por ello, puede ser recomendado como una de las estadísticas más útiles para evaluar y comparar los modelos de biomasa.

Gayoso *et al.* (2002), afirman que el Índice de Furnival es esencialmente una transformación aproximada de la función de verosimilitud y se debe tener presente entonces, que mide cuan recomendable es la función de regresión como la distribución de los desvíos implícita en ella.

La fórmula general del IF es la siguiente:

$$IF = [f'(v)]^{-1} \sqrt{S}$$

Dónde:

IF = Índice de Furnival

f(v) = Derivada de la variable

[f'(v)] = Media geométrica de esta derivada

S = Cuadrado Medio del Error (CME)

Asimismo, Furnival (1961) indica que según esta expresión, cuando no se han transformado las variables ni se ha ponderado la ecuación de regresión, entonces el IF será igual a la raíz cuadrada del Cuadrado Medio del Error (S):

$$IF = \sqrt{S}$$

Da Cunha *et al.*(2009), sostienen que para los modelos logarítmicos, es decir, modelos con las variables dependientes transformadas, la desviación estándar de la estimación debe ser corregida en la escala original de la variable dependiente, para posibilitar la comparación con los modelos aritméticos por el índice de Furnival. Al tratarse de modelos con diferentes variables dependientes luego de la ponderación (diferentes factores K de ponderación) se utilizó un índice derivado por Furnival (1961) y Cox (1961), el cual es dado por la ecuación:

$$x = (antilog \ \frac{\sum Log_{10} \sqrt{v_i}}{n})^{-1} \ xS$$

Donde:

 $S = error \, estándar \, del \, modelo$

Vi = valor numérico del factor K de ponderación

n = número de árboles evaluados

Barrena (1988), sostiene que mediante este índice se compara ecuaciones con diferente variable dependiente, en consecuencia, la ecuación que presente menor valor del Índice de Furnival será la mejor.

2.8 DESCRIPCIÓN GENERAL DE LAS ESPECIES EVALUADAS

2.8.1 Tecoma Stans

A nivel mundial, esta especie se extiende en los países de Bolivia, Ecuador y Perú

(Cano et al. 2006; Reynel y Marcelo 2009). Por otro lado, dentro del país se encuentra

en los departamentos de Ancash, Apurímac, Arequipa, Ayacucho, Cajamarca, Cuzco,

Huánuco, Huancavelica, Junín, Lambayeque, Lima y La Libertad entre los 100 a 3500

msnm (Reynel y Marcelo 2009). En la cuenca del Mantaro se encuentra entre los 2600 a

3100 msnm (Tovar 1990) y en el Valle del Mantaro entre los 2200 y 3400 msnm

(Reynel y León 1990).

Se adapta bien a zonas con suelos superficiales, de textura variable, a menudo con alta

pedregosidad, y con requerimientos de agua de medios a altos (Reynel y León 1990).

No soporta la helada pero soporta bien la sequía (Bermejo y Pasetti 1985). Habita en

laderas de suave pendiente, laderas pedregosas, quebradas, cercos de chacras, terrenos

semiáridos, ambientes perturbados como bordes de caminos y áreas con vegetación

alterada o primaria (Bermejo y Pasetti 1985; Gamarra 2003; Cano et al. 2006; Reynel et

al. 2006).

Reynel et al. (2008), describen al huaranguay tal como se muestra a continuación:

Nombres comunes: Huaranguay, Huara-huara, Carhuaquero

Nombre científico: *Tecoma stans*

Familia: Bignoniaceae

Origen / Distribución: América tropical

Tamaño: Árbol de vida corta de 2 a 4 m de altura

Follaje: Siempreverde, recambio de hojas alto

Copa / Hojas: Irregular globosa / borde aserrado

Tronco: Ramificado y delgado

Raíz: Semi-profunda

Flor: Tubulares amarillas abundantes y vistosas

Fruto: Vaina con semillas aladas. Se observan flores y frutos abundantes durante todo

el año.

Crecimiento: Muy rápido

Suelo: Poco exigente, tolera suelos pobres, prospera en suelos de buen drenaje

Luz: Alta

25

Agua: No exige riego abundante

Propagación: Por semilla y por estacas de 1 m de largo, regeneración natural

Poda: De formación y limpieza anual. La poda debe realizarse con serrucho para evitar

desgarros

Enfermedades: Resistente a plagas.

Lugares apropiados: Calles, parques, Jardines interiores y exteriores, útil en laderas y

barrancos

Usos: Madera para artesanía (muebles), leña, medicinal (antiinflamatorio, diurético),

cerco vivo, melífera.

Los frutos son alimento de muchas aves pequeñas. Una modalidad tradicional de establecimiento de este árbol en el ande central y sur del Perú es como cerco vivo alrededor del predio agrícola y la vivienda del agricultor (Lima, Junín, Cuzco). Esta práctica brinda, aparte de los productos directamente obtenibles del árbol, protección al cultivo ante las inclemencias del fuerte clima andino, el viento y las heladas.

Por otro lado, la práctica de establecimiento de cercos vivos alrededor del predio agrícola representa también un manejo de enorme eficiencia para protección de los suelos ante la erosión (Reynel y León 1990). Las hojas trituradas y hervidas, proporcionan un tinte de color amarillo a verde que se emplea para teñir prendas de lana y algodón en lugares de la sierra peruana. Asimismo, de los frutos se elabora una bebida fermentada o chicha desde tiempos prehispánicos. Existe un mercado de comercialización e incluso exportación de las semillas, que son empleadas como pimienta roja e incluidas en algunos embutidos.

2.8.2 Tipuana Tipu

Árbol caducifolio de unos 10 - 40 metros de altura y cuyo diámetro es de 60 - 160 cm. Fuste relativamente recto con copa ovoidal. La corteza es gruesa, pardo grisácea oscura, fisurada longitudinalmente y dividida en placas persistentes (CATIE 2002).

La madera es ligeramente pesada con un peso específico de 0,67 a 0,75 g/cm³. Es de color blanco amarillento con veteado suave; textura media grano recto a irregular superficie ligeramente áspera, de brillo bajo y fácil de trabajar (CATIE 2002).

Esta especie se distribuye principalmente desde el sur de Bolivia hasta el norte de Argentina en América del Sur. Su distribución altitudinal varía entre los 400 – 1200 msnm, pero en Bolivia se lo puede encontrar hasta los 2900 msnm. Fundamentalmente prefiere climas templados – cálidos a cálidos. Crece cerca de riberas de quebradas y ríos, en suelos profundos con humedad moderada y es una especie de crecimiento rápido que puede tolerar heladas moderadas (CATIE 2002).

Reynel et al. (2008), describen a la especie de la siguiente manera:

Nombres comunes: Tipa

Nombre científico: Tipuana tipu

Familia: Fabaceae (Subfamilia Papilionoideae)

Origen / Distribución: Sudamérica tropical (Argentina, Bolivia)

Tamaño: Árbol de vida media de 8 a 12 m de altura.

Follaje: Hojas semiperennes, recambio de las mismas alto.

Copa: Globosa a aparasolada densa.

Tronco / Raíz: Semiprofunda (puede romper vereda)

Flor: Amarillas pequeñas y abundantes durante los meses de noviembre – diciembre.

Fruto: legumbre con alas (samara)

Crecimiento: Rápido

Suelo: Compactos húmedos y profundos

Luz: Directa

Agua: Poco exigente en riego

Propagación: Por semilla

Poda: De mantenimiento anual, poda radical para controlar plagas, reacciona bien a las

podas

Enfermedades: Pulgón, mosca blanca, fumagina. Atrae zancudos

Lugares apropiados: Bermas centrales de avenidas, parques

Usos: Ornamental por su floración muy llamativa, madera para leña

2.8.3 Schinus Molle

Según Lebel (2010), es una especie que se desarrolla en climas entre subtropical, cálidotemplado, semiárido, templado seco y templado húmedo entre los 0 y 3500 msnm.

Prospera a orilla de caminos, en zonas perturbadas con vegetación secundaria, en pedregales y lomeríos, terrenos agrícolas, pendientes (20 a 40 %).

La misma autora señala que puede crecer en suelos arcillosos como en suelos arenosos profundos, pero prefiere suelos bien drenados. Tolera texturas pesadas, suelos muy compactados y pedregosos.

Es nativo del Perú, Brasil, Uruguay, Paraguay y el Norte de Argentina. También se encuentra en los Estados Unidos, El salvador, Guatemala, Honduras, México, Nicaragua y Tanzania. En el Perú se encuentra en los departamentos de Ancash, Arequipa, Ayacucho, Cajamarca, Cuzco, Huánuco, lea, Junín, Lima, La libertad, Moquegua, Pasco y Tacna (Lebel 2010).

Reynel et al. (2008), describen al molle serrano de la siguiente manera:

Nombres comunes: Molle Serrano, falsa pimienta, pimienta del Perú, árbol de la vida,

aguaribay, cuyash

Nombre científico: Schinus molle

Familia: Anacardiaceae

Origen / Distribución: Andes del Perú, Ecuador y Bolivia / Valles interandinos

Tamaño: Árbol longevo de 4 a 8 m de altura

Follaje: Siempreverde tupido, recambio de hojas alto

Copa / Hojas: Globosa / olorosas, color verde claro, aroma resinoso (tipo trementina)

Tronco: Tortuoso de corteza fisurada

Raíz: Semiprofunda

Flor: Flores pequeñas blanco amarillentas

Fruto: Rojos de una sola semilla, contienen una sustancia pastosa y dulce.

Crecimiento: Rápido, dependiendo del riego y ubicación

Suelo: De ligero a rocoso, en general poco exigente

Luz: Directa

Agua: No exige riego abundante

Propagación: Por semilla

Poda: Formación y limpieza anual

Enfermedades: Resistente

Lugares apropiados: Jardines exteriores, parques, bermas centrales, no acumula polvo en su follaje. Estabilizador de andenes y suelos frágiles. Su aroma es repelente de posibles plagas.

Usos: La semilla puede ser usada como una pimienta de gran calidad. Del fruto se prepara chicha a la que se atribuyen propiedades medicinales. Madera para juguetería, tornería. Leña. Las hojas sirven como repelente de insectos. El fruto sirve como tinte (rojo).

2.8.4 Caesalpinea spinosa

La especie *Caesalpina spinosa* más conocida como tara, es una planta oriunda del Perú utilizada desde épocas prehispánicas en medicina folklórica y en tiempos recientes como materia prima en el mercado mundial de taninos e hidrocoloides alimenticios (Goycochea 2010).

La tara se distribuye desde las zonas áridas de Venezuela, Colombia, Ecuador, Perú, Bolivia; llegando hasta los 32º de latitud sur al norte de Chile (Flores *et al.* 2005, citados por Goycochea 2010). En el Perú, la tara se encuentra desde la costa y sierra norte (Cajamarca y La Libertad), hasta el centro y sur (Ancash, Huánuco, Junín, Ayacucho, Arequipa, Cuzco y Tacna, entre otros) (Reynel y León 1990, citados por Goycochea 2010).

En forma natural, se la encuentra en lugares semiáridos con un promedio de 230 a 500 mm de lluvia anual. En la vertiente del Pacifico se halla en los flancos occidentales, valles, 4 laderas, riberas de los ríos, y lomas entre los 800 y 2800 msnm; llegando en algunos casos como en los valles de Apurímac, hasta los 3150 msnm (Flores *et al.* 2005).

En adición de las zonas mencionadas previamente, hoy en día, esta especie se encuentra también en otros lugares del mundo como consecuencia de la salida indiscriminada de material genético hacia Europa (Italia), África (Sudafrica, Kenia, Marruecos y Argelia) y Asia (China); aunque en este último país la especie no prosperó dadas las condiciones agroclimáticas, según Villanueva (2007).

Reynel et al. (2008), describen a la especie en mención de la siguiente manera:

Nombres comunes: Tara, Espino

Nombre científico: Caesalpinea spinosa

Familia: Fabaceae (Caesalpinoideae)

Origen / Distribución: Andino / Costa y sierra, en lomas, valles interandinos y bosques

secos.

Tamaño: Árbol de vida media de 3 a 4 m de altura **Follaje:** Caducifolio, recambio de hojas estacional

Copa / Hojas: Aparasolada globosa / lustrosas

Tronco: Ramificado desde la base, corteza agrietada con aguijones

Raíz: Semiprofunda

Flor: Amarillo-rojizas

Fruto: Legumbre rojiza con semillas color marrónpardo lustrosas

Crecimiento: Medio **Suelo:** Poco exigente

Luz: Indirecta

Agua: Riegos ligeros, tolerante a sequía

Propagación: Por semilla, lijar la semilla acelera y aumenta el poder germinativo

Poda: De mantenimiento. La producción de frutos puede aumentar con el manejo de

rebrotes

Enfermedades: Resistente

Lugares apropiados: Jardines interiores, huertos caseros, corrales, cercos vivos

Usos: Fruto medicinal (úlceras, amigdalitis, infecciones bucales), también usado para curtir pieles. La producción se inicia a los 3 años y alcanza 30-40 kg de frutos por árbol cada año. Madera (herramientas, construcción), abona el suelo por la fijación de nitrógeno.

III. MATERIALES Y MÉTODOS

3.1 ZONA DE ESTUDIO

El presente trabajo de investigación, se llevó a cabo en la Comunidad Campesina Collanac – Manchay, distrito de Pachacamac, provincia de Lima, departamento de Lima.

Figura 9: Mapa de Pachacamac

FUENTE: Instituto Nacional de Estadística e informática (2015)

El distrito de Pachacamac se encuentra ubicado al sur del departamento de Lima, en el valle costeño formado por el río Lurín. Limita por el norte con los distritos de Villa El Salvador, Villa María del Triunfo y la Molina, por el sur con el distrito de Lurín, por el Este con Cieneguilla y Santo Domingo de los Olleros (Prov. de Huarochirí) y por el oeste con el Océano Pacífico. Según INEI (2017), Pachacamac cuenta con alrededor de 136 921 habitantes y una superficie aproximada de 160,23 km².

Asimismo, el distrito se encuentra dividido en cinco zonas: Pachacamac histórico (Zona I), Paul Poblet Lind (Zona II), Centros Poblados Rurales (Zona III), José Gálvez Barrenechea (Zona IV) y Manchay (Zona V) (Municipalidad de Pachacamac, 2017).

Esta división del distrito de acuerdo a zonas, se muestra a continuación en la Figura 10:

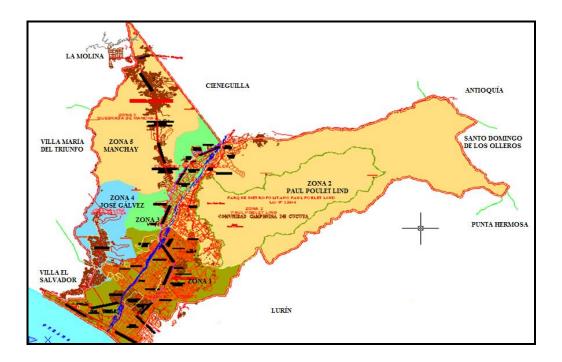


Figura 10: División en zonas de Pachacamac

Fuente: Municipalidad de Pachacamac (2017)

El centro poblado Manchay, perteneciente a Pachacamac, se encuentra ubicado en los límites de los distritos de Cieneguilla y La Molina a 17,28 km del Océano Pacífico y 18,43 Km al este de la ciudad de Lima, con una altitud de 383 m.s.n.m. Su geografía es árida y desértica.

Como se mencionó anteriormente, la Zona V del distrito es conocida como el centro poblado de Manchay, el cual colinda con los distritos de La Molina, Cieneguilla y Villa María del Triunfo, tal como se puede observar en la Figura 11.

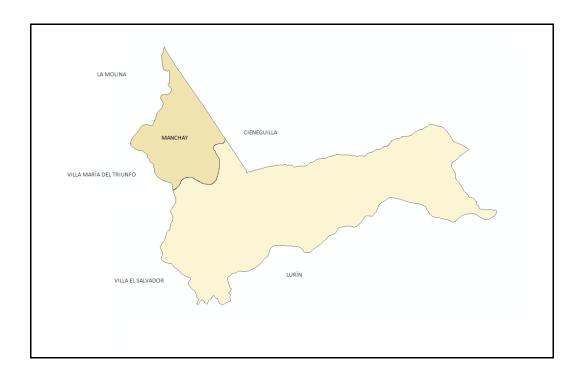


Figura 11: Centro poblado de Manchay (Zona V)

El lugar donde se realizó el trabajo de investigación, es el campo santo de la Comunidad Campesina de Collanac, el cual se encuentra ubicado entre los sectores Rinconada Alta - Huertos de Manchay y Nueva Esperanza – Huertos de Manchay, aproximadamente a unos 1,3 km de la avenida Víctor Malásquez.

La zona donde se desarrolló el estudio y la ubicación de los árboles evaluados, se muestra a continuación en la Figura 12 y en la Figura 13 respectivamente:

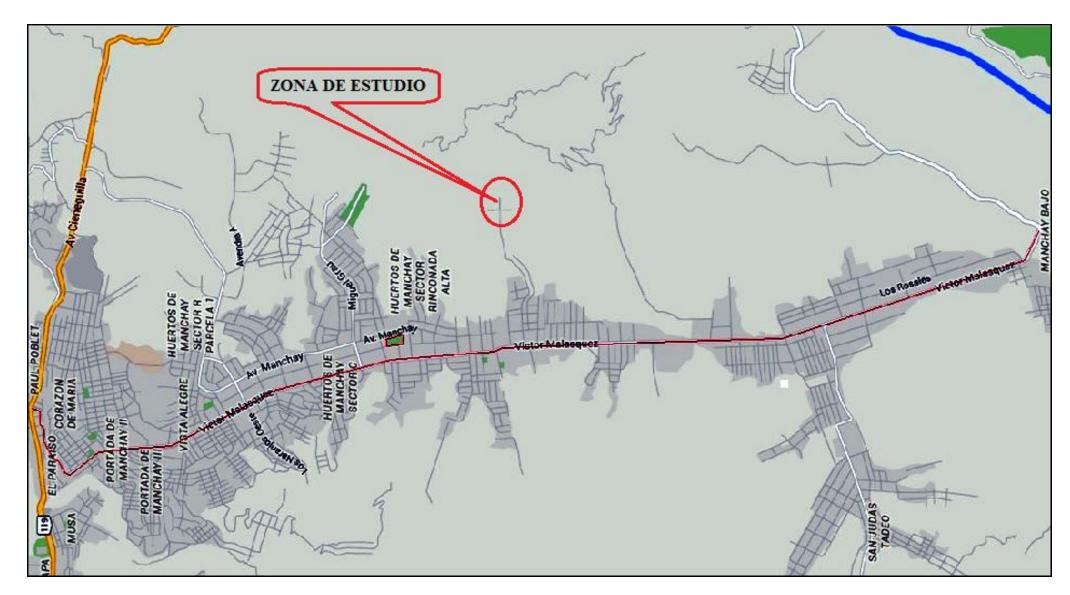


Figura 12: Ubicación de la zona de estudio

Fuente: Modificado de Google Maps (2017)

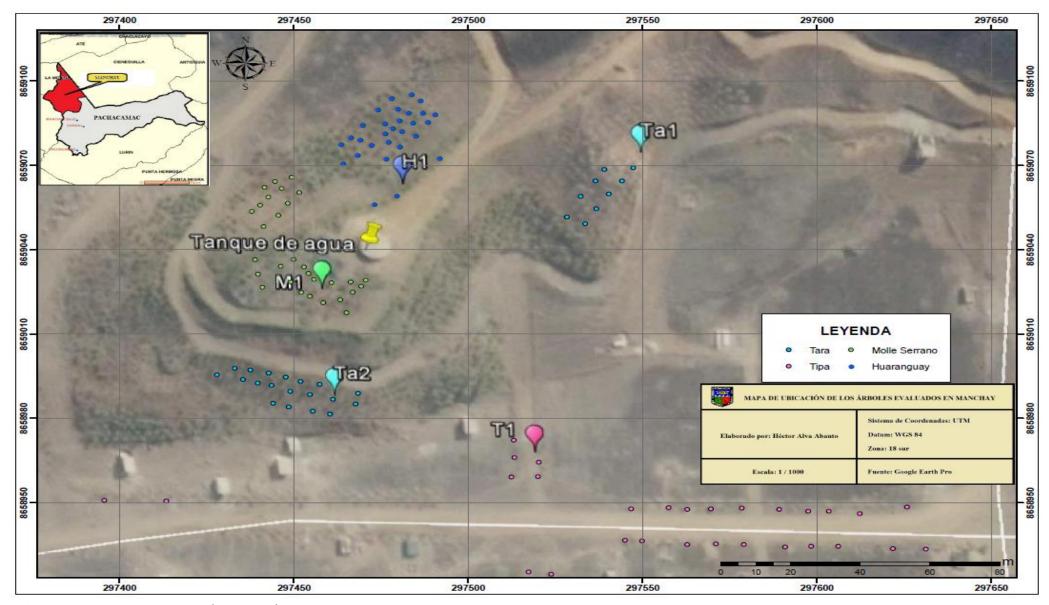


Figura 13: Mapa de Ubicación de los árboles evaluados en Manchay

Fuente: Modificado de Google Earth Pro (2017)

3.2 MATERIALES, EQUIPOS Y HERRAMIENTAS

3.2.1 Materiales

- 2 kg de cera
- Plumones indelebles
- 2 Bolsas de sorbetes
- Bolsas ziploc
- 1 Libreta de campo
- 4 contenedores de plástico
- Cartilla de verificación
- Lápices y lapiceros
- 1 masking tape
- 1 ovillo de rafia

3.2.2 Equipos e instrumentos

- 1 wincha de 30 metros
- 1 barreno de Pressler
- 1 cinta diamétrica
- 1 varilla de medición
- 1 GPS Garmin Map 62 s
- 1 brújula Suunto KB-14
- 1 relascopio de Bitterlich
- 1 laptop Toshiba Satellite C55-B5116KM

3.2.3 Herramientas

- 1 tijera de podar
- 1 navaja
- 1 escalera tijera doble de 6 pasos
- Software Arc Gis 10.3
- Software Google Earth Pro

3.3 METODOLOGÍA

La metodología empleada en el presente estudio se realizó en tres fases: fase de campo, fase de laboratorio y fase de gabinete.

3.3.1 Fase de campo

La metodología a emplear en el trabajo de investigación durante la fase de campo para la determinación de la biomasa aérea de los árboles en pie se presenta en la Figura 14:

Figura 14: Trabajo de campo para la estimación de biomasa

3.3.1.1 Presentación de la investigación a la comunidad

Se llevaron a cabo dos reuniones con los dirigentes y algunos miembros de la Comunidad Campesina Collanac, donde se les explicó a detalle el estudio que se proponía hacer en su campo santo en Manchay. Después de las asambleas efectuadas, se acordó realizar la investigación, con el compromiso de entregar la información una vez terminada la tesis.

3.3.1.2 Planificación del trabajo de campo

Se solicitó la ayuda de dos colaboradores para poder realizar el trabajo de campo y recabar la información de los árboles. Asimismo se coordinó con el encargado del campo santo para que pudiéramos ingresar cada vez que necesitáramos realizar las mediciones de biomasa aérea.

El tesista estaría presente en todas las jornadas de trabajo, dirigiendo y supervisando que las actividades sean realizadas de manera correcta, dando las indicaciones pertinentes ante alguna dificultad. Asimismo, sería él la persona encargada de capacitar a los colaboradores en la investigación, sobre temas importantes y necesarios para llevar a cabo las labores de campo, teniendo en cuenta las medidas de seguridad que se deben tomar en el trabajo y el uso adecuado de herramientas y equipos.

3.3.1.3 Ubicación, marcado y medición de árboles

a. Georreferenciación de los árboles

Se realizó la georreferenciación de cuatro individuos de la plantación (uno por especie) con ayuda de un GPS. Para minimizar el error, los 4 árboles de los que se tomaron las coordenadas UTM, fueron elegidos como puntos fijos iniciales; a partir de estos y con ayuda de la brújula Suunto y la cinta métrica de 30 m, se tomaron los azimuts y las distancias existentes entre árbol y árbol, hasta completar 120 individuos en total (30 por especie), los cuales se seleccionaron en forma aleatoria. Esta operación se realizó para cada una de las especies evaluadas.

Los puntos de los árboles seleccionados, fueron luego procesados en el software Arc Gis, generándose un mapa de ubicación con las coordenadas UTM de los 120 individuos a evaluar.

b. Marcado de árboles

Los 30 árboles seleccionados de cada una de las especies mencionadas, fueron marcados a la altura del dap, colocando para ello rafia de color roja y amarilla alrededor de la circunferencia a la altura del pecho. Asimismo se tuvieron en cuenta los aspectos fitosanitarios y del lugar, para evitar la acción del efecto de borde pues éste influye en el crecimiento de los individuos debido a factores como inclinación de terreno, acumulación de nutrientes, exposición solar, vientos, competencia, etc.

c. Medición de las circunferencias

Por tratarse de individuos jóvenes, se midió con ayuda de una cinta métrica la circunferencia de los árboles seleccionados a diferentes alturas del suelo: al ras del piso (circunferencia en la base del árbol = cb), a una altura 1 (c1), a una altura 2 (c2), a una altura 3 (c3) y finalmente en el punto de copa (Cpc) (ver Figura 15). Asimismo, se tomó la circunferencia del árbol a la altura del pecho (1,3 m de altura).

Por otro lado, se midieron las circunferencias en la base y en la mitad de las ramas primarias (aquellas que nacen del fuste) y las ramas secundarias cuya circunferencia en la base es mayor o igual a los 3 cm. No se evaluaron las ramas terminales por ser muy tiernas y porque aún no han lignificado.

d. Medición de la Altura total del árbol

Malleux y Montenegro (1971) sostienen que la altura total del árbol es la distancia desde el nivel del suelo hasta el ápice del árbol, asumiendo que este es recto y vertical. Para determinarla, se utilizó una wincha de 5m (para individuos pequeños menores a los 2m de altura), varilla graduada de medición de 4m (para árboles de 2 - 4m de altura) y relascopio de Bitterlich (para individuos de más de 4m de altura), de acuerdo al caso. Asimismo, fue necesario el uso de una escalera tijera de aluminio, cuando se midieron árboles de 2 - 4m de

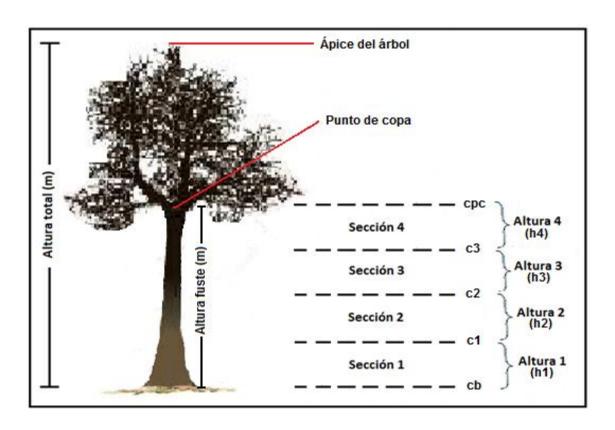


Figura 15: Medición de Alturas y circunferencias del árbol

e. Medición de la altura del fuste y largo de las ramas

La altura del fuste, es la distancia entre la base del árbol (nivel del suelo) hasta la primera rama que conforma la copa (punto de copa). El fuste se considera como la altura limpia del tronco principal y el punto de copa es el localizado en el punto más bajo de la copa, donde las ramas dan origen a la misma (Malleux y Montenegro 1971).

Para medirlo se utilizó una wincha de 5m (cuando la altura de fuste era menor a los 2m) y una varilla graduada de medición (cuando la altura de fuste era de 2 - 4 m). Asimismo, el fuste fue dividido en 4 secciones o alturas iguales como se aprecia en la Figura 15. La altura del fuste estará dada por la sumatoria de las alturas de las secciones según la fórmula:

$$h Fuste = h_1 + h_2 + h_3 + h_4$$

Donde:

h Fuste = Altura del fuste

 h_1 = Altura de la sección 1 del fuste

 h_2 = Altura de la sección 2 del fuste

 h_3 = Altura de la sección 3 del fuste

 h_4 = Altura de la sección 4 del fuste

Para medir la longitud de las ramas primarias y de las secundarias con una circunferencia en la base mayor a los 3 cm, se utilizó la cinta métrica (en ramas menores a 1m de longitud) y la wincha de 5m (en ramas de mayores a 1m de longitud).

3.3.1.4 Obtención de tarugos y muestras

a. Obtención de tarugos (fuste)

Se extrajeron pequeñas piezas o muestras de madera del árbol a través de un método no destructivo, empleando para ello un instrumento conocido como barreno o sonda de Pressler, con el cual se pueden extraer muestras cilíndricas de madera del árbol. Este se encuentra formado por tres piezas: una manivela, un incisor de madera y un extractor, tal como se muestra en la figura 16.

Figura 16: Piezas del barreno de Pressler

FUENTE: Chave (2006)

Las muestras de madera fueron tomadas en el fuste de los árboles seleccionados. En la región donde se extrajeron las muestras (en adelante llamadas tarugos), previamente se retiró con una navaja cualquier elemento adherido a la corteza. La extracción del tarugo de madera se realizó a la altura del pecho por una mayor estabilidad y de esta manera se pudo optimizar la fuerza (a 1.3 m de altura sobre el ras del suelo), evitando de esta manera la

inclinación excesiva para hacer fuerza o tener problemas para reclinar el peso sobre la barra de extracción. La extracción del tarugo de madera fue realizada por una sola persona, para mantener la homogeneidad de la extracción.

Para iniciar la incisión y extracción del tarugo en el árbol, se colocó el incisor de madera en forma perpendicular al fuste del árbol, haciendo presión sobre este (Figura 17 - paso 1). Seguidamente se sostuvo la manivela justo detrás de las dos piezas, como se muestra en el paso 2 de la Figura 17. Asimismo, fue preciso reclinarse sobre la barra para proporcionar la mayor presión posible y comenzar a girar la manivela pausadamente hasta que las dos piezas fueron enroscadas completamente, contribuyendo al proceso de extracción. No se empleó en ningún caso exceso de fuerza para iniciar el proceso de barrenado en el árbol, ya que de ser así pudo resultar en la ruptura de la barra de incisión.

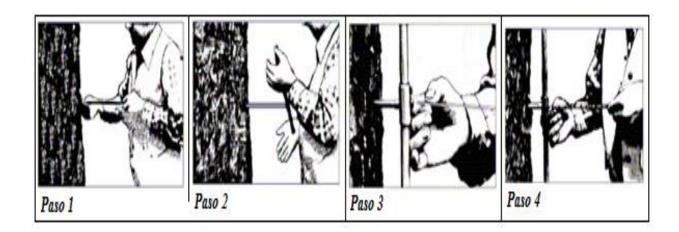


Figura 17: Pasos en el proceso de extracción de un tarugo de madera

FUENTE: Adaptado de Chave (2006)

Una vez que se alcanzó la profundidad de extracción adecuada, se introdujo la pieza de extracción en el espacio hueco del barreno, elevándola ligeramente el final de la barra de extracción para asegurar que la parte inicial se colocara debajo del tarugo.

Se retiró lentamente la barra de extracción de la manivela, tratando de recuperar los tarugos de manera intacta. Seguidamente, se retiró del árbol el barreno de Pressler lo más rápido como fue posible, para evitar que éste se quede atascado en el árbol. Para no experimentar retorcimiento en el material o ruptura de los tarugos, se limpió y engrasó con aceite el barreno (por dentro y por fuera).

Figura 18: Tarugo de madera en el extractor

FUENTE: Chave (2006)

Finalmente se taponearon con cera los agujeros resultantes después de extraer los tarugos de madera, aplicando previamente un compuesto en base a sulfato de cobre para evitar de esta manera, la posible aparición de hongos.

El último paso durante la utilización del barreno de Pressler, fue la limpieza de este, la cual se realizó después de la extracción de los tarugos y antes de guardarse. La colecta de buenas muestras de los árboles, dependió en gran medida del estado del barreno de incremento, el cual tuvo que estar correctamente afilado.

Los tarugos extraídos, se colocaron inmediatamente en una cañita de plástico, se taparon los extremos con masking tape y se codificaron las muestras (este código se repitió en el llenado de la ficha de campo, la cual contenía información adicional sobre el árbol y el lugar), según la especie y el número de árbol. Por practicidad, los tarugos fueron codificados con la letra inicial de la especie a la que pertenece, el número del árbol seleccionado (del 1 al 30) y un guión seguido de la sílaba ta (tarugo). Así por ejemplo, el tarugo correspondiente al árbol 1 que pertenecía a la especie Huaranguay, se le codificó como H1-ta; al tarugo correspondiente al árbol 2 se le codificó como H2-ta y así sucesivamente. De igual manera se utilizó la misma metodología para el resto de especies. En la Tabla 2 a manera de ejemplo, se puede apreciar la codificación de los tarugos según el número de árbol y la especie.

Tabla 2: Codificación de los tarugos

Árbol Nº.	Código			
	Huaranguay	Molle	Tipa	Tara
Árbol 1	H1-ta	M1-ta	Ti1-ta	Ta1-ta
Árbol 2	H2-ta	M2-ta	Ti2-ta	Ta2-ta
Árbol 30	H30-ta	M30-ta	Ti30-ta	Ta30-ta

Las cañitas de plástico debidamente selladas o tapadas en los extremos, se guardaron en contenedores de plástico y estos a su vez dentro de bolsas ziploc, evitando de esta manera pérdidas de humedad.

b. Obtención de muestras (ramas)

De igual manera, para obtener las muestras de las ramas principales de los árboles, se extrajo (podó) con ayuda de una tijera de podar y en forma aleatoria, una de las ramas primarias medidas para obtener el volumen de estas, en cada uno de los individuos evaluados. De cada una de estas ramas extraídas, se obtuvo una muestra de 5 cm de largo aproximadamente, a la cual para ser almacenada y llevada al laboratorio de la UNALM, se le aplicó el mismo procedimiento que para guardar y codificar los tarugos ya mencionados.

3.3.1.5 Transporte

Inmediatamente después de tener las muestras debidamente almacenadas y codificadas, estas fueron trasladadas en auto particular desde el distrito de Pachacamac (Manchay) hacia el distrito de La Molina (UNALM), siguiendo la ruta de la avenida Víctor Malasquez y luego la avenida La Molina. Después de llegar a la UNALM, las muestras fueron llevadas al laboratorio de Propiedades Físicas y Mecánicas de la Madera de la Facultad de Ciencias Forestales.

3.3.2 Fase de laboratorio

3.3.2.1 Volumen de los tarugos y las muestras

Para calcular el volumen de los tarugos, se utilizó su volumen verde o fresco, el cual fue medido de acuerdo al método de desplazamiento de agua, que permite mediciones sencillas y confiables de volúmenes de madera de forma irregular.

Se utilizó un recipiente pequeño, pero con suficiente capacidad para dar cabida a la muestra. El envase se llenó con agua y se colocó en una balanza de precisión de 0.0001 gramos. La balanza se colocó en cero y la muestra de madera se introdujo en el agua, hasta que estuvo totalmente sumergida. No se llenó el recipiente totalmente con agua, para evitar que esta última se desparrame y ello no hubiese permitido que la muestra o tarugo de madera quede dentro.

La muestra se colocó en el centro, y se evitó tocar los extremos del recipiente y el fondo, manteniéndola sumergida con la ayuda de una pinza o aguja, tal como se aprecia en la figura 19. El peso del agua desplazada, resultó igual al volumen de la muestra (ya que el agua tiene una densidad de 1). Esto se conoce como el teorema de Arquímedes. La balanza electrónica fue colocada en cero después de cada medición.

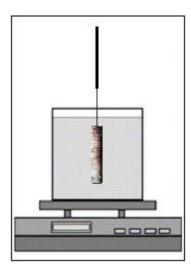


Figura 19: Desplazamiento del agua para medir el volumen del tarugo de madera.

FUENTE: Adaptado de Chave (2006)

Por lo tanto, la lectura de la balanza digital fue igual al volumen del tarugo (para ello se utilizó la equivalencia de 1g = 1 cm³).

Para medir el volumen de las muestras de las ramas, se siguió la misma metodología que la utilizada para medir el volumen de los tarugos, haciendo uso de un punzón y un soporte universal. Las muestras fueron sumergidas con mucho cuidado en un recipiente con agua y se obtuvo el peso de cada muestra. Finalmente los pesos de las secciones de madera se transformaron a volúmenes (cm³), utilizando la equivalencia antes mencionada y colocando en cero la balanza después de cada medición

3.3.2.2 Masa anhidra de los tarugos y las muestras

Los pesos húmedos obtenidos anteriormente y utilizados para el cálculo del volumen fueron anotados, teniendo un peso verde inicial. Seguidamente los tarugos y las muestras de las ramas fueron llevadas a estufa (horno de secado del laboratorio de Propiedades Físico Mecánicas de la Madera de la UNALM) a unos a unos 103° C \pm 2° C. Cada uno de los tarugos y muestras fueron retiradas del horno con ayuda de una tenaza y colocadas en desecadores durante 10 minutos, porque el aire pudo estar saturado de agua y las muestras hubiesen podido ganar humedad, para luego ser pesados rápidamente con ayuda de la balanza analítica.

Se realizó esta operación diariamente, hasta alcanzar un peso constante en cada medición, el cual sería el peso seco final (masa anhidra).

3.3.3 Fase de procesamiento de datos

3.3.3.1 Ingreso de datos

Los datos obtenidos en campo y en laboratorio, fueron digitalizados a hojas de cálculo correspondientes al software Microsoft Excel 2016, para su posterior procesamiento. Este procedimiento se realizó con mucho cuidado y verificando luego los datos para cerciorarse que no hayan errores que puedan alterar o influir en los resultados.

3.3.3.2 Cálculo del diámetro

Con las circunferencias de los árboles medidas en la fase de campo a diferentes alturas [al ras del piso (circunferencia en la base del árbol), a una altura 1 (c_1), a una altura 2 (c_2), a una altura 3 (c_3), en el punto de copa (C_{pc}) y finalmente a 1,3 m de altura (C_{ap})], se

calcularon los diámetros según lo descrito por Ugalde (1981), de acuerdo a las siguientes fórmulas:

$$d_b = c_b / \pi$$
 ; $d_1 = c_1 / \pi$; $d_2 = c_2 / \pi$; $d_3 = c_3 / \pi$; $dbc = c_{pc} / \pi$; $d_{ap} = c_{ap} / \pi$

Donde:

 d_b = diámetro del árbol en la base

 d_1 = diámetro del árbol a una altura 1

 d_2 = diámetro del árbol a una altura 2

 d_3 = diámetro del árbol a una altura 3

dbc = diámetro del árbol en la base de copa

 d_{ap} = diámetro a la altura del pecho

 c_b = circunferencia del árbol en la base

 c_1 = circunferencia del árbol a una altura 1

 c_2 = circunferencia del árbol a una altura 2

 c_3 = circunferencia del árbol a una altura 3

 c_{bc} = circunferencia del árbol en la base de copa

 c_{ap} = circunferencia a la altura del pecho

 $\pi = pi$ (constante numérica)

3.3.3.3 Cálculo del área transversal de cada sección del fuste

Para obtener las áreas transversales en cada sección de los árboles, se utilizaron los diámetros de los individuos evaluados a las diferentes alturas de cada sección. La fórmula empleada para calcular el área transversal en cada una de las secciones, es la descrita por Ugalde (1981):

$$A = \frac{\pi x d^2}{4}$$

Donde:

A =Área transversal de la sección evaluada

 π = Constante numérica pi (3,141516)

d = diámetro de la sección evaluada

3.3.3.4 Cálculo del volumen

Para calcular el volumen de cada individuo, el fuste estuvo dividido en 4 secciones de igual altura y se utilizó las áreas transversales de cada una de ellas: área transversal en la base del árbol, área transversal en la altura 1, en la altura 2, en la altura 3 y el área transversal en el punto copa. Para determinar el volumen de cada sección, se utilizó la fórmula de Smalian descrita por Ugalde (1981), quien la recomienda por ser una fórmula muy práctica y bastante precisa cuando se trata de figuras como el cilindro.

$$V_s = \frac{h (A_1 + A_2)}{2}$$

Donde:

 $V_s = Volumen de la sección (m^3)$

 $A_1 = \text{Área transversal inferior de la sección } (m^2)$

 $A_2 =$ Área transversal superior de la sección (m^2)

h = Altura de la sección (m)

Las secciones del fuste y las áreas transversales se pueden apreciar a continuación en la Figura 20:

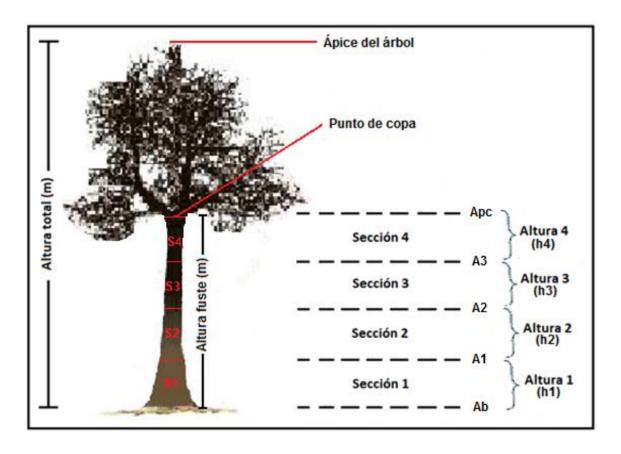


Figura 20: División del árbol en secciones papa la estimación del volumen del fuste

Finalmente los volúmenes de cada sección fueron sumados para hallar el volumen total del fuste en cada árbol:

$$V_{fuste} = V_{s1} + V_{s2} + V_{s3} + V_{s4}$$

Donde:

 $V_{fuste} = Volumen del fuste del árbol (m3)$

 V_{s1} = Volumen de la sección 1 del fuste (m3)

 V_{s2} = Volumen de la sección 2 del fuste (m3)

 V_{s3} = Volumen de la sección 3 del fuste (m3)

 V_{s4} = Volumen de la sección 4 del fuste (m3)

Asimismo, para calcular el volumen de las ramas primarias o mayores a los 3 cm de

circunferencia en la base de todos los individuos, se utilizó la misma metodología descrita

anteriormente. Las ramas secundarias y ramitas terminales no fueron tomadas en cuenta

por tratarse de individuos jóvenes, y por considerarse que el aporte a la biomasa aérea es

mínimo.

El volumen total del árbol está dado por la suma del volumen del fuste mas el volumen de

las ramas primarias:

$$V_{\acute{a}rbol} = V_{fuste} + V_{rpr}$$

Donde:

V árbol = Volumen del árbol

 $V_{fuste} = Volumen del árbol$

 $V_{rpr} = Volumen \ ramas \ primarias$

3.3.3.5 Determinación de la densidad básica

Con los datos obtenidos de volumen saturado y masa anhidra, se procedió a determinar la

densidad básica de la madera (g/cm³), utilizando para ello la siguiente fórmula (Davel et al.

2005):

 $DB = m_0/V_s$

Donde:

DB: Densidad Básica en g/cm³

 m_o : Peso seco al horno (g)

 V_s : Volumen saturado (cm³)

Se determinó la densidad básica en cada componente arbóreo de todos los individuos

evaluados, para cada una las especies estudiadas.

50

3.3.3.6 Cálculo de la biomasa aérea

Una vez determinados los valores de densidad básica y de volumen (m³) para cada individuo, se determinó la biomasa aérea en cada componente evaluado según la siguiente fórmula (MINAM 2015):

$$B_a fuste = DB_{f x} V_{sf}$$
 $B_a ramas = DB_{r x} V_{sr}$

Donde:

DB_f: Densidad Básica fuste en g/cm³
DB_r: Densidad Básica ramas en g/cm³

 B_a : Biomasa aérea fuste (g) B_a ramas: Biomasa aérea ramas (g)

 V_{sf} : Volumen saturado fuste (cm³) V_{sr} : Volumen saturado ramas (cm³)

Con los resultados obtenidos, se procedió a determinar la biomasa aérea total de cada uno de los individuos evaluados, sumando para ello la biomasa aérea del fuste y la biomasa aérea de las ramas tal como se muestra a continuación:

$$B_{at} = B_{a fuste} + B_{a ramas}$$

Donde:

B_{at} = Biomasa aérea total

 $B_{a \text{ fuste}} = Biomasa \ a\'erea \ del \ fuste$

 $B_{a ramas} = Biomasa a \'erea de las ramas$

3.3.3.7 Selección de modelos

Los modelos de ecuaciones seleccionados para la estimación de biomasa aérea, fueron definidos tomando como variable dependiente la biomasa aérea y como variables independientes el dap y la altura, según lo descrito por Simbaña (2011). Alder, citado por Simbaña (2011), prioriza y selecciona aquellos modelos que consideran en sus ecuaciones las mismas variables que las obtenidas en campo durante el muestreo. Estos modelos se presentan en la Tabla 3.

Tabla 3: Modelos para la estimación de biomasa aérea

Número	Modelo para Biomasa		
1	$Biomasa \ a\acute{e}rea = b_0 + b_1 dap^2$		
2	$Biomasa \ a\acute{e}rea = b_0 + b_1 dap^2 h$		
3	Biomasa aérea = $b_0 + b_1$ dap		
4	Biomasa aérea = $b_0 + b_1 dap^3$		
5	Biomasa aérea = $b_0 + b_1 dap^2 h^3$		
6	Biomasa aérea = $b_0 + b_1 dap^3 h$		
7	Biomasa aérea = $b_0 + b_1 dap^3 h^3$		
8	Biomasa aérea = $b_0 + b_1 dap^2 h^2$		
9	Biomasa aérea = $b_0 + b_1 dap^3h^2$		
10	Biomasa aérea = $b_0 + b_1 Ln(dap)$		
11	Biomasa aérea = $b_0 + b_1 (dap)^{0.5}$		
12	Biomasa aérea = $b_0 + b_1(Ln(dap))1/dap$		
13	$Biomasa a\'erea = b_0 + b_1 dap + b_2 dap^2 h$		
14	$Biomasa a\'erea = b_0 + b_1 dap + b_2 dap^2 h^2$		
15	$Biomasa a\'erea = b_0 + b_1 dap^2 + b_2 dap^2h^2$		
16	$Biomasa a\'erea = b_0 + b_1 dap^3 + b_2 dap^2h^2$		
17	Biomasa aérea = $b_0 + b_1 dap^3 + b_2 dap^2h$		
18	$Biomasa a\'erea = b_0 + b_1 dap^3 + b_2 dap^2h^3$		
19	$Biomasa a\'erea = b_0 + b_1 dap^3 h + b_2 dap^2 h^3$		
20	Biomasa aérea = $b_0 + b1dap^2 + b_2dap^3$		
21	$Biomasa a\'erea = b_0 + b_1 dap + b_2 dap^3$		
22	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap)$		
23	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(h)$		
24	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap) + b_2 ln(h)$		
25	$Ln(Biomasa a\'erea) = b_0 + b_1[ln(dap)]^2 + b_2ln(h)$		
26	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap) + b_2 [ln(dap)]^2$		
27	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap^2h)$		
28	$Ln(Biomasa a\'erea) = b_0 + b_1 ln(dap^2h) + b_2 ln(h)$		

FUENTE: Simbaña (2011)

3.3.3.8 Evaluación previa de variables

Se hicieron graficas de dispersión XY, colocando en el eje de las abscisas (X) las variables independientes: dap, altura total y altura de fuste, mientras que en el eje de ordenadas (Y) la biomasa de los 30 árboles evaluados (por especie). De esta manera, se hizo un análisis visual para establecer la relación entre la variable predictiva y la variable respuesta, detectando además posibles valores atípicos conocidos como "outliers", con el objetivo de eliminarlos y homogenizar la distribución de datos.

3.3.3.9 Construcción de ecuaciones de biomasa aérea

Se elaboraron ecuaciones de biomasa aérea, a partir de los modelos originales antes mencionados, siendo estos ensayados mediante el análisis de regresión lineal basado en el método de los mínimos cuadrados, utilizando para ello la herramienta "Análisis de datos" del software Microsoft Excel 2016. El análisis de regresión se hizo según lo propuesto por Barrena *et al.* (1986), Da Cunha *et al.* (2009) y Escobar (2015):

a. Coeficiente de determinación (R²)

El primer criterio de selección que se realizó para la aceptación o rechazo de los modelos, fue el análisis del R², donde se eliminaron aquellas ecuaciones que presentaron un R² muy bajo, menor a 0,8 para modelos lineales y 0,75 para los modelos logarítmicos, según lo recomendado por Alvarado y Obagi (2008). Este valor es muy importante en cualquier análisis de regresión, ya que mide el porcentaje de variabilidad en "y" que puede explicarse a través del conocimiento de la variable "x" (Hanke y Wichern 2006).

b. Prueba estadística Fisher (F)

El segundo criterio de selección, se hizo mediante el análisis de la prueba estadística F, para determinar la significancia estadística de las variables de la ecuación.

El criterio de decisión para corroborar estadísticamente la relación entre variables fue determinado por el "p-valor" del estadístico F y siguiendo lo propuesto por Rojo (2007), se evaluó a un nivel de confianza de 95% ($\alpha = 0.05$) donde se eliminaron aquellas ecuaciones que presentaron un p-valor superior al α (p-valor > 0.05).

c. Prueba estadística t - Student (t)

El tercer criterio de selección, fue utilizar la prueba se significacia t - Student, de acuerdo a lo propuesto por Romero (2016), donde se determinó si los coeficientes estimados en las ecuaciones propuestas son estadísticamente diferentes de cero. La decisión de eliminar ecuaciones en esta etapa fue igual a la que se realizó para la prueba F, donde se eliminaron aquellas ecuaciones que no presentaron significancia estadística de 95%, es decir, aquellas que presentaron un p-valor superior a 0,05 por lo menos en alguno de sus coeficientes estimados.

d. Análisis de los residuos

El siguiente criterio de selección fue realizar el análisis de residuos, siguiendo lo sugerido por FAO (1981), y de esta manera juzgar la calidad de los análisis de regresión basados en el método de los mínimos cuadrados. Este análisis se realizó de forma gráfica, observando e identificando los ajustes no adecuados de los modelos. Los residuos o errores residuales fueron calculados según la fórmula descrita por Alder (1980):

Error residual = Valor observado - Valor predicho

El análisis de residuos consistió en graficar los residuales (eje y) versus la biomasa estimada (eje x) por cada ecuación, con la finalidad de observar la distribución de los mismos y determinar si se cumplía con el supuesto de homocedasticidad.

Las ecuaciones que presentaron los residuos de manera homogénea (ecuaciones homocedásticas), fueron elegidas como óptimas y las ecuaciones que presentaron los residuos de manera heterogénea (ecuaciones heterocedásticas) fueron ponderadas.

e. Análisis de regresión ponderada

Se realizó el análisis de regresión ponderada, para resolver problemas de heterocedasticidad, construyendo para ello nuevas ecuaciones. La construcción de estas, consistió en agregarle pesos o factores de ponderación $(\frac{1}{k})$, a cada una de las ecuaciones que no fueron eliminadas anteriormente (Ruiz 2007; Escobar 2015). El criterio para la determinación de los factores de ponderación $(\frac{1}{k})$, fue utilizar las variables independientes presentes en cada ecuación en particular, como pesos de la misma, es decir, si la ecuación presentaba dos variables independientes, éstas se tomaron como pesos y fueron elevadas a diferentes exponentes (Escobar 2015). Se utilizaron 24 factores de ponderación, en

aquellas ecuaciones que solo consideraron una variable independiente y 48 factores de ponderación para las ecuaciones que tuvieron la combinación de dos variables independientes, elevadas a diferentes exponentes.

Esta operación se realizó hasta encontrar aquel valor que lograra homogenizar las varianzas de los residuos.

La ponderación se realizó de la siguiente manera:

$$\frac{Biomasa\ a\acute{e}rea}{K} = \frac{\underline{b}_0}{K} + \frac{\underline{b}_1 X_i}{K}$$

Para un $K = (X_i)^u$, donde $u = 0.1; 0.2; 0.3; 0.4; ...; u_i$

Se utilizaron distintos u_i hasta lograr un ajuste adecuado. Asimismo, se utilizó el análisis visual de la distribución de los residuos para elegir el mejor factor K de ponderación. Finalmente, se realizó de manera constante el incremento del valor de u_i hasta lograr un ajuste adecuado. Asimismo, aquellas ecuaciones que no cumplan con el principio de homocedasticidad, serán eliminadas.

f. Análisis estadístico de los modelos ponderados

El procedimiento para la regresión ponderada fue el mismo que se aplicó para la regresión sin ponderar, analizando el Coeficiente de Determinación (R²), pruebas estadísticas Fisher (F) y t- Student (t) y el análisis gráfico de residuos; donde se rechazaron aquellas ecuaciones que no cumplían con los criterios mencionados anteriormente. Asimismo, donde había más de una ecuación por modelo que cumplía con lo establecido, se seleccionó aquella ecuación que presentó la mejor distribución de los residuos dentro de cada modelo.

3.3.3.10 Selección de la mejor ecuación

Una vez definidas las ecuaciones ponderadas, se determinó el Índice de Furnival (IF) para cada una de ellas, ya que este permitió comparar ecuaciones con distintas variables dependientes. La ecuación que presentó el menor IF, fue elegida como el mejor modelo.

Para hallar el IF se empleó la siguiente fórmula (Furnival 1961):

$$x = (antilog \ \frac{\sum Log_{10} \sqrt{v_i}}{n})^{-1} \ xS$$

Donde:

 $S = error \, estándar \, del \, modelo$

Vi = valor numérico del factor K de ponderación

n = número de árboles evaluados

Por otro lado, para obtener los coeficientes ponderados de las ecuaciones que cumplieron con una varianza de error constante, se utilizó el procedimiento descrito por Chatterjee y Price (1977) y Montgomery *et al.* (2004), citado por Valverde (2017). Tomando como ejemplo el modelo, *Biomasa aérea* = $b_0 + b_1 dap^3 h^2$ y con un factor de ponderación $(\frac{1}{k})$ tenemos:

Para $K = dap^3h^2$ (igual a la variable independiente)

$$\frac{Biomasa\ a\acute{e}rea}{K} = \frac{\underline{b_0}}{K} + \frac{\underline{b_1}\ dap^3h^2}{K}$$

El modelo tendrá la siguiente forma:

Biomasa aérea =
$$b_1' + b_0' (dap^3h^2)$$

Para $K = (dap^3h^2)^n$ (diferente a la variable independiente)

$$\frac{Biomasa\ a\acute{e}rea}{K} = \frac{\underline{b_0}}{K} + \frac{\underline{b_1}\ dap^3h^2}{K}$$

El modelo tendrá la siguiente forma:

Biomasa aérea =
$$0 + b_0' \left(\frac{1}{dap3h^2}\right) + b_1' \left(dap^3h^2\right)$$

En este tipo de situación, la intercepción se hace cero para la regresión y los coeficientes ponderados para la ecuación inicial serán b_0 (intercepción) = b_0 ' y $b_1 = b_1$ '.

IV. RESULTADOS Y DISCUSIÓN

4.1 FASE DE CAMPO

4.1.1 Presentación de la investigación a la comunidad

Con las autoridades y miembros de la Comunidad Campesina Collanac, en su local comunal ubicado en la Avenida Víctor Malásquez, distrito de Pachacamac, se tuvieron dos reuniones de aproximadamente 30 - 40 minutos cada una de ellas. Estas se realizaron en la primera y la segunda semana de diciembre del 2016, donde en la forma más precisa posible y en términos sencillos, se informó acerca de la investigación que se quería llevar a cabo en su campo santo ubicado en Manchay, ya que tres años antes, se realizó conjuntamente con la población de la localidad, la plantación de los árboles que se encuentran actualmente en ese lugar. En la segunda reunión, tanto los dirigentes como los comuneros aceptaron que se realice la investigación, debido principalmente al vínculo establecido anteriormente a través del Programa Adopta un Árbol (Municipalidad Metropolitana de Lima), que hizo entrega de los plantones. Asimismo, les pareció muy importante que se hagan estudios de ese tipo en su localidad. En la Figura 21 se puede apreciar la entrada al Campo Santo de la Comunidad Campesina Collanac.

Figura 21: Ingreso al Campo Santo de la Comunidad Campesina Collanac - Manchay

Finalmente se acordó el desarrollo de la investigación, con el compromiso que una vez concluida y sustentada la tesis, toda la información recabada sea entregada al presidente de la comunidad para que ellos puedan acceder a dicha información. Cabe mencionar que las coordinaciones posteriores se realizaron con el encargado del campo santo, ya que él era el responsable del ingreso y salida de los comuneros y visitantes al lugar.

4.1.2 Planificación del trabajo de campo

Esta actividad fue importante, debido a que permitió optimizar y cumplir con los tiempos estimados desde el principio hasta al final de la investigación y obtener información fidedigna y completa para los 120 árboles evaluados. La designación diaria de responsabilidades asignadas a cada uno de los colaboradores, facilitó el trabajo de campo pudiendo desarrollar las actividades en forma correcta y segura, sin presentarse contratiempos en ninguna de ellas.

Asimismo, fue muy importante conocer las labores a desempeñar cada día, lo cual fue asumido con responsabilidad por los dos colaboradores contratados (Elvis Verástegui y Miguel Ángel Montoya), ya que entendían la importancia de un correcto levantamiento de datos durante las mediciones de biomasa. Esto contribuyó a que la información recabada sea de calidad. Por otra parte, se capacitó a los colaboradores sobre el correcto uso de herramientas y equipos, para obtener datos fidedignos y al mismo tiempo realizar las labores de manera segura.

4.1.3 Ubicación y medición de árboles

El lugar donde se realizó el levantamiento de información, tuvo como punto central referencial un tanque de agua ubicado en las coordenadas UTM E297471, N8659040. Los 30 árboles seleccionados por especie, presentaron buen estado fitosanitario y se enumeraron en forma correlativa del 1 al 30.

En la Figura 22 se puede apreciar el tanque de agua que fue usado como punto central antes de la medición de árboles.

Figura 22: Tanque de agua del Campo Santo de la Comunidad Campesina Collanac

4.1.3.1 Georreferenciación de árboles

Por fines prácticos, de aquí en adelante se utilizarán los nombres comunes de las especies estudiadas. Las coordenadas UTM de cada uno de estos árboles para cada una de las especies evaluadas son las siguientes:

Tabla 4: Coordenadas iniciales de las especies evaluadas

Especie	Este	Norte
Huaranguay (H1)	297481	8659063
Molle serrano (M1)	297458	8659026
Tipa (T1)	297520	8658968
Tara (Ta1)	297549	8659074
Tara (Ta2)	297462	8658989

Para la especie Tara existen dos tipos de códigos (Ta1 y Ta2), debido a que un grupo de individuos se encontraban en una zona y el otro grupo en otra zona a una distancia considerable, ambos dentro del mismo campo santo.

El error máximo al momento de tomar las coordenadas UTM con el GPS fue de 3 metros.

Un ejemplo de los árboles georreferenciados, se puede apreciar en la Figura 23, donde se tomó como punto inicial al individuo perteneciente a la especie Huaranguay, cuyo código es H1.

Figura 23: Georreferenciación y utilización de brújula para ubicación de los árboles

El total de árboles evaluados llevan los números correlativos del 1 al 30 para cada una de las especies, y sus coordenadas UTM se pueden apreciar en la Tabla 5:

Tabla 5: Coordenadas UTM de acuerdo al número de individuo por especie

Árbol Nº.	Huara	nguay	Molle	serrano	T	ipa	Та	ra
AIDOI Nº.	Este	Norte	Este	Norte	Este	Norte	Este	Norte
1	297471	8659040	297458	8659026	297520	8658968	297549	8659074
2	297479	8659059	297461	8659028	297520	8658964	297547	8659069
3	297473	8659056	297466	8659028	297520	8658959	297544	8659064
4	297492	8659072	297471	8659029	297513	8658959	297540	8659060
5	297477	8659072	297469	8659027	297513	8658966	297537	8659054
6	297480	8659077	297467	8659025	297513	8658972	297534	8659049
7	297485	8659080	297463	8659022	297524	8658924	297539	8659068
8	297488	8659085	297465	8659018	297517	8658925	297537	8659064
9	297491	8659088	297459	8659021	297545	8658936	297532	8659059
10	297477	8659078	297455	8659023	297550	8658936	297528	8659052
11	297481	8659082	297452	8659025	297547	8658948	297461	8658987
12	297484	8659085	297456	8659029	297558	8658948	297457	8658992
13	297487	8659089	297453	8659034	297563	8658947	297452	8658993
14	297486	8659093	297454	8659031	297570	8658948	297448	8658995

15	297483	8659089	297450	8659036	297563	8658935	297443	8658996
16	297480	8659086	297446	8659034	297571	8658935	297438	8658997
17	297478	8659083	297449	8659028	297579	8658935	297433	8658998
18	297476	8659081	297440	8659031	297579	8658948	297468	8658989
19	297472	8659077	297441	8659027	297589	8658947	297468	8658985
20	297468	8659073	297439	8659036	297598	8658947	297462	8658989
21	297469	8659079	297441	8659048	297604	8658947	297455	8658988
22	297476	8659085	297446	8659052	297612	8658946	297449	8658989
23	297480	8659090	297448	8659056	297626	8658948	297444	8658992
24	297484	8659095	297452	8659060	297591	8658934	297440	8658992
25	297464	8659070	297449	8659066	297598	8658934	297435	8658994
26	297464	8659077	297447	8659062	297606	8658934	297428	8658995
27	297466	8659080	297443	8659059	297413	8658951	297460	8658981
28	297470	8659084	297440	8659056	297396	8658951	297456	8658983
29	297474	8659090	297438	8659054	297631	8658933	297449	8658984
30	297478	8659094	297445	8659064	297622	8658934	297444	8658985

4.1.3.2 Marcado de árboles

Fueron marcados a la altura del dap, 30 individuos de la especie Huaranguay, Molle serrano, Tipa y Tara.

Un ejemplo de los árboles marcados con rafia amarilla, se muestran a continuación en la Figura 24.

Figura 24: Marcado de árboles

4.1.3.3 Medición de circunferencias

La Figura 25 muestra el momento en el que se está realizando la toma de las circunferencias a la altura del pecho (cap).

Figura 25: Medición del cap de los árboles

Los valores de las circunferencias a la altura del pecho de los árboles evaluados, se muestran a continuación en la Tabla 6.

Tabla 6: Circunferencia a la altura del pecho (cap) de los árboles evaluados

Árbol	cap (m)				
Arboi Nº.	Huaranguay	Molle serrano	Tipa	Tara	
1	0.14	0.11	0.16	0.08	
2	0.12	0.14	0.12	0.1	
3	0.12	0.11	0.13	0.08	
4	0.15	0.07	0.12	0.08	
5	0.12	0.06	0.12	0.09	
6	0.12	0.1	0.14	0.08	
7	0.13	0.12	0.12	0.09	
8	0.12	0.11	0.13	0.1	
9	0.14	0.07	0.13	0.07	
10	0.1	0.11	0.12	0.08	
11	0.13	0.11	0.14	0.09	
12	0.12	0.11	0.14	0.09	
13	0.11	0.12	0.16	0.09	

14	0.12	0.19	0.14	0.08
15	0.13	0.17	0.16	0.09
16	0.14	0.11	0.13	0.08
17	0.14	0.15	0.13	0.1
18	0.14	0.19	0.11	0.1
19	0.13	0.15	0.11	0.11
20	0.13	0.14	0.14	0.12
21	0.14	0.1	0.14	0.09
22	0.14	0.09	0.14	0.08
23	0.12	0.13	0.15	0.09
24	0.12	0.13	0.16	0.1
25	0.15	0.1	0.14	0.09
26	0.13	0.14	0.14	0.08
27	0.12	0.12	0.14	0.1
28	0.14	0.07	0.13	0.09
29	0.13	0.08	0.13	0.09
30	0.14	0.07	0.14	0.1

El valor promedio más alto lo presenta la especie Tipa con 0,14 m de cap y el valor promedio más bajo lo presenta la especie Tara, cuyo cap es de 0.09 m. Este último valor podría deberse por encontrarse la mitad de los individuos pertenecientes a la especie Tara en una zona más árida. Asimismo, estos valores son muy bajos en todas las especies, por ser individuos jóvenes y encontrarse por debajo de su estado de madurez.

4.1.3.4 Medición de la altura total del árbol

Se obtuvieron medidas muy precisas de las alturas, ya que casi todos los individuos a excepción de 5 de ellos, fueron realizadas de manera manual con una varilla de medición. Solo la altura de 5 árboles fue medida con el relascopio de Bitterlich. En la Figura 26, se puede apreciar la toma de información de alturas, con el instrumento mencionado.

Figura 26: Medición de altura y dap con relascopio de Bitterlich

Las alturas totales (ht) de los 30 individuos de cada especie, se muestran en la Tabla 7:

Tabla 7: Alturas totales por especie

1			Por especie	
Árbol		ht (n	n)	
Arboi Nº.		Molle		
	Huaranguay	serrano	Tipa	Tara
1	4	3.6	4.62	3.67
2	4.2	3.65	4.21	3.84
3	4.06	3.52	4.41	3.3
4	4.9	3.45	4.02	3.1
5	3.45	3.4	4.1	3.45
6	4.18	3.59	4.4	3.62
7	4.1	3.48	3.89	3.47
8	4.16	3.42	4.45	3.5
9	3.9	3.12	4.76	2.62
10	3.29	3.36	4.12	3.54
11	3	3	4.57	2.56
12	3.47	3.8	4.48	3.49
13	3.98	3.92	4.66	3.52
14	4.24	3.6	4.5	3.5
15	4.29	4.1	4.73	3.61
16	3.35	3.96	4.39	3.51
17	3.7	3.48	4.28	3.69

18	3.84	4.2	3.75	3.75
19	3.31	4.7	4	4.15
20	3.54	3.73	4.31	3.58
21	4.03	3.57	4.54	3.56
22	4.15	3.25	4.27	3.44
23	4.06	3.54	4.54	3.92
24	3.33	3.4	4.45	3.37
25	3.35	3.36	3.9	3.31
26	3.84	4.2	4.62	3.4
27	3.41	3.34	4.36	3.55
28	4.19	3.03	4.29	3.47
29	3.86	3.28	4.37	3.64
30	3.53	2.92	4.46	3.72

Los datos registrados en campo corresponden a la información obtenida midiendo las alturas desde la base del individuo, hasta el punto más alto de este. Los promedios de la altura total, son de 3,82 m para el Huaranguay, 3,57 m para el Molle serrano, 4,34 m para la Tipa y 3,5 m para la Tara. Es importante recalcar que los árboles evaluados son muy jóvenes, razón por la cual no son individuos de gran tamaño debido a que aún no han llegado a su estado de madurez.

4.1.3.5 Medición de la altura del fuste y largo de las ramas

La determinación de la altura del fuste (h fuste) fue muy importante, para poder identificar y marcar el punto donde inicia la primera rama que forma la copa.

En la tabla 8, a manera de ejemplo se muestran las alturas parciales del árbol 1 de cada una de las cuatro especies que son objeto de estudio. Asimismo, en el Anexo 3, se puede apreciar las alturas parciales de todos los individuos evaluados.

Tabla 8: Alturas parciales del árbol 1 de la especie Huaranguay

Árbol №.	Especie	h1 (m)	h2 (m)	h3 (m)	h4 (m)
1	Huaranguay	0.66	1.32	1.98	2.64
1	Molle serrano	0.68	1.35	2.025	2.7
1	Tipa	0.63	1.27	1.90	2.53
1	Tara	0.78	1.56	2.34	3.12

Por otro lado, en la Tabla 9, se pueden apreciar las alturas totales de fuste de acuerdo a la especie.

Tabla 9: Alturas de fuste por especie

á.	h fuste (m)					
Árbol Nº.		Molle				
	Huaranguay	serrano	Tipa	Tara		
1	2.64	2.7	2.53	3.12		
2	2.98	2.83	2.71	3.34		
3	2.86	2.92	3	2.8		
4	3.9	1.83	1.93	2.28		
5	2.26	1.85	2.53	2.9		
6	3.1	2.17	2.76	3.15		
7	2.95	2.23	2.9	2.94		
8	3.17	2.07	2.44	3.04		
9	2.68	1.98	2.12	2.08		
10	3.05	2.11	4.13	2.86		
11	2.1	1.93	3.4	1.92		
12	2.84	2.76	3.2	2.94		
13	2.83	3.04	2.98	2.74		
14	2.96	2.4	2.98	2.67		
15	3.64	3.4	3.65	2.86		
16	2.43	3.02	3.11	2.8		
17	2.98	2.52	2.35	1.92		
18	2.72	3.45	2.5	2.7		
19	2.63	3.85	2.74	3.4		
20	2.57	2.9	3.45	2.98		
21	3.24	2.78	2.6	3.15		
22	3.2	2.4	3.3	2.91		
23	3	2.65	3.15	3.5		
24	2.6	2.6	3.38	2.76		
25	2.5	2.22	2.5	2.96		
26	2.7	3	2.9	3.2		
27	3.08	2.28	2.66	2.9		
28	3.52	1.75	3.06	3.05		
29	2.75	2	2.8	3.6		
30	2.55	1.6	2.93	2.46		

Un ejemplo de cada especie evaluada, se pueden apreciar a continuación en la figura 27.

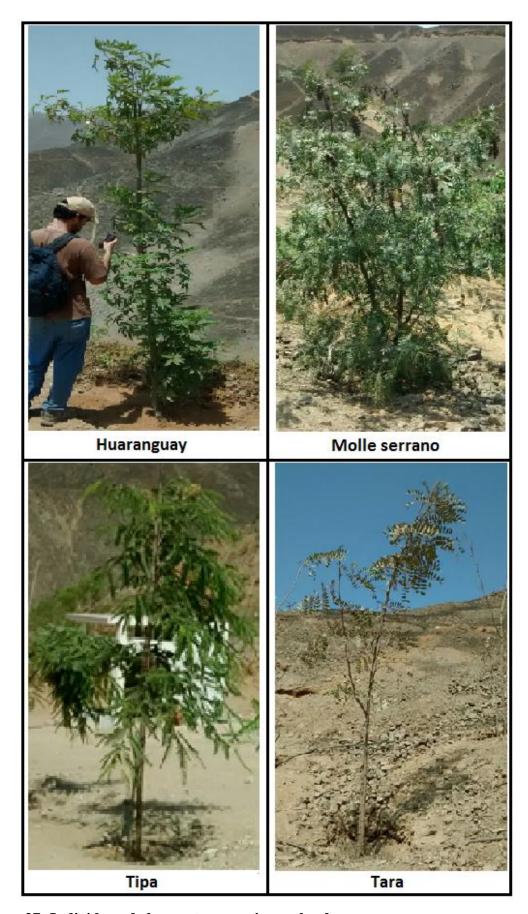


Figura 27: Individuos de las cuatro especies evaluadas

4.1.4 Obtención de tarugos y muestras

4.1.4.1 Obtención de tarugos (fuste)

En algunos individuos evaluados, fue necesario limpiar con una navaja y un trapo la región de donde se extrajeron los tarugos, ya que en algunos fustes se encontraron impurezas o elementos indeseados.

En la Figura 28 se puede apreciar el tarugo del árbol 6 de la especie Huaranguay, el cual fue retirado muy lentamente para evitar que se rompa, lo mismo que se realizó para el resto de individuos evaluados.

Figura 28: Tarugo de madera en el extractor

Se obtuvieron 30 tarugos por especie y de cada árbol evaluado sólo se extrajo uno, haciendo un total de 120 tarugos para todos los individuos evaluados. Los pequeños hoyos resultantes en el fuste luego de la extracción de los tarugos, fueron taponeados con cera después de aplicarles un fungicida en base a sulfato de cobre y evitar así, la posible aparición de agentes patógenos (hongos). Esta operación se puede apreciar en la Figura 29.

Figura 29: Aplicación de sulfato de cobre y tapado de hoyos

Los tarugos extraídos se mantuvieron en todo momento protegidos de los efectos climáticos, evitando la ganancia o pérdida de humedad del ambiente, tal como se aprecia en la Figura 30.

Figura 30: Preparación y guardado de tarugos

4.1.4.2 Obtención de muestras (ramas)

Las muestras de las ramas primarias de los individuos evaluados, se obtuvieron podando una de estas en cada uno de los árboles. De las ramas extraídas, se obtuvo una muestra de aproximadamente cinco cm de largo, la cual fue codificada, almacenada en un recipiente de plástico y guardada en una bolsa ziploc, de manera similar a lo realizado con los tarugos, evitando así pérdidas de humedad. Un ejemplo de las muestras obtenidas, se puede apreciar en la Figura 31.

Figura 31: Muestra de rama

4.1.5 Transporte

El traslado de las muestras se realizó en automóvil, donde el tiempo estimado en cada uno de los viajes fue de 40 minutos y la distancia recorrida fue de unos 15,11 kilómetros aproximadamente.

Se realizaron en total seis viajes, llevando en cuatro de ellos los tarugos extraídos (un viaje por día y por especie) y en los otros dos días restantes, las muestras de las ramas de cada una de las especies evaluadas.

Una de las ventajas de este estudio, es que el análisis de las muestras se realizó al término de cada jornada y en la misma ciudad donde fueron tomadas.

4.2 FASE DE LABORATORIO

Una vez las muestras de ramas y los tarugos en el laboratorio, estos fueron sometidos a distintas pruebas por separado y por especie, las cuales se detallan a continuación:

4.2.1 Volumen de los tarugos

El volumen saturado de los tarugos (cm³), de acuerdo a la especie, se puede observar a continuación en la Tabla 10.

Tabla 10: Volumen saturado de los tarugos por especie

Muestra	Volumen saturado (cm³)					
Nº.	Huaranguay	Molle serrano	Tipa	Tara		
1	0.3271	0.4029	0.367	0.1708		
2	0.3828	0.3988	0.3442	0.1959		
3	0.4103	0.3532	0.408	0.2134		
4	0.3538	0.4413	0.4508	0.3555		
5	0.2941	0.4099	0.3138	0.2127		
6	0.3208	0.3418	0.4086	0.103		
7	0.3744	0.4016	0.3048	0.1108		
8	0.3771	0.3632	0.2767	0.26		
9	0.2946	0.2734	0.2989	0.1692		
10	0.3777	0.4338	0.3676	0.1915		
11	0.2662	0.433	0.4178	0.1703		
12	0.5148	0.3852	0.3577	0.1018		
13	0.2771	0.3995	0.3822	0.1207		
14	0.2142	0.3611	0.369	0.0338		
15	0.3087	0.2912	0.3517	0.113		
16	0.2749	0.3539	0.4002	0.1388		
17	0.3898	0.3803	0.3612	0.204		
18	0.2753	0.3685	0.3854	0.2008		
19	0.3384	0.3868	0.3615	0.1728		
20	0.326	0.4179	0.3726	0.2132		
21	0.3593	0.3928	0.3369	0.1437		
22	0.3294	0.3628	0.3158	0.1967		
23	0.4105	0.409	0.3249	0.133		
24	0.3488	0.3595	0.3016	0.1915		
25	0.3523	0.3277	0.3612	0.1173		
26	0.3366	0.388	0.3872	0.1656		

27	0.3502	0.4383	0.3623	0.198
28	0.2986	0.4155	0.3754	0.1612
29	0.3401	0.3128	0.3986	0.1443
30	0.3225	0.4171	0.3442	0.1689

Se obtuvieron medidas directas y precisas del volumen de las muestras y la medición de estas se aprecia a continuación en la Figura 32.

Figura 32: Medición del volumen de los tarugos

Es importante señalar que se adaptó el soporte universal, utilizando un alfiler para penetrar a los tarugos, debido a que eran muy pequeños y frágiles y podían haberse roto.

Los volúmenes promedio obtenidos de los tarugos extraídos de los fustes, son de 0,3382 cm³ para la especie Huaranguay, 0,3807 cm³ para la especie Molle serrano, 0,3603 cm³ para la especie Tipa y 0,1691 cm³ para la especie Tara. Este último valor es considerablemente más bajo que en el resto de las especies y podría deberse a que en la mayoría de individuos de Tara, los tarugos no resultaron completos pues se partieron al momento de extraerlos, lo cual a su vez pudo ocurrir debido a que los fustes de los árboles se encontraban aparentemente más secos que en el resto de especies.

4.2.2 Volumen de las muestras de las ramas

De forma similar a la medición del volumen de los tarugos, se realizó la obtención del volumen de las muestras de las ramas aplicando el mismo procedimiento. Para ello se utilizó el soporte universal sin adaptación, haciendo uso de un punzón para penetrar a las

muestras. Los volúmenes de las muestras obtenidas para cada especie, se pueden observar en la Tabla 11.

Tabla 11: Volumen saturado de las muestras de ramas (cm³) por especie

Árbol №.	Vo	lumen saturado ((cm ³)	
	Huaranguay	Molle serrano	Tipa	Tara
1	2.6288	2.8898	4.8842	4.1361
2	2.7507	3.8091	2.8304	7.6894
3	4.2319	3.4169	7.5661	2.0810
4	2.9477	6.1871	6.3887	3.5510
5	2.5873	5.6503	3.2857	4.5602
6	5.4884	4.5352	3.6889	5.7453
7	2.9913	5.9428	5.7038	3.8562
8	2.8091	2.6352	2.9588	3.7422
9	4.4617	3.9846	5.8622	4.9001
10	4.2696	4.8770	4.7667	4.2828
11	2.7205	3.1036	6.4548	4.1083
12	4.1810	3.1052	4.3216	5.9483
13	4.9731	6.6785	3.6781	4.4934
14	7.5744	3.4661	4.7233	5.3246
15	2.5846	4.5607	6.6359	6.1822
16	3.4236	4.8973	6.4688	3.3233
17	4.7527	4.1032	5.8122	4.0241
18	4.2319	4.3996	4.9202	4.6036
19	3.2362	4.4856	4.0015	2.9896
20	4.3645	3.3000	5.0768	5.8269
21	3.6745	5.3648	4.0278	5.6329
22	3.2298	3.1808	4.2737	4.7236
23	5.7651	4.8660	6.5157	7.0122
24	3.6582	3.6095	4.7954	5.1350
25	6.4639	5.0222	6.9817	4.9634
26	3.4108	4.8905	4.5193	4.8447
27	3.0587	4.8966	5.2178	5.0853
28	4.5624	4.5201	5.7388	7.0947
29	5.4217	4.7269	4.0188	3.1862
30	4.1810	3.9970	3.3688	4.9665

Los volúmenes promedio obtenidos de las muestras de ramas, son de 4,0212 cm3 para la especie Huaranguay; 4,3701 cm3 para la especie Molle serrano; 4,9829 cm3 para la especie Tipa y 4,8004 cm3 para la especie Tara.

De manera distinta a lo sucedido con las muestras de los tarugos, aquí se puede apreciar que no existe diferencia significativa entre los valores, ya que las muestras obtenidas de las ramas fueron de tamaños y volúmenes similares y no hubo dificultad en su extracción (no hubieron piezas partidas o rotas).

4.2.3 Masa anhidra de los tarugos y las muestras

En la Figura 33, se puede apreciar el proceso de secado de los tarugos y las muestras de ramas, utilizando dos hornos desecadores con una temperatura que oscilaba entre los 103 $^{\circ}$ C con una diferencia de \pm 2 $^{\circ}$ C.

Figura 33: Secado de tarugos y muestras de ramas en estufa

En la Figura 34, se puede apreciar a los tarugos de la especie Tipa colocados en un desecador de humedad.

Figura 34: Colación de muestras en desecadores para evitar aumento de humedad

La masa anhidra de los tarugos se presenta a continuación en la Tabla 12:

Tabla 12: Masa anhidra de los tarugos por especie

Muestra	Masa anhidra (g)				
Nº.	Huaranguay	Molle serrano	Tipa	Tara	
1	0.1585	0.2048	0.1895	0.1089	
2	0.1699	0.194	0.1677	0.1327	
3	0.1731	0.1711	0.2249	0.1485	
4	0.1537	0.2184	0.2278	0.2268	
5	0.1462	0.1991	0.1768	0.1489	
6	0.11	0.1662	0.18	0.0744	
7	0.1609	0.1899	0.1512	0.0743	
8	0.1801	0.1802	0.1223	0.1938	
9	0.1267	0.152	0.1483	0.1206	
10	0.1621	0.2043	0.1892	0.1505	
11	0.1191	0.2128	0.2022	0.1226	
12	0.2468	0.1958	0.1694	0.0795	
13	0.122	0.1748	0.1837	0.0887	
14	0.0922	0.1768	0.188	0.0231	
15	0.1274	0.1342	0.1542	0.0849	
16	0.1232	0.1646	0.4002	0.0932	
17	0.1559	0.1826	0.3612	0.1325	
18	0.1323	0.1732	0.3854	0.1542	
19	0.1551	0.2089	0.3615	0.1124	
20	0.1337	0.1839	0.3726	0.1362	
21	0.1646	0.1925	0.3369	0.1043	
22	0.1394	0.1745	0.3158	0.1339	
23	0.1765	0.1716	0.3249	0.1027	
24	0.1637	0.1654	0.3016	0.1216	
25	0.1483	0.1737	0.3612	0.0884	
26	0.1538	0.2134	0.3872	0.1192	

27	0.1429	0.1973	0.3623	0.1371
28	0.1464	0.1839	0.3754	0.1182
29	0.1635	0.1687	0.3986	0.1025
30	0.1524	0.1794	0.3442	0.1221

Para que los tarugos llegaran a su estado anhidro, fueron necesarios cinco días para alcanzar peso constante. La especie Tara mostró los valores más bajos de masa anhidra en los tarugos, tal como ocurrió con el volumen de estos, debido probablemente a que eran de menor tamaño y demandaron de menos días de secado que el resto de especies.

La masa seca o anhidra de las muestras de las ramas, se presenta a continuación en la Tabla 13.

Tabla 13: Masa anhidra de las muestras de ramas por especie

	Masa seca Ramas (g)						
Árbol №.	Huaranguay	Molle serrano	Tipa	Tara			
1	1.03040	1.3343	2.4457	2.9472			
2	1.09970	1.5484	1.2346	4.7572			
3	1.87280	1.5395	3.9085	1.1689			
4	1.46100	2.659	2.9141	2.139			
5	1.09250	2.6097	1.4945	2.5112			
6	2.36180	1.8974	1.7903	3.9822			
7	1.27650	2.6832	2.9112	2.757			
8	1.21790	1.1697	1.4377	2.4915			
9	1.84240	2.2322	2.6324	3.1621			
10	1.97420	2.294	2.37	2.7883			
11	1.17720	1.298	3.3237	2.4598			
12	1.88910	1.4805	2.0707	3.5606			
13	2.24480	3.2717	1.815	2.4815			
14	3.76070	1.5053	2.3888	2.5075			
15	0.90610	2.1977	3.6667	4.3196			
16	1.56472	2.2119	3.1745	2.0594			
17	1.91410	1.7515	2.6848	2.5958			
18	1.86893	2.0262	2.3449	3.0876			
19	1.57441	2.1199	1.9332	1.9672			
20	1.86076	1.4914	2.3356	3.9543			

21	1.53726	2.2671	1.9287	3.8727
22	1.40125	1.3753	2.0226	2.9449
23	2.33694	2.1386	3.2465	3.8561
24	1.52393	1.6466	2.4152	2.6329
25	2.73888	2.3491	3.3695	3.7555
26	1.55515	2.1245	2.3388	3.3548
27	1.35112	2.2353	2.4875	2.8976
28	1.87839	2.0829	2.5464	3.9265
29	2.45424	2.1461	1.8151	1.9889
30	1.81418	1.8621	1.7642	2.7542

A diferencia de los tarugos, para determinar la masa anhidra de las muestras de las ramas, se requirió de siete días para alcanzar un peso constante. Probablemente fue necesario que transcurrieran más días, debido a que las muestras de ramas mostraron mayor volumen. Asimismo, se puede apreciar que los valores promedio de las masas anhidras son 1,75271 g para la especie Huaranguay; 1,79744 g para la especie Molle serrano; 2,37260 g para la especie Tipa y 2,84252 g para la especie Tara.

4.3 FASE DE PROCESAMIENTO DE DATOS

4.3.1 Ingreso de datos

La digitalización de los datos se realizó de manera correcta (se hizo una verificación posterior), por lo tanto, no existieron cambios en los resultados.

Picard *et al.* (2012), mencionan que el correcto ingreso de datos es muy importante, ya que después de la fase de mediciones de campo y antes de la fase de análisis de los datos, viene la fase de estructuración de los mismos que incluye su ingreso y la verificación de su exactitud con los formatos, evitando así errores posteriores.

4.3.2 Cálculo del diámetro

Los diámetros se obtuvieron con la fórmula mencionada en el acápite 3.3.2 de la metodología, pudiéndose apreciar los resultados en la Tabla 14:

Tabla 14: Diámetro a la altura del pecho (dap) de los individuos evaluados

Árbol		dap (m)	
Nº.	Huaranguay	Molle serrano	Tipa	Tara
1	0.045	0.036	0.05	0.024
2	0.038	0.043	0.039	0.031
3	0.0385	0.035	0.041	0.025
4	0.047	0.023	0.037	0.026
5	0.037	0.019	0.038	0.028
6	0.0372	0.0315	0.043	0.027
7	0.042	0.038	0.039	0.028
8	0.039	0.035	0.042	0.031
9	0.0451	0.023	0.04	0.023
10	0.033	0.035	0.039	0.027
11	0.0405	0.0335	0.046	0.028
12	0.0392	0.036	0.044	0.028
13	0.035	0.037	0.052	0.03
14	0.0383	0.062	0.045	0.026
15	0.041	0.053	0.052	0.028
16	0.043	0.035	0.042	0.027
17	0.0451	0.047	0.041	0.031
18	0.0449	0.059	0.035	0.032
19	0.042	0.047	0.036	0.036
20	0.041	0.044	0.044	0.037
21	0.043	0.033	0.046	0.03
22	0.043	0.029	0.043	0.026
23	0.0384	0.04	0.048	0.029
24	0.038	0.041	0.052	0.032
25	0.0485	0.033	0.045	0.028
26	0.041	0.043	0.044	0.027
27	0.039	0.037	0.045	0.033
28	0.043	0.021	0.04	0.029
29	0.04	0.026	0.041	0.03
30	0.045	0.022	0.045	0.033

Se obtuvo un diámetro promedio de 0,041 m para la especie Huaranguay, 0,0367 m para el Molle serrano, 0,0431 m para la especie Tipa y 0,029 m para la Tara. El dap de esta última

especie, se encuentra muy por debajo del resto de especies evaluadas, debido probablemente a que la mitad de los individuos de Tara evaluados, se encontraban en una zona más árida, donde la capacidad de retención de agua en el suelo era menor, lo cual dificultaría considerablemente el crecimiento de los árboles. Por otra parte, la manifestación fenotípica de la especie indicaría que su crecimiento o desarrollo es más lento que el de las otras tres especies, principalmente comparado con la Tipa, que tiene el mayor diámetro promedio y presentaría el crecimiento más acelerado.

Asimismo, se presenta a continuación en la Figura 35, la relación existente entre el dap y las alturas totales de todas las especies evaluadas. Se puede observar de manera general, que existe una tendencia donde a medida que los diámetros aumentan, las alturas totales se incrementan en tamaño (diámetros mayores presentan alturas totales mayores); se puede observar además que no existe una buena correspondencia entre el dap y la altura total en la especie Huaranguay, donde no se aprecia una buena asociación entre ambas variables. Por otro lado, la especie Tipa fue la que presentó mayor asociación y relación entre las variables mencionadas respecto a las demás especies, donde el coeficiente de correlación es de 0,69.

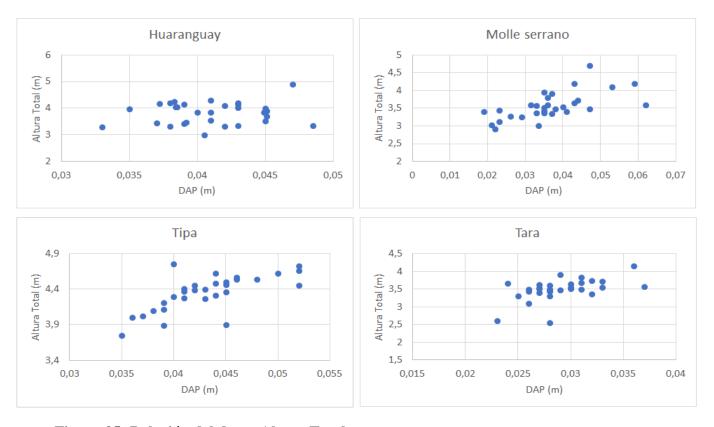


Figura 35: Relación del dap y Altura Total

De igual manera, se presenta a continuación en la Figura 36, la relación existente entre el dap y la altura de fuste en todas las especies estudiadas.

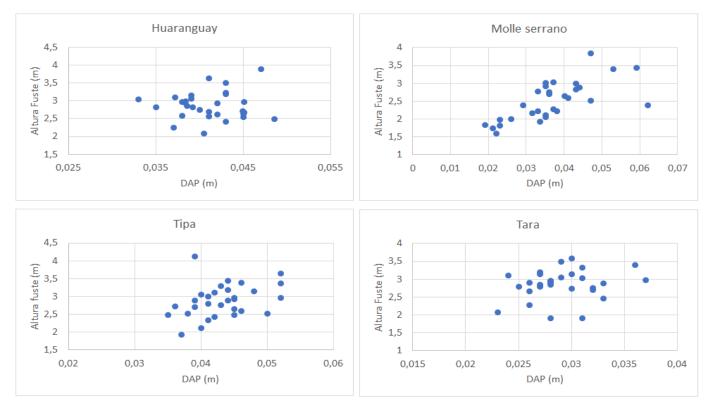


Figura 36: Relación del dap y Altura de Fuste

De manera similar que en la figura anterior, se puede observar que existe una tendencia donde a medida que el diámetro crece, la altura también aumenta su tamaño. Asimismo, la especie Huaranguay presenta la menor relación entre las variables dap y altura de fuste, y en este caso la especie que presenta la mayor correspondencia entre las variables mencionadas, es el Molle serrano, cuyo coeficiente de correlación es de 0,71.

Se debe mencionar además que las relaciones de crecimiento de diámetro y altura están muy influenciadas por la calidad del sitio. Arias (2004), en su estudio indica que las relaciones altura-diámetro dependen de la calidad de sitio y la densidad del rodal, por lo tanto estas relaciones son específicas para cada rodal.

4.3.3 Cálculo del área transversal de cada sección de fuste

Siguiendo el procedimiento descrito en el ítem 3.3.3 de la metodología, a continuación, se puede apreciar en la Tabla 15, las distintas áreas transversales calculadas por sección, de acuerdo a la especie estudiada y en cada uno de los árboles evaluados.

Tabla 15: Áreas circulares por sección de acuerdo a la especie

Huaranguay						
Árbol Nº.	A1 (m ²)	A2 (m ²)	A3 (m ²)	A4 (m ²)	A5 (m ²)	
1	0.00229022	0.0016619	0.00159043	0.0014522	0.00113411	
2	0.00180956	0.00125664	0.00096211	0.00080425	0.00045239	
3	0.00180956	0.00125664	0.00113411	0.00096211	0.00045239	
4	0.00453646	0.00180956	0.00159043	0.00113411	0.00049087	
5	0.00204282	0.0014522	0.00113411	0.00096211	0.0008553	
6	0.00204282	0.00113411	0.00107521	0.00070686	0.00045239	
7	0.00229022	0.0016619	0.00132025	0.00125664	0.00096211	
8	0.00229022	0.00159043	0.00113411	0.00096211	0.00057256	
9	0.00204282	0.00159043	0.00113411	0.00080425	0.00028353	
10	0.00237583	0.00132025	0.00080425	0.00045239	0.00028353	
11	0.00255176	0.00159043	0.0014522	0.00119459	0.00049087	
12	0.00180956	0.00125664	0.00119459	0.00080425	0.00028353	
13	0.00180956	0.00113411	0.00090792	0.00066052	0.00053093	
14	0.00159043	0.00125664	0.00113411	0.00080425	0.00049087	
15	0.00246301	0.00159043	0.00113411	0.00090792	0.00038013	
16	0.0019635	0.0014522	0.0014522	0.00107521	0.00066052	
17	0.00273397	0.0016619	0.00159043	0.00119459	0.00049087	
18	0.0019635	0.00159043	0.00159043	0.00125664	0.00075477	
19	0.00220618	0.00159043	0.00138544	0.0008553	0.00038013	
20	0.00237583	0.0016619	0.00132025	0.00101788	0.0008553	
21	0.00188574	0.00159043	0.00138544	0.00113411	0.00038013	
22	0.00204282	0.00159043	0.00138544	0.00080425	0.00049087	
23	0.00180956	0.00132025	0.00113411	0.00080425	0.00038013	
24	0.00180956	0.00125664	0.00113411	0.00096211	0.00057256	
25	0.00255176	0.00204282	0.00188574	0.0016619	0.00132025	
26	0.00204282	0.0016619	0.00132025	0.00049087	0.00038013	
27	0.00188574	0.00132025	0.00113411	0.00096211	0.00028353	
28	0.00180956	0.00159043	0.00132025	0.00113411	0.0008553	
29	0.00204282	0.0016619	0.00125664	0.00080425	0.00049087	
30	0.00204282	0.00180956	0.00159043	0.0014522	0.0008553	
		Molle s	errano			
Árbol Nº.	A1 (m ²)	A2 (m ²)	A3 (m ²)	A4 (m ²)	A5 (m ²)	
1	0.00273397	0.00212372	0.00101788	0.00061575	0.00028353	

	T	<u> </u>			
2	0.00418539	0.00204282	0.00132025	0.00066052	0.00038013
3	0.0040715	0.00138544	0.0008553	0.00070686	0.00031416
4	0.00229022	0.00107521	0.00101788	0.00038013	0.00031416
5	0.00255176	0.00090792	0.00038013	0.00025447	0.00017671
6	0.00180956	0.00152053	0.0008553	0.00070686	0.00049087
7	0.00331831	0.00255176	0.00132025	0.00096211	0.00053093
8	0.0040715	0.0014522	0.00101788	0.00090792	0.00075477
9	0.00159043	0.0008553	0.00061575	0.00028353	0.00020106
10	0.00352565	0.00132025	0.00113411	0.0008553	0.00070686
11	0.00301907	0.0014522	0.00132025	0.00070686	0.00041548
12	0.00331831	0.00138544	0.00101788	0.00057256	0.00028353
13	0.00220618	0.00152053	0.0008553	0.00075477	0.00045239
14	0.0058088	0.00311725	0.00311725	0.00180956	0.00101788
15	0.0058088	0.00255176	0.00152053	0.00045239	0.00013273
16	0.00321699	0.00180956	0.00038013	9.5033E-05	7.854E-05
17	0.00453646	0.00264208	0.0016619	0.00101788	0.00053093
18	0.0058088	0.00331831	0.00204282	0.00080425	0.00038013
19	0.00321699	0.00220618	0.00113411	0.00049087	0.00034636
20	0.00321699	0.00180956	0.00132025	0.00113411	0.00066052
21	0.00301907	0.00119459	0.00080425	0.00045239	0.00020106
22	0.00282743	0.00188574	0.00070686	0.00057256	0.00034636
23	0.00273397	0.00159043	0.00125664	0.00096211	0.00020106
24	0.00418539	0.00229022	0.00132025	0.00057256	0.00038013
25	0.00237583	0.0014522	0.00113411	0.00066052	0.00017671
26	0.00321699	0.00255176	0.00080425	0.00066052	0.00038013
27	0.0040715	0.00204282	0.00113411	0.00038013	0.00034636
28	0.00204282	0.00070686	0.00049087	0.00034636	0.00028353
29	0.00384845	0.00159043	0.00057256	0.00045239	0.00022698
30	0.00321699	0.0014522	0.00070686	0.00045239	0.00025447
		Ti	pa		
Árbol Nº.	A1 (m ²)	A2 (m ²)	A3 (m ²)	A4 (m ²)	A5 (m ²)
1	0.00554177	0.00255176	0.00188574	0.00096211	0.00075477
2	0.00301907	0.00159043	0.00119459	0.00107521	0.00107521
3	0.00264208	0.00138544	0.00125664	0.00107521	0.00070686
4	0.00282743	0.00173494	0.00132025	0.00096211	0.00061575
5	0.00204282	0.00113411	0.00113411	0.00090792	0.00028353
6	0.00352565	0.0019635	0.00188574	0.0014522	0.00096211
7	0.00352565	0.0014522	0.00107521	0.00070686	0.00070686
8	0.00331831	0.00180956	0.0014522	0.0008553	0.00057256
9	0.00321699	0.00159043	0.00138544	0.00113411	0.00101788
10	0.00237583	0.00125664	0.00107521	0.00041548	0.00034636
11	0.00301907	0.00180956	0.00159043	0.00119459	0.00061575
	2.00201707	1.00100750	2.00107010	2.00117 107	2.00001070

12	0.00331831	0.00173494	0.00132025	0.00066052	0.00053093
13	0.00418539	0.00220618	0.0019635	0.0014522	0.00075477
14	0.00331831	0.0016619	0.00159043	0.00138544	0.00066052
15	0.00255176	0.00220618	0.0019635	0.00125664	0.00066052
16	0.00204282	0.0014522	0.00125664	0.0008553	0.00053093
17	0.00246301	0.0019635	0.00138544	0.00107521	0.00075477
18	0.00188574	0.00101788	0.00096211	0.00090792	0.0008553
19	0.0014522	0.00119459	0.00101788	0.00049087	0.00034636
20	0.00352565	0.00188574	0.00080425	0.00049087	0.00038013
21	0.00418539	0.00188574	0.0016619	0.00101788	0.00066052
22	0.00395919	0.00180956	0.00132025	0.00080425	0.00061575
23	0.00352565	0.00204282	0.00159043	0.0014522	0.00096211
24	0.00418539	0.00229022	0.00204282	0.00113411	0.00080425
25	0.00384845	0.00188574	0.00159043	0.00132025	0.00066052
26	0.00273397	0.00180956	0.0014522	0.0008553	0.00066052
27	0.00255176	0.00204282	0.0016619	0.00159043	0.0014522
28	0.00255176	0.0014522	0.00113411	0.00096211	0.00080425
29	0.00384845	0.0016619	0.00125664	0.00096211	0.00061575
30	0.00301907	0.0016619	0.00159043	0.00096211	0.00070686
		Ta	ra		
Árbol Nº.	A1 (m ²)	A2 (m ²)	A3 (m ²)	A4 (m ²)	$A5 (m^2)$
1	0.00180956	0.0008553	0.00041548	0.00025447	0.00013273
2	0.0014522	0.00113411	0.00057256	0.00020106	7.854E-05
3	0.00132025	0.00070686	0.00049087	0.00025447	7.854E-05
4					
	0.00159043	0.00090792	0.00066052	0.00031416	0.00028353
5	0.00159043 0.0014522	0.00090792 0.0008553	0.00066052 0.00057256	0.00031416 0.00020106	0.00028353 9.5033E-05
5 6					
	0.0014522	0.0008553	0.00057256	0.00020106	9.5033E-05
6	0.0014522 0.00132025	0.0008553 0.00090792	0.00057256 0.00049087	0.00020106 0.00028353	9.5033E-05 0.00015394
6 7	0.0014522 0.00132025 0.00159043	0.0008553 0.00090792 0.00125664	0.00057256 0.00049087 0.00053093	0.00020106 0.00028353 0.00025447	9.5033E-05 0.00015394 7.854E-05
6 7 8	0.0014522 0.00132025 0.00159043 0.00229022	0.0008553 0.00090792 0.00125664 0.00096211	0.00057256 0.00049087 0.00053093 0.00057256	0.00020106 0.00028353 0.00025447 0.00034636	9.5033E-05 0.00015394 7.854E-05 7.854E-05
6 7 8 9	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671
6 7 8 9 10	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00237583	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00080425	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05
6 7 8 9 10 11	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00237583 0.00229022	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00080425 0.00159043	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093 0.00090792	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416
6 7 8 9 10 11 12	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00237583 0.00229022 0.00237583	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00080425 0.00159043 0.00090792	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093 0.00090792 0.00045239	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087 0.00020106	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416 7.854E-05
6 7 8 9 10 11 12 13	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00227583 0.00237583 0.00237583	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00080425 0.00159043 0.00090792 0.0014522	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093 0.00090792 0.00045239 0.00057256	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087 0.00020106 0.00049087	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416 7.854E-05 0.00015394
6 7 8 9 10 11 12 13 14	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00227583 0.00237583 0.00237583 0.00237583 0.00237583	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00080425 0.00159043 0.00090792 0.0014522 0.00107521	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093 0.00090792 0.00045239 0.00057256 0.00049087	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087 0.00020106 0.00049087 0.00031416	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416 7.854E-05 0.00015394 0.00013273
6 7 8 9 10 11 12 13 14	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00227583 0.00227583 0.00237583 0.00237583 0.00237583 0.00246301	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00159043 0.00090792 0.0014522 0.00107521 0.00080425	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00090792 0.00045239 0.00057256 0.00049087 0.00057256	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087 0.00020106 0.00049087 0.00031416 0.00034636	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416 7.854E-05 0.00015394 0.00013273 0.00015394
6 7 8 9 10 11 12 13 14 15 16	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00229022 0.00237583 0.00237583 0.00237583 0.00220618 0.00246301 0.0016619	0.0008553 0.00090792 0.00125664 0.00096211 0.00090792 0.00159043 0.00090792 0.0014522 0.00107521 0.00080425 0.0008553	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093 0.00090792 0.00045239 0.00045239 0.00057256 0.00045239	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087 0.00020106 0.00031416 0.00034636 0.00017671	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416 7.854E-05 0.00015394 0.00013273 0.00013273
6 7 8 9 10 11 12 13 14 15 16	0.0014522 0.00132025 0.00159043 0.00229022 0.00237583 0.00237583 0.00229022 0.00237583 0.00237583 0.00220618 0.00246301 0.0016619 0.0016619	0.0008553 0.00090792 0.00125664 0.00096211 0.00080425 0.00159043 0.00090792 0.0014522 0.00107521 0.00080425 0.0008553 0.00119459	0.00057256 0.00049087 0.00053093 0.00057256 0.00049087 0.00053093 0.00090792 0.00045239 0.00057256 0.00049087 0.00057256 0.00045239 0.00045239 0.0008553	0.00020106 0.00028353 0.00025447 0.00034636 0.00034636 0.00028353 0.00049087 0.00049087 0.00031416 0.00034636 0.00017671 0.00070686	9.5033E-05 0.00015394 7.854E-05 7.854E-05 0.00017671 7.854E-05 0.00031416 7.854E-05 0.00015394 0.00013273 0.00015394 0.00013273 0.00013273

20	0.00220618	0.00132025	0.00101788	0.00041548	0.00025447
21	0.00212372	0.00080425	0.00038013	0.00020106	9.5033E-05
22	0.00132025	0.00066052	0.00041548	0.00020106	0.0001131
23	0.0016619	0.0008553	0.00038013	0.00022698	0.00015394
24	0.00180956	0.00107521	0.00070686	0.00057256	0.00015394
25	0.00188574	0.00096211	0.00038013	0.00025447	9.5033E-05
26	0.00180956	0.00090792	0.00038013	0.00020106	7.854E-05
27	0.0016619	0.00113411	0.00070686	0.00028353	0.00015394
28	0.00132025	0.00080425	0.00057256	0.00022698	7.854E-05
29	0.00180956	0.0008553	0.00053093	0.00022698	7.854E-05
30	0.0016619	0.00107521	0.00090792	0.00049087	0.0001131

Como era previsible, la especie que tuvo las mayores áreas en las distintas secciones transversales fue la Tipa, seguida por el Huaranguay, Molle serrano y en último lugar la Tara. Esta última especie, como se mencionó anteriormente, presenta el menor crecimiento, tanto en altura como en dap; era de esperarse un comportamiento similar para las dimensiones o áreas de las distintas secciones transversales pertenecientes al fuste, lo cual podría deberse probablemente a que el sitio donde se encuentran los individuos de Tara, presenta un suelo considerablemente más seco y la exposición al sol es mayor que las zonas donde se desarrolla el resto de especies.

4.3.4 Cálculo del volumen

La suma de los volúmenes de todas las secciones (cuatro en total), dio como resultado el volumen total del fuste. Los volúmenes de los fustes para cada uno de los árboles de las cuatro especies evaluadas, se presentan a continuación en la Tabla 16:

Tabla 16: Volumen del fuste por especie

Árbol Nº.	Volumen del fuste (m³)					
Albulin'.	Huaranguay	Molle serrano	Tipa	Tara		
1	0.00423502	0.003554614	0.00540653	0.00194718		
2	0.00309471	0.004461746	0.00400224	0.00223204		
3	0.00320594	0.003752515	0.00404382	0.00150612		
4	0.00687158	0.00172725	0.00276902	0.00160716		
5	0.00282358	0.001344376	0.00274462	0.00174184		
6	0.00322694	0.00229635	0.00520627	0.00190529		
7	0.00432541	0.003768	0.00387913	0.00211424		
8	0.00405605	0.002996912	0.00369812	0.00232971		

0.00314362	0.001311911	0.00330053	0.00157114
0.00297876	0.002862174	0.00424194	0.00203481
0.00302323	0.002507353	0.00545019	0.00205988
0.00305443	0.003295986	0.00451227	0.00204959
0.00274	0.003389511	0.00602851	0.00258965
0.00313438	0.006874433	0.00493726	0.00203568
0.00459917	0.00637113	0.00641712	0.00216762
0.00321466	0.002969029	0.00377166	0.0016672
0.00451421	0.004948998	0.00354441	0.00181333
0.00394171	0.007986616	0.00266152	0.00186849
0.00336925	0.005402366	0.0024678	0.0030689
0.00360802	0.004496944	0.00442786	0.00296803
0.00424677	0.002822599	0.00454251	0.00196467
0.00403757	0.002851231	0.00513276	0.00145044
0.0032651	0.003495812	0.00577185	0.00207404
0.00295355	0.004202764	0.00672787	0.0023021
0.00470404	0.002510325	0.00440682	0.00191446
0.00316204	0.004361316	0.00421537	0.00194653
0.00346586	0.00328662	0.00485259	0.00219851
0.00473196	0.00118443	0.00399822	0.00175617
0.00343037	0.002326546	0.00427893	0.00230153
0.00401705	0.001738872	0.0044517	0.00206733
	0.00297876 0.00302323 0.00305443 0.00274 0.00313438 0.00459917 0.00321466 0.00451421 0.00336925 0.00360802 0.00424677 0.00423757 0.0032651 0.00295355 0.00470404 0.00316204 0.00346586 0.00473196 0.00343037	0.00297876 0.002862174 0.00302323 0.002507353 0.00305443 0.003295986 0.00274 0.003389511 0.00313438 0.006874433 0.00459917 0.00637113 0.00321466 0.002969029 0.00451421 0.004948998 0.00394171 0.007986616 0.00336925 0.005402366 0.00360802 0.004496944 0.00424677 0.002822599 0.00403757 0.002851231 0.0032651 0.003495812 0.00470404 0.002510325 0.00316204 0.004361316 0.00346586 0.00328662 0.00473196 0.00118443 0.00343037 0.002326546	0.00297876 0.002862174 0.00424194 0.00302323 0.002507353 0.00545019 0.00305443 0.003295986 0.00451227 0.00274 0.003389511 0.00602851 0.00313438 0.006874433 0.00493726 0.00459917 0.00637113 0.00641712 0.00321466 0.002969029 0.00377166 0.00451421 0.004948998 0.00354441 0.00394171 0.007986616 0.0024678 0.00360802 0.004496944 0.00442786 0.00424677 0.002822599 0.00454251 0.00403757 0.002851231 0.00577185 0.00295355 0.004202764 0.00672787 0.00470404 0.002510325 0.00440682 0.00316204 0.004361316 0.00421537 0.00346586 0.00328662 0.00485259 0.00473196 0.00118443 0.00399822 0.00343037 0.002326546 0.00427893

Se puede apreciar que el mayor volumen promedio de fuste lo tiene la especie Tipa cuyo valor es 0,0044 m³, seguido por la especie Huaranguay con 0,0037 m³, Molle serrano con 0,0035 m³ y Tara, cuyo volumen de fuste promedio fue considerablemente menor que el del resto de las especies estudiadas (0,002 m³). Este resultado era de esperarse, debido a que la Tara también presentó los menores valores en altura de fuste y dap.

Por otro lado, el volumen de las ramas primarias de cada individuo evaluado, se presentan a continuación en la Tabla 17. Tanto las hojas, como las ramas secundarias y las ramitas terminales, fueron despreciadas por tratarse de individuos jóvenes y su aporte a la biomasa aérea por captura de carbono, es bajo debido a que dichas partes del árbol aún no han lignificado. Según Valverde (2017), la biomasa de las ramas secundarias y hojas representan un total del 15,39 por ciento de la biomasa total del árbol, en individuos maduros de *Eucalyptus globulus*. Cabrera (2016), menciona que el promedio de biomasa de hojas y ramas secundarias de *Coffea arabica* es de 12,96 % de la biomasa total de los árboles. La misma autora en su estudio, desprecia el volumen de ramas secundarias y hojas

para la determinación de biomasa y sólo considera el volumen de ramas primarias y del fuste para calcular la biomasa total de los árboles de *Inga edulis*.

Tabla 17: Volumen de ramas primarias por especie

		Volumen ra	mas (m ³)	
Árbol №.	Huaranguay	Molle serrano	Tipa	Tara
1	0.00057193	0.001901747	0.00253896	0.00091584
2	0.0002179	0.001635713	0.00126901	0.00042052
3	0.00057728	0.000768761	0.00265295	0.00037216
4	0.00057521	0.000575749	0.00285463	0.0007287
5	0.00120546	0.000284446	0.00084434	0.00038733
6	0.00051229	0.000439459	0.00306382	0.00023972
7	0.00072953	0.002207381	0.00107864	0.00044028
8	0.00078696	0.001086382	0.00162006	0.00144624
9	1.2671E-05	0.000311581	0.00157866	0.00186244
10	0.0001172	0.00069646	0.00046761	0.0012901
11	0.00022193	0.001780887	0.00250931	0.00119903
12	0.00049217	0.00112002	0.00160796	0.0009891
13	0.00115207	0.000636213	0.00530037	0.00147919
14	0.00062856	0.001422393	0.00658377	0.00145138
15	0.00093719	0.000968838	0.00521974	0.00069147
16	0.00183562	0.000558528	0.00669748	0.0003474
17	0.00099115	0.001438711	0.00152014	0.0006424
18	0.00074381	0.001989945	0.00060276	0.00038385
19	0.00064225	0.00021966	0.00410598	0.00076599
20	0.00084384	0.000419246	0.0014587	0.00082116
21	0.00088464	0.000512289	0.00125215	0.00075242
22	0.00061046	0.00047116	0.00171971	0.00013668
23	0.00133562	0.000582409	0.0020363	0.00035136
24	0.00081333	0.0013267	0.00130054	0.00043408
25	0.00192568	0.001032458	0.00284413	0.00047231
26	0.00145259	0.000803766	0.00114908	0.00058141
27	0.00063038	0.000638544	0.00151362	0.00102695
28	0.00059294	0.000447153	0.00184765	0.00041996
29	0.00125402	0.001249699	0.00411544	0.0005593
30	0.00120925	0.001080268	0.00130604	0.00069595

Para el volumen de las ramas, el valor promedio más alto se presenta en la especie Tipa con 0,005 m³ y el volumen más bajo promedio se encuentra en la especie Tara, cuyo valor

es considerablemente más bajo que en el resto de especies (0,0007 m³). Esto se explica por lo antes señalado, donde el crecimiento y desarrollo de esta especie, es desacelerado y considerablemente menor que el de las otras tres. Asimismo, el número y las dimensiones de las ramas primarias era escaso.

El volumen total de los individuos analizados de acuerdo a la especie, se muestra a continuación en la Tabla 18.

Tabla 18: Volumen total por especie

Árbol Nº.	Volumen total (m³)			
	Huaranguay	Molle serrano	Tipa	Tara
1	0.00480695	0.005456361	0.00794549	0.00286302
2	0.00331261	0.006097459	0.00527125	0.00265256
3	0.00378322	0.004521276	0.00669677	0.00187828
4	0.00744679	0.002302999	0.00562365	0.00233586
5	0.00402904	0.029788981	0.00358896	0.00212917
6	0.00373923	0.002735809	0.00827009	0.00214501
7	0.00505494	0.005975381	0.00495777	0.00255452
8	0.00484301	0.004083294	0.00531818	0.00377595
9	3.16E-03	0.001623492	0.00487919	0.00343358
10	0.00309596	0.003558634	0.00470955	0.00332491
11	0.00324516	0.00428824	0.0079595	0.00325891
12	0.0035466	0.004416006	0.00612023	0.00303869
13	0.00389207	0.004025724	0.01132888	0.00406884
14	0.00376294	0.008296826	0.01152103	0.00348706
15	0.00553636	0.007339968	0.01163686	0.00285909
16	0.00505028	0.003527557	0.01046914	0.0020146
17	0.00550536	0.006387709	0.00506455	0.00245573
18	0.00468552	0.009976561	0.00326428	0.00225234
19	0.0040115	0.005622026	0.00657378	0.00383489
20	0.00445186	0.00491619	0.00588656	0.00378919
21	0.00513141	0.003334888	0.00579466	0.00271709
22	0.00464803	0.003322391	0.00685247	0.00158712
23	0.00460072	0.004078221	0.00780815	0.0024254
24	0.00376688	0.005529464	0.00802841	0.00273618
25	0.00662972	0.003542783	0.00725095	0.00238677
26	0.00461463	0.005165082	0.00536445	0.00252794
27	0.00409624	0.003925164	0.00636621	0.00322546
28	0.0053249	0.001631583	0.00584587	0.00217613
29	0.00468439	0.003576245	0.00839437	0.00286083

Como ya se mencionó anteriormente, los volúmenes de los árboles evaluados son muy pequeños, debido a que son individuos jóvenes y su altura y principalmente su dap, son de dimensiones reducidas, por lo que requieren de un tiempo considerable para alcanzar su estado de madurez.

4.3.5 Determinación de la densidad básica

Después de haber obtenido el volumen saturado y la masa anhidra de los tarugos y las muestras de madera, se procedió a calcular la densidad básica de la madera (DB) procedente del fuste, así como de las ramas primarias, utilizando para ello la fórmula descrita anteriormente en el ítem 3.3.5 de la metodología.

La densidad básica de la madera en el fuste de cada uno de los árboles evaluados para cada una las especies estudiadas, se muestra en la Tabla 19.

Tabla 19: Densidad Básica de los tarugos extraídos del fuste

Árbol	Densidad Básica Fuste (g/cm³)				
Nº.	Huaranguay	Molle serrano	Tipa	Tara	
1	0.4846	0.5083	0.5163	0.6376	
2	0.4438	0.4865	0.4872	0.6774	
3	0.4219	0.4844	0.5512	0.6959	
4	0.4344	0.4949	0.5053	0.6380	
5	0.4971	0.4857	0.5634	0.7000	
6	0.3429	0.4862	0.4405	0.7223	
7	0.4298	0.4729	0.4961	0.6706	
8	0.4776	0.4961	0.4420	0.7454	
9	0.4301	0.5560	0.4962	0.7128	
10	0.4292	0.4710	0.5147	0.7859	
11	0.4474	0.4915	0.4840	0.7199	
12	0.4794	0.5083	0.4736	0.7809	
13	0.4403	0.4375	0.4806	0.7349	
14	0.4304	0.4896	0.5095	0.6834	
15	0.4127	0.4609	0.4384	0.7513	
16	0.4482	0.4650	0.5512	0.6712	
17	0.3999	0.4801	0.5311	0.6493	
18	0.4805	0.4700	0.4409	0.7677	
19	0.4583	0.5401	0.4309	0.6504	

20	0.4101	0.4400	0.4710	0.6388
21	0.4582	0.4900	0.4989	0.7256
22	0.4232	0.4810	0.5211	0.6806
23	0.4300	0.4195	0.5411	0.7719
24	0.4693	0.4600	0.4610	0.6348
25	0.4209	0.5301	0.4909	0.7531
26	0.4570	0.5501	0.4910	0.7195
27	0.4081	0.4501	0.5011	0.6921
28	0.4903	0.4426	0.5111	0.7330
29	0.4808	0.5393	0.4610	0.7101
30	0.4726	0.4301	0.4509	0.7226
Promedio	0.4436	0.4839	0.4917	0.7059

Las densidades básicas promedio de los tarugos obtenidos del fuste para las especies Huaranguay, Molle serrano, Tipa y Tara son de 0,4436 g/cm³, 0,4839 g/cm³, 0,4917 g/cm³, y 0,7059 g/cm³ respectivamente.

Por otra parte, se puede observar a continuación en la Tabla 20, la densidad básica de la madera en las ramas primarias de los árboles evaluados, para cada una las especies estudiadas.

Tabla 20: Densidad Básica de las muestras extraídas de las ramas

Árbol Nº.	Densidad Básica Ramas (g/cm³)			
	Huaranguay	Molle serrano	Tipa	Tara
1	0.39197	0.46173	0.50074	0.71256
2	0.39979	0.40650	0.43619	0.61867
3	0.44254	0.45055	0.51658	0.56170
4	0.49564	0.42977	0.45613	0.60237
5	0.42225	0.46187	0.45485	0.55068
6	0.43033	0.41837	0.48532	0.69312
7	0.42674	0.45150	0.51040	0.71495
8	0.43356	0.44388	0.48591	0.66578
9	0.41294	0.56021	0.44905	0.64531
10	0.46239	0.47037	0.49720	0.65105
11	0.43271	0.41822	0.51492	0.59874
12	0.45183	0.47678	0.47915	0.59859
13	0.45139	0.48989	0.49346	0.55225
14	0.49650	0.43429	0.50575	0.47093

15	0.35058	0.48188	0.55256	0.69872
16	0.45704	0.45166	0.49074	0.61969
17	0.40274	0.42687	0.46193	0.64506
18	0.44163	0.46054	0.47658	0.67069
19	0.48650	0.47260	0.48312	0.65801
20	0.42634	0.45194	0.46006	0.67863
21	0.41836	0.42259	0.47885	0.68751
22	0.43385	0.43238	0.47327	0.62344
23	0.40536	0.43950	0.49826	0.54991
24	0.41658	0.45618	0.50365	0.51274
25	0.42372	0.46775	0.48262	0.75664
26	0.45595	0.43441	0.51751	0.69247
27	0.44173	0.45650	0.47673	0.56980
28	0.41171	0.46081	0.44372	0.55344
29	0.45267	0.45402	0.45166	0.62422
30	0.43391	0.46587	0.52368	0.55456
Promedio	0.43364	0.45365	0.48535	0.62441

Las densidades básicas promedio de las muestras obtenidas de las ramas principales para las especies Huaranguay, Molle serrano, Tipa y Tara son de 0,43364 g/cm³, 0,45365 g/cm³, 0,48535 g/cm³ y 0,62441 g/cm³ respectivamente.

En la Figura 37, se muestra una comparación entre las densidades básicas promedio tanto de los fustes como de las ramas evaluadas, de acuerdo con la especie.

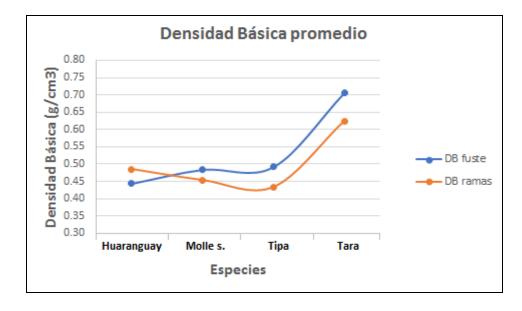


Figura 37: Densidad Básica promedio por especie

Como se aprecia en la Figura 37, existe una densidad básica mayor en el fuste que en las ramas en todas las especies a excepción del Huaranguay, pues en esta especie sucede lo contrario. Asimismo, se puede observar en la gráfica, que la Tara presenta una DB considerablemente mayor que las demás especies evaluadas, donde la primera tiene una DB cuyos valores se encuentran entre los 0,43 g/cm³ y 0,49 g/cm³, notándose una diferencia significativa entre ambas.

4.3.6 Cálculo de la biomasa aérea

En la Tabla 21 se puede apreciar la cantidad de biomasa acumulada en el fuste de cada individuo evaluado, de acuerdo a la especie.

Tabla 21: Biomasa del fuste por especie (kg)

Árbol Nº.	Biomasa fuste (kg)			
Arboi N°.	Huaranguay	Molle serrano	Tipa	Tara
1	2.05212871	1.80686257	2.79165755	1.24149997
2	1.37353956	2.17045811	1.9499606	1.51195407
3	1.35254436	1.817823473	2.229056	1.04807235
4	2.98519292	0.854818295	1.39925259	1.02532756
5	1.40362987	0.653001299	1.54636501	1.21936738
6	1.10649301	1.116598554	2.29351141	1.37625011
7	1.85886282	1.781730944	1.92429314	1.41776388
8	1.93713877	1.486903785	1.63454942	1.73653064
9	1.35199092	0.729372845	1.63756823	1.11985646
10	1.27841407	1.347953548	2.1832843	1.59915997
11	1.35261859	1.232251181	2.63769465	1.48291969
12	1.46432418	1.675374099	2.13692608	1.60061207
13	1.20635362	1.483070336	2.89753258	1.90308321
14	1.34916006	3.365825983	2.51545851	1.39124566
15	1.89807174	2.936145885	2.81353194	1.62859267
16	1.44069986	1.380735263	2.07877934	1.1190475
17	1.80532057	2.376081105	1.88248981	1.17738058
18	1.8940032	3.754092798	1.17353235	1.43439766
19	1.54405792	2.917569492	1.06338524	1.99588461
20	1.47953278	1.978853442	2.08547547	1.89594125
21	1.94573256	1.38321196	2.26642849	1.42547622
22	1.70869965	1.371553727	2.67465381	0.98717889
23	1.40397501	1.466595619	3.12335904	1.60099144
24	1.38623734	1.93346467	3.10133205	1.46148233
25	1.97996828	1.330605285	2.16340019	1.44183612
26	1.44494966	2.398963697	2.06987774	1.40051909

27	1.41428093	1.479424838	2.43140311	1.52163276
28	2.32022344	0.524216012	2.04338358	1.2873205
29	1.64923159	1.254674506	1.9724489	1.63423861
30	1.89836814	0.74792865	2.00748231	1.49390337
Total	49.28574	50.75616	64.72807	43.17947

En la Figura 38, se pueden apreciar los valores de biomasa obtenidos en el fuste de cada árbol, donde el valor promedio de los 30 árboles fue de 1,6429 kg para el Huaranguay, 1,6919 kg para el Molle serrano, 1,4393 para la Tara y 2,1576 kg para la Tipa (siendo este el valor más alto, debido probablemente a que esta especie tiene mayores dimensiones y volúmenes en sus componentes).

Por otra parte, se puede observar además en la Figura 38, que tanto el valor mínimo y máximo, pertenecen a la especie Molle serrano (mín 1,1065 kg y máx. 3,7541 kg) debido probablemente a que esta especie tiende a ramificarse más rápidamente que las otras y por ende su punto de copa se encuentra más cerca al nivel del suelo, por lo que se podrían obtener volúmenes bajos para el fuste en ciertos individuos.

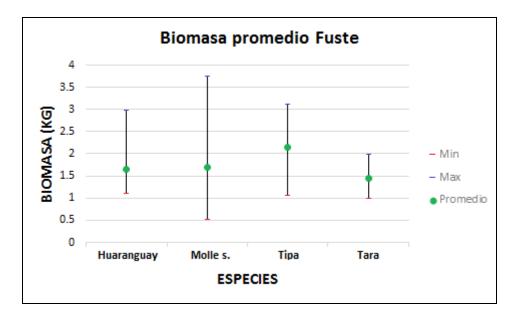


Figura 38: Valor promedio en la biomasa del fuste

De otro lado, la cantidad de biomasa acumulada en las ramas principales de acuerdo a la especie, se muestra a continuación en la Tabla 22:

Tabla 22: Biomasa de las ramas principales por especie

	Biomasa ramas (kg)					
Árbol Nº.	Ц иотопаном	Molle		Tara		
	Huaranguay	serrano	Tipa	Tara		
1	0.2242	0.8781	1.2714	0.6526		
2	0.0871	0.6649	0.5535	0.2602		
3	0.2555	0.3464	1.3705	0.2090		
4	0.2851	0.2474	1.3021	0.4389		
5	0.5090	0.1313	0.3840	0.2133		
6	0.2205	0.1839	1.4869	0.1662		
7	0.3113	0.9966	0.5505	0.3148		
8	0.3412	0.4822	0.7872	0.9629		
9	0.0052	0.1745	0.7089	1.2019		
10	0.0542	0.3276	0.2325	0.8399		
11	0.0960	960 0.7448 1.2921	0.7448	1.2921 0.71	0.7179	
12	0.2224	0.5340	0.7705	0.5921		
13	0.5200	0.3117	2.6155	0.8169		
14	0.3121	0.6177	3.3297	0.6835		
15	0.3286	0.4669	2.8842	0.4831		
16	0.2132	0.6943	3.4477	0.2153		
17	0.3185	0.7536	0.7536 0.8126 0.	0.3929		
18	0.3769	0.7124	0.2873	0.2297		
19	0.2052	0.3980	1.9968	0.4609		
20	0.3670	0.5138	0.7720	0.5285		
21	0.2848	0.3654	0.5890	0.4332		
22	0.3157	0.6264	0.8334	0.0861		
23	0.1065	0.3720	1.0170	0.2366		
24	0.0075	0.3716	0.5959	0.3041		
25	0.2032	0.5517	1.4092	0.3181		
26	0.2878	0.2968	0.6140	0.2963		
27	0.2067	0.2616	0.7181	0.6268		
28	0.3532	0.5262	0.8162	0.2887		
29	0.2331	0.4138	2.0378	0.3548		
30	0.2949	0.7443	0.6233	0.3915		
Total	7.5466	14.5786	36.1098	13.7167		

En la Figura 39 se pueden apreciar los valores de biomasa obtenidos en las ramas primarias de cada árbol, donde el valor promedio de los 30 árboles fue de 0,2516 kg para el Huaranguay, 0,5027 kg para el Molle serrano, 1,2037 kg para la Tipa y 0,4572 kg para la

Tara. Asimismo, se puede apreciar que tanto el valor promedio menor y el mínimo corresponden a la especie Huaranguay. Por otro lado, se puede observar también, que el mayor valor de biomasa en las ramas, corresponde a la especie Tipa, siendo este último considerablemente superior al resto.

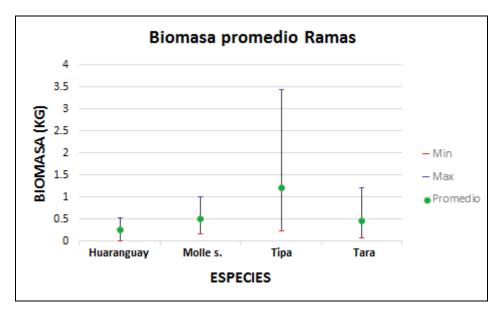


Figura 39: Valor promedio en la biomasa de las ramas

Después de calcular la biomasa del fuste y la biomasa de las ramas, se sumaron sus valores para determinar la biomasa aérea total de cada uno de los individuos evaluados. Se determinó que la biomasa aérea total (de los 30 individuos) para cada especie es de 279,901 kg, correspondiendo 56,832 kg al Huaranguay, 65,3351 kg al Molle serrano, 100,8378 kg a la Tipa y 56,8961 kg a la Tara.

Los valores de biomasa total para todos los árboles evaluados de las cuatro especies que son objeto de estudio, se muestran a continuación en la Tabla 23.

Tabla 23: Biomasa total por especie (kg)

Árbol Nº.	Biomasa Total (kg)					
Arboi in.	Huaranguay	Molle serrano	Tipa	Tara		
1	2.2763	2.6850	4.0630	1.8941		
2	1.4607	2.8354	2.5035	1.7721		
3	1.6080	2.1642	3.5995	1.2571		
4	3.2703	1.1023	2.7013	1.4643		
5	1.9126	0.6530	1.9304	1.4327		
6	1.3269	1.3005	3.7804	1.5424		

				T
7	2.1702	2.7784	2.4748	1.7325
8	2.2783	1.9691	2.4217	2.6994
9	1.3572	0.9039	2.3465	2.3217
10	1.3326	1.6755	2.4158	2.4391
11	1.4486	1.9771	3.9298	2.2008
12	1.6867	2.2094	2.9074	2.1927
13	1.7264	1.7947	5.5131	2.7200
14	1.6612	3.9836	5.8452	2.0747
15	2.2266	3.4030	5.6977	2.1117
16	1.6539	2.0750	5.5265	1.3343
17	2.1238	3.1297	2.6951	1.5703
18	2.2709	4.4665	1.4608	1.6641
19	1.7493	3.3156	3.0601	2.4568
20	1.8465	2.4927	2.8574	2.4244
21	2.2305	1.7486	2.8555	1.8587
22	2.0244	1.9980	3.5080	1.0733
23	1.5105	1.8386	4.1404	1.8376
24	1.3937	2.3051	3.6972	1.7656
25	2.1832	1.8823	3.5726	1.7599
26	1.7327	2.6958	2.6839	1.6968
27	1.6210	1.7410	3.1495	2.1485
28	2.6734	1.0504	2.8596	1.5760
29	1.8823	1.6685	4.0103	1.9891
30	2.1933	1.4922	2.6308	1.8854
Total	56.832	65.3351	100.8378	56.8961

En la Figura 40, se pueden apreciar los valores de biomasa total promedio obtenidos de los 30 árboles evaluados para cada especie, los cuales fueron de 1,8944 kg para el Huaranguay, 2,1779 kg para el Molle serrano, 3,3613 kg para la Tipa y 1,8965 kg para la Tara. El valor promedio menor corresponde a la especie Huaranguay, siendo su valor muy cercano al del Molle serrano y Tara tal como se observa en la Figura 40. Por otro lado, el máximo valor y el valor promedio más alto de contenido de biomasa total, corresponden a la especie Tipa, lo cual podría deberse a su manifestación fenotípica y a que se encuentra en una zona donde la pendiente no es pronunciada.

Es importante mencionar además que ninguno de los individuos de las especies antes mencionadas, ha recibido tratamientos silviculturales como poda, fertilización o

abonamiento (a excepción de la plantación inicial), las cuales podrían mejorar significativamente sus condiciones de crecimiento.

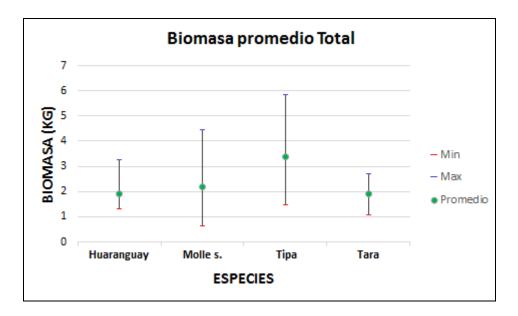


Figura 40: Valor promedio de la biomasa total

4.3.7 Selección de modelos

Los modelos seleccionados siguiendo lo propuesto por Simbaña (2011), son el resultado de las combinaciones de las variables dap y altura que fueron utilizados para el análisis de regresión.

Se debe mencionar que el dap utilizado para todos los modelos es igual al diámetro a 1,3 m de altura.

4.3.8 Evaluación previa de variables

Se hizo un análisis gráfico, donde se determinó la relación existente entre las variables independientes (dap y altura del fuste) y la variable dependiente (biomasa de fuste). Debido a que después de realizar la comparación utilizando la altura total y biomasa total (Anexo 4), donde se estableció que existía mucha dispersión en los datos y que la correlación entre las variables independientes con la dependiente era muy baja, se decidió no tomar en cuenta estas variables para los posteriores análisis estadísticos. Asimismo, se observó que no existían "outliers" en lo datos, razón por la cual todos los individuos evaluados fueron tomados en cuenta.

En la Figura 41 se muestran gráficos de dispersión que señalan el comportamiento y relación entre la variable dependiente (biomasa fuste) y la variable independiente (dap), de los 30 árboles evaluados para cada una de las especies.

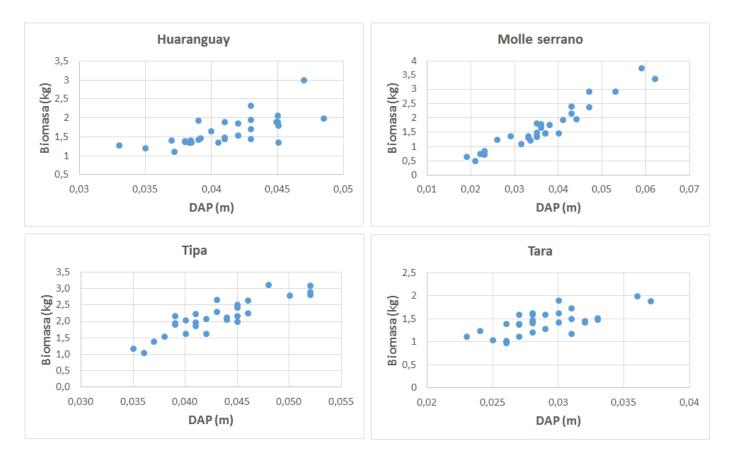


Figura 41: Relación entre Biomasa y dap de los 30 árboles evaluados por especie

Asimismo, en la Figura 42 se muestran gráficas de dispersión que señalan el comportamiento y relación entre la variable dependiente (biomasa fuste) y la variable independiente (altura), de los 30 árboles evaluados para cada una de las especies.

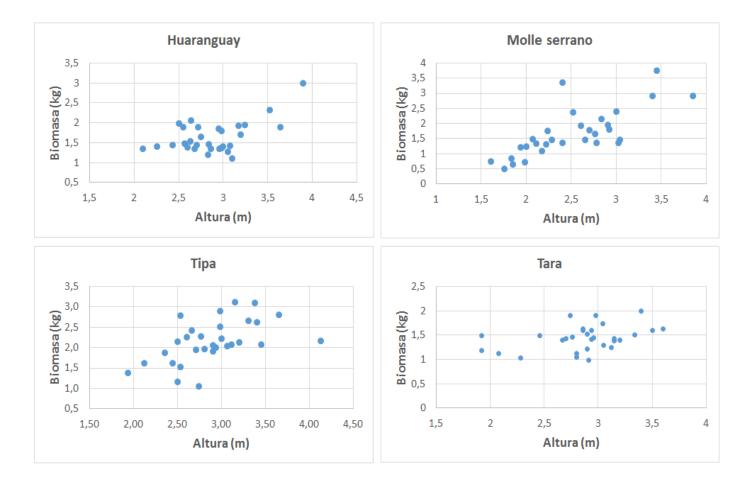


Figura 42: Relación entre Biomasa y Altura de los 30 árboles evaluados por especie

Se puede apreciar en la figura 41 que existe una relación entre los datos del dap y la biomasa, donde a medida que aumenta la variable independiente, existe un incremento exponencial en la variable dependiente. Este incremento exponencial es más notorio en las especies Molle serrano y Tipa que en las otras dos. Por otro lado, en la Figura 42, que relaciona la altura de fuste y la biomasa, si bien es cierto existe una tendencia ascendente exponencial donde a medida que se incrementa la variable independiente también lo hace la variable dependiente, se observa que los datos se encuentran un poco dispersos, principalmente para la especie Tara. Esta evaluación muestra al árbol 18 de la especie Molle serrano como un valor "outlier", debido a que el valor de la biomasa no guarda coherencia con la altura. Caso contrario sucede con el mismo árbol para la relación biomasa vs dap, donde se puede apreciar que si existe coherencia entre los valores de ambas variables.

Por lo antes expuesto, se podría afirmar que entre las dos variables independientes, quien tiene una mayor correlación con la variable dependiente (biomasa), es el dap.

4.3.9 Construcción de ecuaciones de biomasa aérea

4.3.9.1 Análisis de regresión

Las ecuaciones fueron sometidas a un análisis de regresión lineal utilizando el software Microsoft Excel 2016, cuyos resultados fueron satisfactorios para los objetivos requeridos y se obtuvieron de manera inmediata. Las tablas resumen obtenidas a través de la regresión, se pueden observar en los Anexos 7, 8, 9 y 10.

a. Coeficiente de determinación (R²)

En el análisis del coeficiente de determinación (R²), se observó que no todas las ecuaciones obtuvieron un valor superior al propuesto en la metodología (0,8 en modelos lineales y 0,75 en los logarítmicos). En la tabla 24, se puede apreciar que en la especie Huaranguay solo la ecuación 18 fue aceptada al obtener un R² de 0,80311913 y los demás modelos fueron rechazados por encontrarse por debajo del límite inferior propuesto. Esto podría deberse a que ninguna de las dos variables independientes (dap y altura), presentan una relación muy marcada con la variable dependiente (Biomasa), razón por la cual para esta ecuación se requiere de ambas variables para poder establecer una mejor estimación de la variable dependiente.

Para el molle serrano sólo las ecuaciones 5, 7, 12 y 23 fueron rechazadas. Asimismo, se puede observar que el R² es muy alto para el resto de ecuaciones evaluadas, las cuales presentan un buen ajuste (entre 0,85 y 0,94), observándose además que los valores más altos pertenecen a las ecuaciones que tienen una mayor cantidad de variables explicativas, por lo que se podría decir que éstas (sobre todo el dap) tienen gran relación con la variable respuesta, lo cual indicaría la importancia de tener más de una variable independiente que pueda ofrecer valores confiables para el cálculo de la variable dependiente.

En el caso de la especie Tipa, se puede apreciar en la tabla 24 que las ecuaciones que están de azul son los que fueron aceptadas y las de blanco las que fueron rechazadas. Aquí se puede apreciar que todas las ecuaciones logarítmicas fueron aceptadas, a excepción de la ecuación 23 donde el coeficiente de determinación es 0,3 y este valor es el más bajo de todas las ecuaciones rechazadas, debido probablemente a que utiliza sólo a la altura como variable independiente.

Finalmente, para el caso de la Tara, se bajó el umbral inferior del R² a 0,50 debido a que en ninguna ecuación el coeficiente de determinación superó el límite inferior propuesto para las otras tres especies (ni lineal ni logarítmico). Esto podría deberse probablemente a que el fuste de muchos individuos de Tara se encuentra inmerso en la longitud del árbol. Podría deberse además ya que esta especie se encuentra en una zona donde el suelo es considerablemente más seco que en otras zonas y la exposición al sol es mayor.

Las ecuaciones aceptadas y rechazadas según su coeficiente de determinación (R²) para todas las especies, se muestran en la Tabla 24.

Tabla 24: Selección de los mayores Coeficientes de Determinación (R²)

Hu	Huaranguay				
N°	Modelo	\mathbb{R}^2	Condición		
1	B = b0 + b1dap2	0.48910052	Rechazado		
2	B = b0 + b1dap2h	0.77262836	Rechazado		
3	B = b0 + b1dap	0.48176321	Rechazado		
4	B = b0 + b1dap3	0.4931652	Rechazado		
5	B = b0 + b1dap2h3	0.64325247	Rechazado		
6	B = b0 + b1dap3h	0.77476916	Rechazado		
7	B = b0 + b1dap3h3	0.71608729	Rechazado		
8	B = b0 + b1dap2h2	0.70502844	Rechazado		
9	B = b0 + b1dap3h2	0.77520001	Rechazado		
10	B = b0 + b1LN(dap)	0.47102533	Rechazado		
11	B = b0 + b1 (dap)0,5	0.47682337	Rechazado		
12	B = b0 + b1 (LN(dap))1/dap	0.45303724	Rechazado		
13	B = b0 + b1dap + b2dap2h	0.77310095	Rechazado		
14	B = b0 + b1dap + b2dap2h2	0.78720922	Rechazado		
15	B = b0 + b1dap2 + b2 dap2h2	0.78968854	Rechazado		
16	B = b0 + b1dap3 + b2dap2h2	0.79140981	Rechazado		
17	B = b0 + b1dap3 + b2dap2h	0.77368356	Rechazado		
18	B = b0 + b1dap3 + b2dap2h3	0.80311913	Aceptado		
19	B = b0 + b1dap3h + b2dap2h3	0.79521066	Rechazado		
20	B = b0 + b1dap2 + b2dap3	0.49450635	Rechazado		
21	B = b0 + b1dap + b2dap3	0.49468247	Rechazado		
22	Ln(B) = b0 + b1ln(dap)	0.51933893	Rechazado		
23	Ln(B) = b0 + b1ln(h)	0.19597359	Rechazado		
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	0.70477991	Rechazado		
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	0.70251383	Rechazado		
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	0.53095384	Rechazado		

27	Ln(B) = b0 + b1ln(dap2h)	0.69737382	Rechazado		
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	0.70477991	Rechazado		
	lle serrano				
N°	Modelo	\mathbb{R}^2	Condición		
1	B = b0 + b1dap2	0.92163228			
2	B = b0 + b1dap2h	0.93987635			
3	B = b0 + b1dap	0.91828201	Aceptado		
4	B = b0 + b1dap3	0.87432391	Aceptado		
5	B = b0 + b1dap2h3	0.7603165	Rechazado		
6	B = b0 + b1dap3h	0.90958149	Aceptado		
7	B = b0 + b1dap3h3	0.77259407	Rechazado		
8	B = b0 + b1dap2h2	0.92695179	Aceptado		
9	B = b0 + b1dap3h2	0.85675843	Aceptado		
10	B = b0 + b1LN(dap)	0.85097387	Aceptado		
11	B = b0 + b1 (dap)0,5	0.8921751	Aceptado		
12	B = b0 + b1 (LN(dap))1/dap	0.71136292	Rechazado		
13	B = b0 + b1dap + b2dap2h	0.95523896	Aceptado		
14	B = b0 + b1dap + b2dap2h2	0.95384363	Aceptado		
15	B = b0 + b1dap2 + b2 dap2h2	0.95106001	Aceptado		
16	B = b0 + b1dap3 + b2dap2h2	0.9316201	Aceptado		
17	B = b0 + b1dap3 + b2dap2h	0.94453495	Aceptado		
18	B = b0 + b1dap3 + b2dap2h3	0.92466325	Aceptado		
19	B = b0 + b1dap3h + b2dap2h3	0.90989927	Aceptado		
20	B = b0 + b1dap2 + b2dap3	0.92906735	Aceptado		
21	B = b0 + b1dap + b2dap3	0.92640943	Aceptado		
22	Ln(B) = b0 + b1ln(dap)	0.92445784	Aceptado		
23	Ln(B) = b0 + b1ln(h)	0.64397881	Rechazado		
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	0.93504632	Aceptado		
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	0.93006474	Aceptado		
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	0.92457143	Aceptado		
27	Ln(B) = b0 + b1ln(dap2h)	0.92939851	Aceptado		
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	0.93504632	Aceptado		
Tip	Tipa				
N°	Modelo	R ²	Condición		
1	B = b0 + b1dap2	0.76	Rechazado		
2	B = b0 + b1dap2h	0.75	Rechazado		
3	B = b0 + b1dap	0.78	Rechazado		
4	B = b0 + b1dap3	0.74	Rechazado		
5	B = b0 + b1dap2h3	0.49	Rechazado		
6	B = b0 + b1dap3h	0.76	Rechazado		

7	B = b0 + b1dap3h3	0.55	
8	B = b0 + b1dap2h2	0.61	Rechazado
9	B = b0 + b1dap3h2	0.66	
10	B = b0 + b1LN(dap)	0.79	1
11	B = b0 + b1 (dap)0,5	0.78	
12	B = b0 + b1 (LN(dap))1/dap	0.79	Aceptado
13	B = b0 + b1dap + b2dap2h	0.81	Aceptado
14	B = b0 + b1dap + b2dap2h2	0.81	Aceptado
15	B = b0 + b1dap2 + b2 dap2h2	0.8	Aceptado
16	B = b0 + b1dap3 + b2dap2h2	0.78	Rechazado
17	B = b0 + b1dap3 + b2dap2h	0.79	Rechazado
18	B = b0 + b1dap3 + b2dap2h3	0.78	Rechazado
19	B = b0 + b1dap3h + b2dap2h3	0.77	Rechazado
20	B = b0 + b1dap2 + b2dap3	0.79	Rechazado
21	B = b0 + b1dap + b2dap3	0.79	Rechazado
22	Ln(B) = b0 + b1ln(dap)	0.76	Aceptado
23	Ln(B) = b0 + b1ln(h)	0.3	Rechazado
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	0.81	Aceptado
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	0.82	Aceptado
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	0.8	Aceptado
27	Ln(B) = b0 + b1ln(dap2h)	0.77	Aceptado
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	0.81	Aceptado
Tai	ra		
N°	Modelo	\mathbb{R}^2	Condición
1	B = b0 + b1dap2	0.46987876	Rechazado
2	B = b0 + b1dap2h	0.54697049	
3	B = b0 + b1dap	0.4736511	Rechazado
4	B = b0 + b1dap3	0.46265773	Rechazado
5	B = b0 + b1dap2h3	0.42736708	Rechazado
6	B = b0 + b1dap3h	0.54720431	Aceptado
7	B = b0 + b1dap3h3	0.48824294	Rechazado
8	B = b0 + b1dap2h2	0.48674458	Rechazado
9	· · · I		
	B = b0 + b1dap3h2	0.53036999	Aceptado
10	B = b0 + b1dap3h2 $B = b0 + b1LN(dap)$	0.53036999 0.47349315	Aceptado Rechazado
10 11	B = b0 + b1LN(dap)		-
	B = b0 + b1LN(dap) B = b0 + b1 (dap)0,5	0.47349315 0.4740858	Rechazado
11 12	B = b0 + b1LN(dap) B = b0 + b1 (dap)0,5 B = b0 + b1 (LN(dap))1/dap	0.47349315 0.4740858 0.46759099	Rechazado Rechazado
11 12 13	B = b0 + b1LN(dap) $B = b0 + b1 (dap)0,5$ $B = b0 + b1 (LN(dap))1/dap$ $B = b0 + b1dap + b2dap2h$	0.47349315 0.4740858 0.46759099 0.55440468	Rechazado Rechazado Rechazado Aceptado
11 12	B = b0 + b1LN(dap) B = b0 + b1 (dap)0,5 B = b0 + b1 (LN(dap))1/dap	0.47349315 0.4740858 0.46759099	Rechazado Rechazado Rechazado

16	B = b0 + b1dap3 + b2dap2h2	0.54967773	Aceptado
17	B = b0 + b1dap3 + b2dap2h	0.55167518	Aceptado
18	B = b0 + b1dap3 + b2dap2h3	0.54735009	Aceptado
19	B = b0 + b1dap3h + b2dap2h3	0.5488246	Aceptado
20	B = b0 + b1dap2 + b2dap3	0.47245968	Rechazado
21	B = b0 + b1dap + b2dap3	0.47370596	Rechazado
22	Ln(B) = b0 + b1ln(dap)	0.46129842	Rechazado
23	Ln(B) = b0 + b1ln(h)	0.15390844	Rechazado
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	0.52645239	Aceptado
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	0.5263187	Aceptado
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	0.46235201	Rechazado
27	Ln(B) = b0 + b1ln(dap2h)	0.50903116	Aceptado
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	0.52645239	Aceptado

b. Prueba estadística Fisher (F)

Después de haber sido sometidos los modelos a la prueba estadística Fisher, ninguno de ellos fue rechazado debido a que todos cumplían con lo propuesto por Rojo (2007), donde los resultados obtenidos no presentaron valores mayores a 0,05 (p-valor > 0,05) o, dicho de otra manera, el p-valor en todas las ecuaciones fue menor a 0,05, siendo las variables de estas estadísticamente significativas, con un 95 por ciento de confianza.

Por lo antes mencionado, se podría afirmar que existe suficiente evidencia estadística para rechazar la hipótesis nula (H₀), afirmando que existe una regresión lineal significativa, donde la variable respuesta (biomasa) depende o se encuentra en función de las variables explicativas (dap y altura). En la Tabla 25 se pueden observar los resultados obtenidos mediante la prueba estadística Fisher (F), para todas las especies evaluadas, donde fueron aceptadas las siguientes ecuaciones:

- Huaranguay: Ecuación 1.
- Molle serrano: Ecuaciones 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28.
- Tipa: Ecuaciones 10, 12, 13, 14, 15, 22, 24, 25, 26, 27, 28.
- Tara: Ecuaciones 2, 6, 9, 13, 14, 15, 16, 17, 18, 19, 24, 25, 27, 28.

Tabla 25: Prueba estadística Fisher (F)

	Huaranguay				
N°	Madala	Prueba Fis	her (F)	Candiaián	
IN	Modelo	F Calculado	P-Value	Condición	
18	B = b0 + b1dap3 + b2dap2h3	55.0693825	2.96E-10	Aceptado	
	Molle serr	ano			
N°	Modelo	Prueba Fis	her (F)	Condición	
IV	Modelo	F Calculado	P-Value	Condicion	
1	B = b0 + b1dap2	329.289941	5.12E-17	Aceptado	
2	B = b0 + b1dap2h	437.706954	1.24E-18	Aceptado	
3	B = b0 + b1dap	314.641819	9.21E-17	Aceptado	
4	B = b0 + b1dap3	194.794958	3.90E-14	Aceptado	
6	B = b0 + b1dap3h	281.67112	3.81E-16	Aceptado	
8	B = b0 + b1dap2h2	170.919602	1.92E-13	Aceptado	
9	B = b0 + b1dap3h2	167.473984	2.46E-13	Aceptado	
10	B = b0 + b1LN(dap)	159.886511	4.29E-13	Aceptado	
11	B = b0 + b1 (dap)0,5	231.680274	4.52E-15	Aceptado	
13	B = b0 + b1dap + b2dap2h	288.101579	6.13E-19	Aceptado	
14	B = b0 + b1dap + b2dap2h2	278.984019	9.27E-19	Aceptado	
15	B = b0 + b1dap2 + b2 dap2h2	262.348018	2.04E-18	Aceptado	
16	B = b0 + b1dap3 + b2dap2h2	183.92644	1.87E-16	Aceptado	
17	B = b0 + b1dap3 + b2dap2h	229.896503	1.11E-17	Aceptado	
18	B = b0 + b1dap3 + b2dap2h3	165.695413	6.91E-16	Aceptado	
19	B = b0 + b1dap3h + b2dap2h3	136.332303	7.74E-15	Aceptado	
20	B = b0 + b1dap2 + b2dap3	176.82137	3.07E-16	Aceptado	
21	B = b0 + b1dap + b2dap3	169.947426	5.04E-16	Aceptado	
22	Ln(B) = b0 + b1ln(dap)	342.653928	3.06E-17	Aceptado	
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	194.340413	9.34E-17	Aceptado	
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	179.535666	2.53E-16	Aceptado	
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	165.477286	7.03E-16	Aceptado	
27	Ln(B) = b0 + b1ln(dap2h)	368.592185	1.18E-17	Aceptado	
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	194.340413	9.34E-17	Aceptado	
	Tipa				
N°	Modelo	Prueba Fis	her (F)	Condición	
IN	Widdeld	F Calculado	P-Value	Condicion	
10	B = b0 + b1LN(dap)	104.210561	6.09E-11	Aceptado	
12	B = b0 + b1 (LN(dap))1/dap	107.103845	4.49E-11	Aceptado	
13	B = b0 + b1dap + b2dap2h	58.9310048	1.41E-10	Aceptado	
14	B = b0 + b1dap + b2dap2h2	58.9070567	1.42E-10	Aceptado	
15	B = b0 + b1dap2 + b2 dap2h2	54.0753675	3.61E-10	Aceptado	

22	Ln(B) = b0 + b1ln(dap)	88.5274641	3.63E-10	Aceptado	
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	58.9693802	1.40E-10	Aceptado	
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	61.2083786	9.31E-11	Aceptado	
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	53.844096	3.78E-10	Aceptado	
27	Ln(B) = b0 + b1ln(dap2h)	93.146509	2.09E-10	Aceptado	
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	58.9693802	1.40E-10	Aceptado	
	Tara				
N°	Madala	Prueba F	isher (F)	C = 11 = 1 4	
IN.	Modelo	F Calculado	P-Value	Condición	
2	B = b0 + b1dap2h	33.8061282	3.02E-06	Aceptado	
6	B = b0 + b1dap3h	33.8380446	3.00E-06	Aceptado	
9	B = b0 + b1dap3h2	31.621403	5.07E-06	Aceptado	
13	B = b0 + b1dap + b2dap2h	16.796548	1.82E-05	Aceptado	
14	B = b0 + b1dap + b2dap2h2	16.9010048	1.74E-05	Aceptado	
15	B = b0 + b1dap2 + b2 dap2h2	16.7204678	1.89E-05	Aceptado	
16	B = b0 + b1dap3 + b2dap2h2	16.4785305	2.10E-05	Aceptado	
17	B = b0 + b1dap3 + b2dap2h	16.6120957	1.98E-05	Aceptado	
18	B = b0 + b1dap3 + b2dap2h3	16.3243733	2.25E-05	Aceptado	
19	B = b0 + b1dap3h + b2dap2h3	16.4218443	2.16E-05	Aceptado	
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	15.0082213	4.14E-05	Aceptado	
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	15.000175	4.16E-05	Aceptado	
27	Ln(B) = b0 + b1ln(dap2h)	29.0300957	9.61E-06	Aceptado	
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	15.0082213	4.14E-05	Aceptado	

c. Prueba estadística t - student (t)

En esta etapa, se siguió el mismo procedimiento que para la prueba Fisher (F), donde se eliminaron aquellas ecuaciones que no presentaron significancia estadística de 95 por ciento. Bajo esta premisa, con un nivel de confianza del 95 por ciento se rechazaron 20 ecuaciones (7 pertenecientes a la especie Molle serrano y 13 pertenecientes a la especie Tara), las cuales presentaron un p-valor mayor a 0,05 en por lo menos uno de sus coeficientes estimados. Esto indicaría que no cumplen con la significancia en sus variables explicativas, es decir una o más de una variable no influyen de manera significativa en el resultado de la variable respuesta, o dicho de otra manera, no explican la biomasa. Asimismo, se debe mencionar que para esta prueba, todos los modelos fueron aceptados en las especies Huaranguay y Tipa.

En la Tabla 26, se pueden apreciar los resultados de todas las ecuaciones pertenecientes a las especies evaluadas, que fueron sometidas a la prueba t - student (t).

Tabla 26: Prueba estadística t - student (t)

	Huarangua	ıy		
N°	M. J.L.	t Student	(p-valor)	C 1:-:/
N°	Modelo	b1	b2	Condición
18	B = b0 + b1dap3 + b2dap2h3	7.15E-05	5.45E-07	Aceptado
	Molle serra	no		
N°	Modelo	t Student	(p-valor)	Condición
11	Wiodelo	b1	b2	Condicion
1	B = b0 + b1dap2	5.12E-17		Aceptado
2	B = b0 + b1dap2h	1.24E-18		Aceptado
3	B = b0 + b1dap	9.21E-17		Aceptado
4	B = b0 + b1dap3	3.90E-14		Aceptado
6	B = b0 + b1dap3h	3.81E-16		Aceptado
8	B = b0 + b1dap2h2	1.92E-13		Aceptado
9	B = b0 + b1dap3h2	2.46E-13		Aceptado
10	B = b0 + b1LN(dap)	4.29E-13		Aceptado
11	B = b0 + b1 (dap)0,5	4.52E-15		Aceptado
13	B = b0 + b1dap + b2dap2h	0.005155	6.44E-05	Aceptado
14	B = b0 + b1dap + b2dap2h2	5.30E-08	9.91E-05	Aceptado
15	B = b0 + b1dap2 + b2 dap2h2	1.18E-07	0.00041	Aceptado
16	B = b0 + b1dap3 + b2dap2h2	1.20E-05	5.86E-05	Aceptado
17	B = b0 + b1dap3 + b2dap2h	0.143701	3.18E-06	Rechazado
18	B = b0 + b1dap3 + b2dap2h3	2.97E-08	0.000229	Aceptado
19	B = b0 + b1dap3h + b2dap2h3	3.47E-07	0.760004	Rechazado
20	B = b0 + b1dap2 + b2dap3	9.81E-05	0.104044	Rechazado
21	B = b0 + b1dap + b2dap3	0.000165	0.095626	Rechazado
22	Ln(B) = b0 + b1ln(dap)	3.06E-17		Aceptado
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	1.77E-11	0.045403	Aceptado
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	4.84E-11	0.066264	Rechazado
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	0.242073	0.841701	Rechazado
27	Ln(B) = b0 + b1ln(dap2h)	1.18E-17		Aceptado
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	1.77E-11	0.137104	Rechazado
	Tipa			
N°	Modelo	t Student	(p-valor)	Condición
14	Modelo	b1	b2	Condicion
10	B = b0 + b1LN(dap)	6.09E-11		Aceptado
12	B = b0 + b1 (LN(dap))1/dap	4.49E-11		Aceptado

13	B = b0 + b1dap + b2dap2h	0.006525	0.032059	Aceptado
14	B = b0 + b1dap + b2dap2h2	9.73E-06	0.032223	Aceptado
15	B = b0 + b1dap2 + b2 dap2h2	2.55E-05	0.034148	Aceptado
22	Ln(B) = b0 + b1ln(dap)	3.63E-10		Aceptado
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	3.21E-09	0.009377	Aceptado
25	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	2.12E-09	0.009056	Aceptado
26	Ln(B) = b0 + b1ln(dap) + b2[ln(dap)]2	0.043925	0.028392	Aceptado
27	Ln(B) = b0 + b1ln(dap2h)	2.09E-10		Aceptado
28	Ln(B) = b0 + b1ln(dap2h) + b2ln(h)	3.21E-09	0.016788	Aceptado
	Tara			
NIO	24.11	t Student	(p-valor)	G 11 17
N°	Modelo	b1	b2	Condición
2	B = b0 + b1dap2h	3.02E-06		Aceptado
6	B = b0 + b1dap3h	3.00E-06		Aceptado
9	B = b0 + b1dap3h2	5.07E-06		Aceptado
13	B = b0 + b1dap + b2dap2h	0.507818	0.035612	Rechazado
14	B = b0 + b1dap + b2dap2h2	0.050077	0.033759	Rechazado
15	B = b0 + b1dap2 + b2 dap2h2	0.055038	0.033144	Rechazado
16	B = b0 + b1dap3 + b2dap2h2	0.062575	0.030446	Rechazado
17	B = b0 + b1dap3 + b2dap2h	0.598877	0.02843	Rechazado
18	B = b0 + b1dap3 + b2dap2h3	0.01253	0.032972	Rechazado
19	B = b0 + b1dap3h + b2dap2h3	0.011933	0.757895	Rechazado
24	Ln(B) = b0 + b1ln(dap) + b2ln(h)	8.71E-05	0.064513	Rechazado
25	T (D) 10 - 11 [1 (1)10 - 101 (1)	8.75E-05	0.066208	Rechazado
	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(h)	0.702 00		
27	Ln(B) = b0 + b1 [ln(dap)]2 + b2ln(n) $Ln(B) = b0 + b1ln(dap2h)$	9.61E-06		Aceptado
			0.327787	Aceptado Rechazado

d. Análisis de los residuos

Se realizó el análisis de los residuos para las siguientes ecuaciones, según la especie:

- Huaranguay: ecuación 18
- Molle serrano: ecuaciones 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 22, 24, 27.
- Tipa: 10, 12, 13, 14, 15, 22, 24, 25, 26, 27, 28.
- Tara: 2, 6, 9, 27.

A través del análisis de residuos, se determinó que no se cumplía con el supuesto de homocedasticidad. La distribución de los residuos para cada modelo, en todas las especies estudiadas, se pueden apreciar en el Anexo 5.

El Anexo 5, muestra los gráficos de análisis de residuos de las ecuaciones lineales seleccionadas para todas las especies, en las cuales se aprecia que no existe homogeneidad de variancias de los errores en función de la biomasa estimada (existe heterocedasticidad en todos los modelos). Estos resultados nos indican que debe realizarse una regresión ponderada para obtener homogeneidad de variancias (Barrena 1988). Asimismo, Montgomery *et al.* (2006) señalan que los modelos de regresión lineal con varianza de error no constante se pueden ajustar con el método de los mínimos cuadrados ponderados. De igual manera, Vilar (2006) sostiene que, al existir problemas de heterocedasticidad, deben transformarse los datos introduciendo nuevas variables, las cuales pueden ser cuadrados de las existentes o aplicar mínimos cuadrados ponderados.

Por lo antes expuesto, fue necesario realizar la regresión ponderada a las ecuaciones seleccionadas previamente, con la finalidad de homocedastizar la distribución de los errores. Es importante señalar que en los modelos logarítmicos, al ser modelos ya transformados, no se realizó la ponderación de estos, siendo finalmente rechazados, ya que no cumplían con el principio de homogeneidad de residuos.

4.3.9.2 Análisis de regresión ponderada

Se elaboraron nuevas ecuaciones a través de la regresión ponderada de acuerdo a lo establecido en la metodología, donde se le agregaron pesos o factores de ponderación $(\frac{1}{k})$, a todas las ecuaciones que no fueron eliminadas. Se utilizaron 24 factores de ponderación, en aquellos modelos que solo consideraron una variable independiente y 48 factores de ponderación para los modelos que poseen la combinación de dos variables independientes. Asimismo, se utilizó el análisis visual de la distribución de los errores para elegir el mejor factor K de ponderación.

Para la especie Huaranguay por ejemplo, se utilizaron 48 factores de ponderación en el modelo que tiene la combinación de las variables dap y altura como variables independientes (Modelo 18). Los factores de ponderación $(\frac{1}{k})$ para el modelo 18, son los siguientes:

$$K = (dap^3)^{0.1}; (dap^3)^{0.2}; (dap^3)^{0.3} (dap^3)^{0.4}; (dap^3)^{0.5}; (dap^3)^{0.6}; (dap^3)^{0.7}; (dap^3)^{0.8}; (dap^3)^{0.9}; (dap^3)^{1}; (dap^3)^{1.1}; (dap^3)^{1.2}; (dap^3)^{1.3}; (dap^3)^{1.4}; (dap^3)^{1.5}; (dap^3)^{1.6}; (dap^3)^{1.7}; (dap^3)^{1.8};$$

 $(dap^3)^{1.9}; (dap^3)^2; (dap^3)^{2.5}; (dap^3)^3; (dap^3)^{3.5}; (dap^3)^4; (dap^2h^3)^{0.1}; (dap^2h^3)^{0.2}; (dap^2h^3)^{0.3}$ $(dap^2h^3)^{0.4}; (dap^2h^3)^{0.5}; (dap^2h^3)^{0.6}; (dap^2h^3)^{0.7}; (dap^2h^3)^{0.8}; (dap^2h^3)^{0.9}; (dap^2h^3)^{1};$ $(dap^2h^3)^{1.1}; (dap^2h^3)^{1.2}; (dap^2h^3)^{1.3}; (dap^2h^3)^{1.4}; (dap^2h^3)^{1.5}; (dap^2h^3)^{1.6}; (dap^2h^3)^{1.7};$ $(dap^2h^3)^{1.8}; (dap^2h^3)^{1.9}; (dap^2h^3)^2; (dap^2h^3)^{2.5}; (dap^2h^3)^3; (dap^2h^3)^{3.5}; (dap^2h^3)^4$

De manera similar, se realizó la ponderación en las demás especies para cada uno de los modelos que fueron aceptados luego del análisis previo, utilizando para ello distintos exponentes, los cuales se pueden apreciar en el Anexo 6.

Se obtuvieron un total de 864 nuevas ecuaciones luego de la regresión ponderada, de las cuales 48 pertenecieron a la especie Huaranguay, 432 a la especie Molle serrano, 144 a la especie Tipa y 240 a la especie Tara. Se debe mencionar que todas las ecuaciones pasan por el origen, tal como se aprecia en la Figura 43, que es un ejemplo del análisis de regresión para el modelo 18 de la especie Huaranguay, cuyo factor de ponderación es $(dap^2h^3)^{0.5}$.

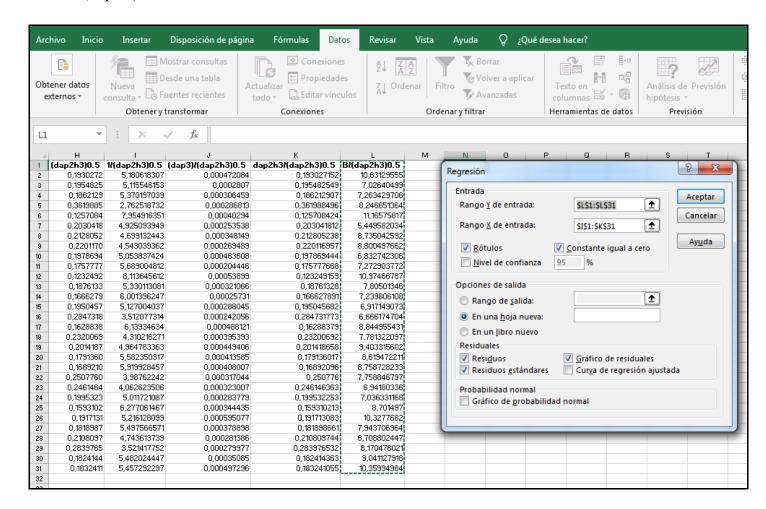


Figura 43: Análisis de Regresión donde ecuación pasa por el origen

Después de ponderadas las ecuaciones, se realizó un previo análisis gráfico de la distribución de los residuos para cada uno de ellas y con distintos coeficientes de ponderación, los cuales se muestran en el Anexo 6.

Los coeficientes de ponderación *K* aceptados por ser los modelos más homocedásticos, después de realizar el análisis de residuos, se muestran a continuación de acuerdo a la especie:

- Huaranguay (modelo 18): $(dap^2h^3)^{0.5}$
- Molle serrano (modelos 1, 2, 3 y 14): $(dap^2)^{0.5}$, $(dap^2)^{0.6}$, $(dap^2h)^{0.1}$, dap^1 , $dap^{1.1}$, $dap^{1.2}$ y $(dap^2h^2)^{0.5}$
- Tipa (modelos 13, 14 y 15): $(dap^2h)^{0.6}$, $dap^{1.6}$, $dap^{1.7}$, $(dap^2h^2)^{0.4}$
- Tara (modelos 2, 6, 9 y 27): $(dap^2h)^1$, $(dap^3h)^{0.1}$, $(dap^3h)^{0.6}$, $(dap^3h^2)^{0.3}$, $(dap^{0.5})^{3.5}$

Finalmente, se debe indicar que el resto de ecuaciones ponderadas, fueron rechazadas ya que no lograron homogenizar la varianza de sus residuos con ninguno de los factores de ponderación utilizados, a pesar de cumplir con los parámetros anteriormente evaluados.

Seguidamente se realizó el análisis del coeficiente de determinación (R²), prueba estadística Fisher (F), prueba estadística t-student (t) y el análisis de residuos de los modelos ponderados, tal como se muestra a continuación.

a. Coeficiente de determinación para modelos ponderados

Todos los modelos ponderados para las cuatro especies, mostraron mejoras significativas en sus coeficientes de determinación (R^2), siendo estos valores superiores a 0,98 tal como se puede observar en la tabla 27, lo cual indica que las ecuaciones elegidas presentan un buen y mejor ajuste que las ecuaciones sin ponderar. Los modelos que presenta el mayor R^2 son las correspondientes a los modelos 18 (R^2 =0,9896) para la especie Huaranguay, modelo 2 (R^2 =0,9885) para el molle serrano, modelo 15 (R^2 =0,9903) para la especie Tipa y modelo 9 (R^2 =0,9839) para la especie Tara.

Según este análisis, existe una fuerte relación entre la biomasa y el diámetro y/o altura para todas las ecuaciones, ya que como se mencionó líneas arriba, se obtuvieron coeficientes de determinación mayores a 0,98 en todos los modelos.

Tabla 27: Coeficiente de determinación para los modelos ponderados

Huaranguay			
Modelo	R ² (Modelo ponderado)	R ² (Modelo sin ponderar)	
18	0.989592681	0.803119125	
Molle serrano			
Modelo R ² (Modelo pondera		do) R ² (Modelo sin ponderar)	
1	0.984294239	0.921632275	
	0.983771234	0.921632275	
2	0.988504678	0.939876354	
	0.983012589	0.918282012	
3	0.982790599	0.918282012	
	0.982579019	0.918282012	
14	0.986888359	0.953843632	
Tipa			
Modelo	R ² (Modelo ponderado)	R ² (Modelo sin ponderar)	
13	0.989884147	0.813615729	
14	0.989351001	0.813554084	
	0.989315137	0.813554084	
15	0.990291492	0.800223062	
	Tara		
Modelo	R ² (Modelo ponderado)	R ² (Modelo sin ponderar)	
2	0.983112345	0.546970489	
6	0.985970292	0.547204311	
	0.984065284	0.547204311	
9	0.983892729	0.530369992	

b. Análisis de significancia Fisher para los modelos ponderados

Todos los modelos evaluados presentaron un p-valor superior a 0,05 (α >0,05) por lo que se determina que con un 95% de confianza, hay suficiente evidencia estadística para afirmar que si existe significancia de las variables de regresión, es decir, se puede afirmar estadísticamente que existe dependencia de la variable respuesta (biomasa), de las

variables explicativas (dap y altura). En la Tabla 28 se presentan todos los modelos de las especies estudiadas que fueron analizados con la prueba de significancia Fisher.

Tabla 28: Resultados del análisis Fisher para los modelos ponderados

Huaranguay					
Modelo	F Calculado	p – valor	Condición		
18	855.7760318	4.30643E-26	Aceptado		
	Molle serrano				
Modelo	F Calculado	p – valor	Condición		
1	877.392633	2.73441E-25	Aceptado		
1	848.665693	4.25629E-25	Aceptado		
2	1203.886681	4.0385E-27	Aceptado		
	810.1397211	7.88956E-25	Aceptado		
3	799.5088635	9.40199E-25	Aceptado		
	789.628699	1.10894E-24	Aceptado		
14	677.4129212	8.67539E-25	Aceptado		
		Tipa			
Modelo	F Calculado	p – valor	Condición		
13	880.6926305	2.97674E-26	Aceptado		
14	836.1498361	5.80403E-26	Aceptado		
14	833.3130987	6.06335E-26	Aceptado		
15	918.021907	1.74456E-26	Aceptado		
Tara					
Modelo	F Calculado	p – valor	Condición		
2	815,0079439	7,28619E-25	Aceptado		
6 -	983,8824699	5,95487E-26	Aceptado		
o	864,5848499	3,32478E-25	Aceptado		
9	855.1726903	3.84545E-25	Aceptado		

c. Análisis de significancia t-student para los modelos ponderados.

En la Tabla 29 se presentan todas las ecuaciones de las especies que son objeto de estudio, las cuales fueron analizadas con la prueba t-student. Se puede apreciar que de igual manera que en la prueba estadística Fisher, el p-valor (estadístico t) de los coeficientes estimados de los modelos seleccionados para todas las especies evaluadas, es menor a 0,05 (p-valor<0,05). Sólo el modelo 14 perteneciente a la especie Molle serrano, presentó un p-valor = 0,064 en uno de sus coeficientes, por lo que estos no demuestran el valor mínimo de significancia, siendo esta ecuación descartada.

Por lo antes expuesto, se puede afirmar que con un 95% de confianza, existe suficiente evidencia estadística para afirmar que cada uno de los coeficientes obtenidos en todas las ecuaciones, a excepción del modelo antes señalado, presentan un significativo valor estadístico diferente a cero y cada una de las variables independientes tiene influencia significativa en los modelos.

Tabla 29: Resultados del análisis t-student para los modelos ponderados

		Huaranguay	Ÿ	
Modelo	t Student (p-valor)			Condición
	b 1	b ₂	b 3	Condicion
18	4.42393E-05	5.83546E-05	0.00014355	Aceptado
		Molle serran	0	
Modelo	t Student (p-valor)			Condición
Modelo	b 1	b 2	b 3	Condicion
1	4.67577E-05	6.83196E-17		Aceptado
1	4.15347E-05	8.98399E-17		Aceptado
2	5.35154E-11	2.81413E-18		Aceptado
	2.05813E-06	2.05558E-16		Aceptado
3	2.03506E-06	2.22325E-16		Aceptado
	2.00468E-06	2.43113E-16		Aceptado
14	0.064363613	6.2401E-07	0.00765055	Rechazado
		Tipa		
Modelo	t Student (p-valor)			Condición
Modelo	$\mathbf{b_1}$	\mathbf{b}_2	b ₃	Condicion
13	0.039084085	0.004019541	0.01671528	Aceptado
14	0.002590036	5.29552E-06	0.01015187	Aceptado
17	0.002388363	5.00626E-06	0.00949282	Aceptado
15	0.001950263	4.04133E-06	0.01843779	Aceptado
		Tara		
Modelo	t Student (p-valor)		Condición	
Modelo	b ₁	b 2	b 3	Condicion
2	7,62689E-08	4,90078E-05		Aceptado
6	8,89273E-12	4,65992E-06		Aceptado
	2,11068E-11	2,16672E-05		Aceptado
9	3.62785E-14	2.53608E-05		Aceptado

d. Análisis de residuos para los modelos ponderados

Después de haber sometidos los modelos a las pruebas estadísticas antes descritas, el siguiente paso fue analizar las gráficas de residuos para determinar si estos cumplían con ser homocedásticos y corroborar de esta manera la mejora de los modelos luego de haber sido ponderados, para elegir así a los mejores de ellos en cada especie. Los modelos ponderados que lograron ser homocedásticos, se pueden observar en las Figuras 44, 45, 46 y 47 para cada una de las especies estudiadas.

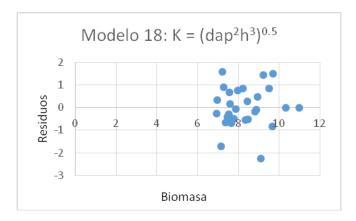


Figura 44: Análisis de residuos Huaranguay

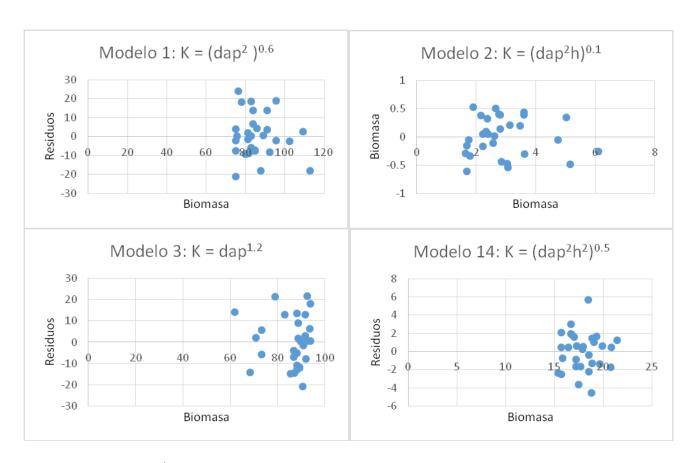


Figura 45: Análisis de residuos Molle serrano

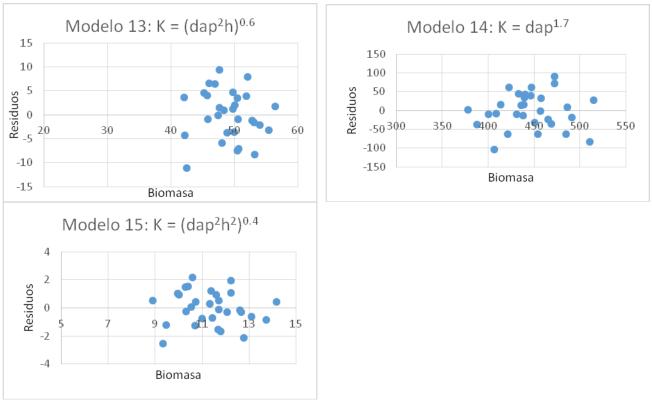
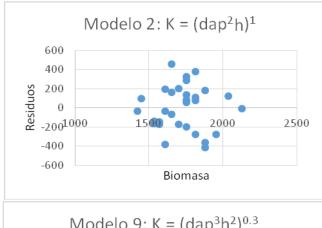
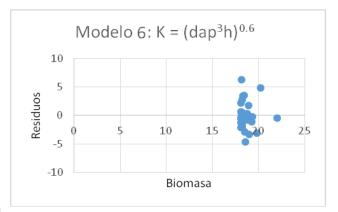




Figura 46: Análisis de residuos Tipa

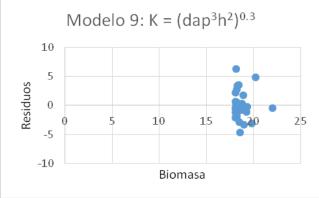


Figura 47: Análisis de residuos Tara

e. Selección de la mejor ecuación

Después del análisis de residuos se procedió a calcular el Índice de Furnival (IF), donde se realizó una comparación entre las distintas ecuaciones para cada una de las especies evaluadas. La ecuación 18 fue la que presentó el menor índice de Furnival para el Huaranguay, ecuación 2 para el Molle serrano, ecuación 15 para la Tipa y ecuación 9 para la Tara.

Estas ecuaciones al presentar los menores IF, fueron los que tuvieron el mejor ajuste, para la estimación de biomasa aérea en las especies evaluadas. Los resultados se muestran en la Tabla 30.

Tabla 30: Índice de Furnival para la selección de la mejor ecuación.

Huaranguay				
Modelos ponderados		Índice Furnival		
Modelo 18	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^3)/K + (b_2 dap^2h^3)/K$	2.025215915		
	Molle serrano			
	Modelos ponderados	Índice Furnival		
Modelo 1	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^2)/K$	31,27981791		
Modelo 2	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^2h)/K$	0,466738086		
Modelo 3	(Biomasa aérea)/ $K = b_0/K + (b_1 dap)/K$	32,53106739		
Modelo 14	(Biomasa aérea)/ $K = b_0/K + (b_1dap)/K + (b_2dap^2h^2)/K$	7,445518807		
	Tipa			
	Índice Furnival			
Modelo 13	(Biomasa aérea)/ $K = b_0/K + (b_1dap)/K + (b_2dap^2h)/K$	25,36032334		
Modelo 14	(Biomasa aérea)/ $K = b_0/K + (b_1 dap)/K + (b_2 dap^2h^2)/K$	443,565355		
Modelo 15	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^2)/K + (b_2 dap^2h^2)/K$	2,868053059		
Tara				
Modelos ponderados		Índice Furnival		
Modelo 2	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^2h)/K$	1748,468976		
Modelo 6	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^3h)/K$	1073,431978		
Modelo 9	(Biomasa aérea)/ $K = b_0/K + (b_1 dap^3h^2)/K$	8,90631289		

Seguidamente, se multiplicaron todas las variables de las ecuaciones seleccionadas, por la inversa de su factor de ponderación (K) respectivo, como se muestra a continuación:

Tabla 31: Multiplicación de las ecuaciones ponderadas por la inversa del factor K

Huaranguay				
Seleccionada	Ecuación ponderada	Factor K	Ecuación por K ⁻¹	
Modelo 18	$B/K = b_0/K + (b_1 dap^3)/K + (b_2 dap^2 h^3)/K$	$(dap^2h^3)^{0.5}$	$B = b_0 + b_1 dap^3 + b_2 dap^2 h^3$	
Molle serrano				
Seleccionada	Ecuación ponderada	Factor K	Ecuación por K ⁻¹	
Modelo 2	$B/K = b_0/K + (b_1 dap^2 h)/K$	$(dap^2h)^{0.1}$	$B = b_0 + b_1 dap^2 h$	
	Tipa			
Seleccionada	Ecuación ponderada	Factor K	Ecuación por K ⁻¹	
Modelo 15	$B/K = b_0/K + (b_1 dap^2)/K + (b_2 dap^2 h^2)/K$	$(dap^2h^2)^{0.4}$	$B = b_0 + b_1 dap^2 + b_2 dap^2 h^2$	
Tara				
Seleccionada	Ecuación ponderada	Factor K	Ecuación por K ⁻¹	
Modelo 9	$B/K = b_0/K + (b_1 dap^3 h^2)/K$	$(dap^3h^2)^{0.3}$	$B = b_0 + b_1 dap^3 h^2$	

Después de haber sido multiplicadas las ecuaciones ponderadas por la inversa del factor K, se obtuvieron finalmente las ecuaciones que estiman mejor la biomasa aérea de los individuos de Huaranguay, Molle serrano, Tipa y Tara en Manchay, las cuales se presentan a continuación en la Tabla 32.

Tabla 32: Ecuaciones originales y Ecuaciones de Biomasa

Huaranguay				
Seleccionada	Ecuación original	Ecuación de Biomasa		
Modelo 18	$B = 0.524885012 + 390.526389 dap^3$	$B = 0.61666733 + 9042,245208dap^3 +$		
Modelo 18	$+ 10,57851529 dap^2h^3$	$9,017128663dap^2h^3$		
Molle serrano				
Seleccionada	Ecuación original	Ecuación de Biomasa		
Modelo 2	B = 0.632326286 +	$B = 0.612722082 + 275,2981477dap^2h$		
Widdeld 2	271,210104dap²h	B = 0.012722002 + 275.29014774419 h		
	Tipa			
Seleccionada	Ecuación original	Ecuación de Biomasa		
Modelo 15	$B = 0.215290501 + 848.180309dap^2$	$B = 0.051136599 + 905.1022741dap^2$		
Modelo 15	$+ 21,11206743dap^2h^2$	$+24,48745926dap^2h^2$		
Tara				
Seleccionada	Ecuación original	Ecuación de Biomasa		
Modelo 9	$B = 1,0584756 + 1767,15294dap^3$	$B = 1,05096056 + 1800,63343dap^3$		

La ponderación de las ecuaciones de todas las especies evaluadas, permitió obtener coeficientes ponderados, mejorando significativamente la precisión de las ecuaciones iniciales, tal como lo menciona Valverde (2017).

El último paso fue hacer una comparación entre la biomasa estimada promedio y la biomasa real promedio, donde se obtuvo una sobreestimación de 0,000000009 kg para la especie Huaranguay (0,0000005 %); 0,0037 kg de subestimación para la especie Molle serrano (0.2187 %); 0,002 kg de subestimación para la especie Tipa (0,0927 %) y 0,0003 kg de subestimación para la especie Tara (0,0208 %).

Asimismo, se realizaron gráficas comparativas de las biomasas aéreas reales con las biomasas aéreas estimadas (ver Figuras 48, 49, 50 y 51), para confirmar el grado de precisión de los modelos seleccionados. En estas, se puede apreciar que existe una tendencia lineal para todas las especies y se puede apreciar además, que las ecuaciones elegidas presentan un buen ajuste en la estimación de biomasas aéreas para las especies estudiadas en el centro poblado de Manchay.

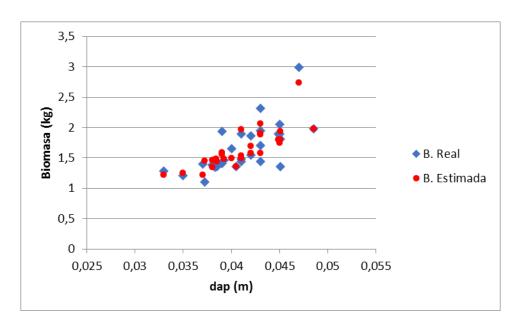


Figura 48: Biomasa real vs Biomasa estimada para la especie Huaranguay

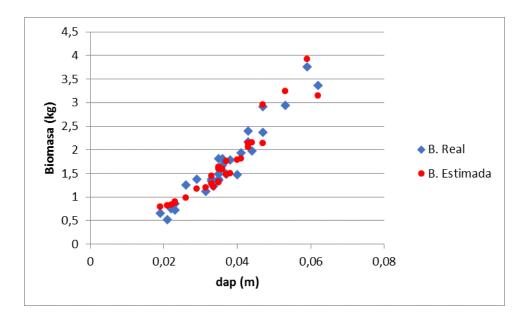


Figura 49: Biomasa real vs Biomasa estimada para la especie Molle serrano

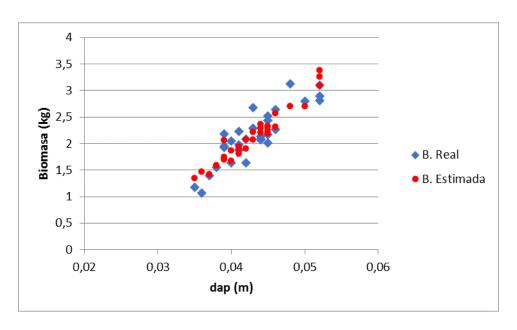


Figura 50: Biomasa real vs Biomasa estimada para la especie Tipa

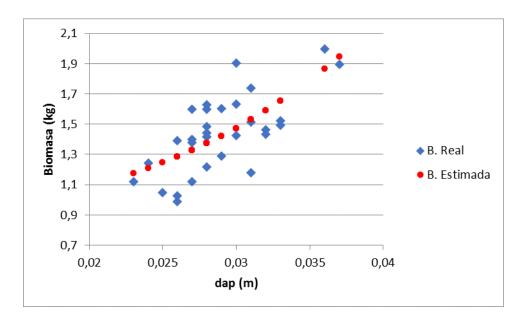


Figura 51: Biomasa real vs Biomasa estimada para la especie Tara

V. CONCLUSIONES

- 1. El método no destructivo empleado, ha demostrado que es útil en la estimación de la biomasa aérea de las especies Huaranguay, Molle serrano, Tipa y Tara en el centro poblado de Manchay.
- 2. La ecuación de biomasa que estima con mayor precisión los árboles de Huaranguay en Manchay es la siguiente:

$$B = 0.61666733 + 9042,245208 dap^3 + 9.017128663 dap^2h^3$$

3. La ecuación de biomasa que estima con mayor precisión los árboles de Molle serrano en Manchay es la siguiente:

$$B = 0.612722082 + 275.2981477 dap^2 h$$

4. La ecuación de biomasa que estima con mayor precisión los árboles de Tipa en Manchay es la siguiente:

$$B = 0.051136599 + 905.1022741 dap^2 + 24.48745926 dap^2h^2$$

5. La ecuación de biomasa que estima con mayor precisión los árboles de Tara en Manchay es la siguiente:

$$B = 0.934117633 + 19964,19795dap^3$$

- 6. Los 120 árboles evaluados para todas las especies presentan un total de 279, 901 kg de biomasa aérea, de los cuales 207,9494 kg pertenecen al fuste (74,29 %) y 71,9517 kg a las ramas (25,71 %).
- 7. El método empleado permite estimar la biomasa aérea en situaciones en que los árboles no pueden ser extraídos.

VI. RECOMENDACIONES

- Es necesario analizar diversos modelos de ecuaciones de biomasa para validar la calidad de los modelos seleccionados y proveer de una mayor confiabilidad a las ecuaciones de biomasa generadas por dichos modelos.
- Es muy importante realizar más estudios de estimación de biomasa de árboles de distintas especies forestales y en distintas zonas del Perú, a partir de métodos no destructivos.
- Se recomienda utilizar estas ecuaciones, en lugares con características climáticas edáficas similares a los de la zona de estudio, para obtener resultados precisos y confiables.
- Se recomienda realizar regresiones ponderadas, para obtener un buen ajuste en la elaboración de ecuaciones de biomasa.
- Es recomendable tomar como mínimo una muestra de 30 árboles para la construcción de las ecuaciones de biomasa, de tal forma que se asegure contar con una muestra representativa de las especies a evaluar para realizar las pruebas estadísticas respectivas.
- Es necesario realizar estudios similares comparando diferentes métodos para la estimación de biomasa (métodos destructivos y no destructivos).
- Se debe evitar variaciones en los contenidos de humedad y/o daños en las muestras, que puedan alterar los resultados de la investigación.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Acuña, E. 2010. Análisis estadísticos de datos usando MINITAB (en línea).
 Universidad de Puerto de Rico. PR Consultado el 17 de mayo de 2016. Disponible en http://academic.uprm.edu/eacuna/covertex.pdf
- Alder, D. 1980. Estimación del volumen forestal y predicción del rendimiento, con referencia especial a los trópicos: metodología de la predicción del crecimiento y rendimiento. Roma, IT. 118 p. (Estudio FAO: Montes no. 22).
- Alegre, J; Arévalo, L. 2003. Reservas de Carbono según el uso de la tierra en dos sitios de la Amazonía Peruana. ICRAF. PE. 9 p.
- Alvarado, J; Obagi, J. 2008. Inferencia Estadística. 1ra ed. Bogotá, CO. Editorial Pontificia Universidad Javeriana. 360p.
- Ares, A., Boniche, J., Quesada, J., Yost, R., Molina, E. 2002. Estimación de biomasa por métodos alométricos, nutrimentos y carbono en plantaciones de palmito en Costa Rica. Costa Rica. Agronomía costarricense 26(2): 19p.
- Arévalo, L.; Alegre, J.; Palm, C. 2003. Determinación de las Reservas Totales de Carbono en los Diferentes Sistemas de Uso de la Tierra en Perú. Lima, PE, UNALM, INRENA. 35p.
- Arias, D. 2004. Estudio de las relaciones altura-diámetro para seis especies maderables utilizadas en programas de reforestación en la Zona Sur de Costa Rica. Revista Forestal Mesoamericana Kurú (Costa Rica) 1 (2): 33-43.
- Barrena, V. 1988. La regresión ponderada en la elaboración de ecuaciones de volumen.
 Revista forestal del Perú, Lima, PE. 15(2): 21-28.

- _____; Dance, J.; Sáenz, S. 1986. Metodología para la selección de ecuaciones de volumen. Revista Forestal del Perú 13(2): 3-12.
- Bermejo, J; Pasetti, F. 1985. El árbol en apoyo de la agricultura: Sistemas agroforestales en la Sierra Peruana. Lima, PE, Proyecto FAO-Holanda/INFOR. 44 p. (Documento de Trabajo no. 4).
- Cabrera, N. 2016. Estimación de biomasa aérea de *Inga edulis* Mart. y *Coffea arabica* L. en el Alto Mayo, San Martín. Tesis Ing. Forestal. Lima. PE, UNALM. 108 p.
- Callo-Chocha, D; Krishnamurthy, L; Alegre, J. 2001. Cuantificación del carbono secuestrado por algunos SAF´S y Testigos, en tres pisos ecológicos de la Amazonía del Perú. Ucayali, PE. 23 p.
- Cano, A; La Torre, M; Castillo, S; Aponte, H; Morales, M; Mendoza, W; León, B; Roque, J; Salina, I; Monsalve, C; Beltrán, H. 2006. Plantas comunes del Callejón de Conchucos (Ancash-Perú): Guía de Campo. Lima, PE, UNMSM. 303 p. (Serie de divulgación nro. 13).
- CATIE. 2002. "Manejo de semillas de 75 especies forestales de América latina". Nota técnica 157:113-114.
- Catpo, J. 2004. Determinación de la ecuación alométrica de *Pinus patula* y estimación del contenido de carbono en su biomasa aérea en Porcón, Cajamarca, Perú. Tesis Ing. Forestal. Lima, PE, UNALM. 59 p.
- Chambi, P. 2001. Valoración económica de secuestro de carbono mediante simulación aplicada a la zona boscosa del Río Inambari y Madre de Dios. Instituto de investigación y capacitación para el fomento de oportunidades económicas con base en la Conservación de Recursos Naturales. (IICFOE). Tacna, PE. 20 p.
- Chave, J. 2006. Medición de densidad de madera en árboles tropicales. Manual de Campo. Proyecto PAN-AMAZONIA. 7 p.

- Cisternas, A. S.F. Conversión de densidades de la madera. Ciencia e Investigación Forestal. INFOR
- Couto, L.; Fonseca, E.; Müller, M. 2000. O estado da arte das plantações de florestas de rápido crescimento para produção de biomassa para energia em Minas Gerais: aspectos técnicos, econômicos sociais e ambientais. Belo Horizonte: CEMIG, 44p.
- Da Cunha, T; Vargas, J; Escalier, M. 2009. Ajuste y selección de modelos de regresión para estimar el volumen total de árboles. Documento Técnico N° 5. Proyecto FOMABO, BO. 28p.
- ; Guimaraes, C. 2009. Modelo de regresión para estimar el volumen total con corteza de árboles de Pinus taeda L. en el sur de Brasil. Kurú: Revista Forestal. 6(16): 1-15.
- Davel, M; Jovanowski, A; Mohr, D. 2005. Densidad básica de la madera de pino Oregón y su relación con las condiciones de crecimiento en la Patagonia Andina Argentina (en línea). Bosques 26 (3): 55 –62. Consultado el 15 de junio del 2018. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002005000300006
- Díaz M; Pecho R; Guarda D. S.f. Variación de las propiedades físicas de Calycophyllum Spruceanum (Benthan) Hooker F. Ex Chuman (capirona) de una plantación de ocho años en la zona Tingo María, Perú. Universidad Nacional Agraria de la Selva. 18 p.
- Eliasch, J., 2008. Climate change: financing global forests: The Eliasch Review. UK
- Escobar, M. 2015. Estudio de la volumetría de árboles en pie de caoba (*Swietenia macrophylla* King) en el departamento de Madre de Dios, Perú. Tesis Ing. Forestal. Lima, PE, UNALM. En prensa.
- FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación, IT).
 1981. Estimación del volumen forestal y predicción del rendimiento con referencia especial a los trópicos. Roma, IT. 117 p.

- _____. 1995. Cambio climático, Bosque y ordenamiento forestal, Una visión de conjunto. Roma, IT. 146 p.
- Ferrando, J.; Goya, J.; Barrera, M.; Yapura, P.; Frangi, J. 2001. Biomasa y productividad aérea de bosques de *Austrocedrus chilensis* en Río Negro, Argentina. Revista de la Facultad de Agronomía. 104(2): 139-149.
- Flores, F.; Chavarry, L.; Vega, D. 2005. Criterio y pautas para la selección de árboles plus *Caesalpinia spinosa* (Molina) Kuntze. "Tara o Taya". Programa ADEFOR, FOSEFOR, COSUDE, INTERCOOPERACION, SAMIRI. Cajamarca- Perú.
- Freitas, L.; Otárola, E.; Del Castillo, D.; Linares, C.; Martínez, P.; Malca, G. 2006.
 Servicios ambientales de almacenamiento y secuestro de carbono del ecosistema aguajal en la reserva nacional Pacaya Samiria, Loreto Perú. Documento técnico N° 29. IIAP, 65 p.
- Furnival, G. 1961. An Index for comparing equations used in constructing volumes tables. Forest Science 7(4): 337-341.
- Gamarra, J. 2001. Estimación del contenido de carbono en plantaciones de *Eucalyptus globulus* Labill, en Junin, Perú. Ecotecnias para el desarrollo sostenible urbano Rural. (ONGD–EDESUR). Huancayo, PE. 21p.
- Gamarra, P. 2003. Árboles Nativos de importancia económica del distrito de Marca, Recuay-Ancash. Lima, PE, CEMED-UNE. 205 p.
- Garcinuño, J. 1995. Biomasa aérea en plantaciones jóvenes de *Eucalyptus globulus* (lab.) en la costa de Valdivia 10ma región. Tesis Ing. For. Valdivia, Universidad Austral de Chile, Facultad De Ceiencias Forestales. 76 p.
- Garzuglia, M.; Saket, M. 2003. Wood volume and woody biomass. Food and Agriculture Organization of the United Nations. Roma, IT. 30 p.
- Gayoso, J.; Guerra, J.; Alarcón, D. 2002. Contenido de carbono y funciones de biomasa en especies nativas y exóticas (en linea). Universidad Austral De Chile. Consultado 16

- de junio del 2018. Disponible en: http://www.uach.cl/procarbono/Documentos/Informe%20Tecnico%20Biomasa.pdf
- Goycochea, R. 2010. Evaluación de taninos y goma del fruto de la tara Caesalpinia spinosa (Molina) Kuntze provenientes de las lomas de Atiquipa, Arequipa – Perú. Tesis Ing. Ind. Al. Lima, PE, UNALM. 95 p.
- Grissino-Mayer, H. 2003. A manual and tutorial for the proper use of an increment borer. Tree-Ring Research 59(2): 63-79.
- Guerra, J. 2001. Evaluación de la biomasa radical gruesa en la especie *Nothofagus alpina* (OPER, et Moll) Oerst (Raulí), en la provincia de Malleco. Tesis Ing. Forestal.
 Valdivia, CH, Universidad Austral de Chile. 93 p.
- Gujarati, D. 1992. Econometría Básica. McGraw-Hill. Latinoamericana S.A. CO. 597p.
- Hakkila, P. 1989. Utilization of residual forest biomass. State University of New York. Berlin, DE. 568 p.
- Hanke, J; Wichern, D. 2006. Pronóstico en los negocios. 8va Edición. Naucalpan de Juárez. MX. Prentice Hall. 552p.
- ICRAF, 2008. Guía para Determinación de carbono en pequeñas propiedades rurales.
 Belem, BR. 67 p.
- INEI. 2015. Mapa del distrito de Pachacamac. Consultado 15 mar. 2017. Disponible en: http://map-peru.com/es/mapas/ficha-distrito-de-pachacamac
- ______. 2017. Compendio Estadístico Provincia de Lima 2017. Consultado 20 ago. 2018. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1477/lib ro.pdf

- IPCC 1996. Climate change 1995: The Science of Climate Change. Cambridge University Press. Cambridge, GB. 572 p.
- Lam, R. 2011. Estimación de la cantidad de carbono capturado por el fuste del (*Lexopterigium huasango* Sprunce) en el bosque seco de Sullana, Piura, Perú. Tesis Ing. Forestal. Lima, PE, UNALM. 212 p.
- Lapeyre, T; Alegre, J; Arévalo, L. 2004. Determinación de las reservas de carbono de la biomasa aérea, en diferentes sistemas de uso de la tierra en San Martín, Perú. Ecología aplicada 3(1-2): 35 – 44.
- Larrea, C. 2007. Determinación de las reservas de carbono en la biomasa aérea de combinaciones agroforestales de Theobroma cacao l. Tesis Ing. Ambiental. Lima, PE, UNALM. 147p.
- Lebel, C. 2010. Caracterización Dendrológica de las especies leñosas del distrito de Pacarán, Cañete, Lima. Tesis Ing. Forestal. Lima, PE, UNALM. 159 p.
- Llanos, M. 2010. Determinación de biomasa aérea total del algarrobo *Prosopis pallida* (h&b. ex. willd.) h.b.k. var. pallida ferreira en los bosques secos de la comunidad campesina José Ignacio Távara Pasapera del departamento de Piura. Tesis Ing. Forestal. Lima, PE, UNALM. 132 p.
- MacDiken, K.; Kenneth, G. 1991. Standard research method for multipurpose trees and shrubs. International Council of Research in Agroforestry. Arlington, US, International Council for Research in Agroforestry. 85 p.
- Machado, S. A.; Conceição, M. B.; Figueiredo, D. J. 2002. Modelagem do volume individual para diferentes idades e regimes de desbaste em plantações de Pinus oocarpa.
 Revista Ciências Exatas e Naturais, Vol. 4, nº 2, jul/dez.: 185-197.
- Mackay, E. 1984. Dasometria, teoría y técnicas de las mediciones forestales. Madrid,
 ES. Escuela Técnica Superior de Ingenieros de Montes. 760p.

- Malleux, J.; Montenegro, E. 1971. Manual de dasometría. Lima, PE. Universidad Nacional Agraria La Molina. 216p.
- Martínez, E. 2005. Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario Jurídico y Económico Escurialense. ES. 38: 315-332.
- Mendiburu, F. s.f. Análisis de Regresión y Correlación (en línea). Lima, PE.
 Universidad Nacional Agraria La Molina. Consultado 12 de agosto de 2016. Disponible enhttp://tarwi.lamolina.edu.pe/~fmendiburu/indexfiler/academic/Estadistica/parte6.pdf
- MINAM. 2015. Guía de Inventario de la Flora y Vegetación. Lima, PE. 49p.
- Montgomery, D. 2004. Diseño y análisis de experimentos segunda edición. Universidad estatal de Arizona. 700 p.
- ; Peck, E.; Vining, G. 2006. Introducción al análisis de regresión lineal. 588 p.
- Municipalidad Distrital de Pachacámac, PE. 2017. Mapa turístico de Pachacamac (en línea). Consultado 11 dic. 2017. Disponible en http://www.munipachacamac.gob.pe/limites.html
- Murillo, C; Gonzáles, B. 2000. Manual de econometría. Catedrática Universidad de Las Palmas de GC. 35 p.
- NACIONES UNIDAS. 1998. Protocolo de Kyoto de la Convención Marco de las Naciones Unidas Sobre el Cambio Climático. Kyoto, JP. 24 p.
- _____. 2001. Informe de la conferencia de las partes sobre su 7 período de sesiones. Marrakech, MA. 73 p.
- Nogueira, E. M.; Fearnside, P.M.; Nelson, B.W. 2008. Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management 256: 990– 996.

- Oliva, M.; F. García-Oliva. 1998. Un nuevo campo de acción en la química biológica: Parte I. Generalidades sobre el cambio global. Educación Química. UNAM. MX.
- Palm, C. A.; Noordwijk, Van M. 1999. Muestreo revisado de carbono para ASB. Mimeografiado. Documento de trabajo. 7 p.
- Parresol, B.R 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, Washington, US. 45(4): 610.
- Pecé, M.; Gaillard de Benítez, C.; Ríos, N. 1997. Tabla de Volumen para "Quebracho Colorado Santiagueño" (Schinopsis quebracho-colorado) utilizando el método de los Mínimos Cuadrados Ponderados. Santiago del Estero, AR. Revista Quebracho, (5): 41-50.
- Pereyra, O; Gelid, M. 2002. Estudio de la variabilidad de la densidad básica de la madera de *Pinus taeda* para plantaciones de Misiones y norte de Corrientes. REVISTA FLORESTA 33 (1) 3-19
- Philip, M. 1983. Measuring trees and forests. A textbook writen for students in Africa. Tanzania. The Division of Forestry. University of Dar-es-Salaam. 338 p.
- Tanzania. The Division of Forestry. University of Dar-es-Salaam. 338 p.
- Picard, N; Saint-André L; Henry. 2012. Manual de construcción de ecuaciones alométricas para estimar el volumen y la biomasa de los árboles: del trabajo de campo a

la predicción. FAO, Centre de Coopération Internationale en Recherche Agronomique pour le Développment, Roma, IT. 223 p.

- Reynel, C.; Marcelo-Peña, J. 2009. Árboles de los ecosistemas forestales andinos: Manual de Identificación de especies. Lima, PE, ECOBONA. 159 p. (Serie Investigación y Sistematización no. 9). Pennington, R; Pennington, J; Marcelo-Peña, J; Daza, A. 2006. Árboles útiles del Ande peruano y sus usos: un manual con apuntes de identificación, ecología y propagación de las especies de la Sierra y los Bosques Montanos en el Perú. Lima, PE, UNALM-Royal Botanic Gardens-APRODES. 463 p. ; Solari, S.; Román, F; Lerner, T. 2008. Árboles de Lima: Guía Práctica de arboricultura urbana. Ptyx editores sac. Lima, PE. 101 p. _____; León, J. 1990. Árboles y arbustos andinos para agroforestería y conservación de suelos. Lima, Proyecto FAO/ Holanda/ INFOR. 508 pp (2 Vols.). ____; León, J. 1990b. Árboles y arbustos andinos para agroforestería y conservación de suelos: Las Especies. Lima, PE, Proyecto FAO Holanda/DGFF. v. 2. 395 p. Rojo, J. 2007. Regresión Lineal Múltiple (en línea). Laboratorio de Estadística. Centro de Ciencias Humanas y Sociales. Madrid, ES. Consultado el 22 de diciembre del 2016. Disponible http://humanidades.cchs.csic.es/cchs/web_UAE/tutoriales/PDF/Regresion_lineal_multip
- Romero, C. 2016. Estimación del volumen de árboles en pie de caoba (*Swietenia Macrophylla* King) en el departamento de Ucayali, Perú. Tesis Ing. Forestal. Lima, PE, UNALM. 107 p.

le_3.pdf

Romero, N. 2012. La revolución en la toma de decisiones estadísticas: el p-valor. Telos:
 Revista de Estudios Interdisciplinarios en Ciencias Sociales.14 (3): 439-446.

- Rueda, C. 2014. Estimación de las reservas de carbono en la biomasa aérea de una plantación de *Inga Edulis* en campo verde, Ucayali. Trabajo de Titulación para Optar el Título de Ing. Forestal. Lima, PE, UNALM. 110 p.
- Ruiz, E. 2007. Elaboración de una ecuación de volumen para un bosque de terrazas alta en el Codo del Pozuzo, Puerto Inca, Huánuco. Tesis Ing. Forestal. Lima, PE, UNALM. 100 p.
- Samaniego, D. 2009. Estimación de la cantidad de carbono capturado por *Guazuma* crinita en una plantación de ocho años en Ucayali. Tesis Ing. Forestal. Lima, PE, UNALM. 95 p.
- Sarasíbar, M. 2006. El derecho forestal ante el cambio climático: las funciones ambientales de los bosques. Madrid, ES, Aranzadi. 319 p.
- Satoo, T., Madgwick, H. 1982. Forest biomass. Forestry Science. Martinus Nijhoff /Junk publishers. London, UK. 152 p.
- Schlegel, B., Gayoso, J. Guerra, J. 2000. Manual de Procedimientos, Muestreo de Biomasa Forestal. Medición de la Capacidad de Captura de Carbono en Bosques de Chile y Promoción en el Mercado Mundial. UACH, CL. 26 p.
- Schroeder, P.; Dixon, R.; Winjum, J. 1993. Ordenación forestal y agrosilvicultura para reducir el dióxido de carbono atmosférico. Unasylva 173 Vol. 44 52-60.
- Segura, M., Kannunen, M. 2002. Inventarios para estimar Carbono en ecosistemas forestales Tropicales. En Orozco, L. y Brumér, C. Inventarios forestales para bosques latifoliados en América Central. Turrialba: CATIE. 202 p.
- Simbaña, N. 2011. Estimación de la captura de carbono en plantaciones de *Eucaliptus* globulus Labill. Tesis para optar el grado de magister. Universidad Nacional Agraria La Molina, Lima, PE. 120 p.

- Soares, T. 2002. Gestão estratégica com responsabilidade social: arcabouço analítico para auxiliar sua implementação em empresas no Brasil. Revista de Administração Contemporânea, 6(3), 75-96.
- ______; Carneiro, A; Goncalves, E; Lelles, J. 2006. Uso da Biomassa Florestal na Geração de Energia. Revista Científica Electrónica de Engenharia Florestal. 9 p.
- Tovar, O. 1990. Tipos de Vegetación, Diversidad Florística y Estado de conservación de la cuenca del Mantaro. Lima, PE, UNALM. 70 p.
- Ugalde, L. 1981. Conceptos Básicos de Dasometría. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Programa de Recursos Naturales Renovables.
 Turrialba, CR. 23 p.
- Uriel, E. 2013. Contraste de hipótesis en el modelo de regresión múltiples. Universidad de Valencia. 168 p.
- Valverde, J. 2017. Determinación de la ecuación de biomasa aérea de *Eucalyptus* globulus Labill de plantaciones en cercos vivos, distrito de Huertas, Junín. Tesis Ing. Forestal. Lima, PE, UNALM. 141 p.
- Vélez, I. 2003. Apuntes de Probabilidad y Estadística para Ingeniería y Administración-Politécnico Grancolombiano. Bogotá, CO. 44p. Consultado el 20 de mayo de 2016.
 Disponible en: http://www.gacetafinanciera.com/TEORIARIESGO/regresion.pdf
- Vilar, J. 2006. Modelos Estadísticos Aplicados (en línea). Publicaciones de la Universidad da Coruña. Segunda Edición. 101p. Consultado el 15 de mayo de 2016.
 Disponible en http://dm.udc.es/asignaturas/estadistica2/indice_res.html
- Villanueva, C.M. 2007. La Tara el oro verde de los incas. Universidad Nacional Agraria
 La Molina. Lima-Perú. 163 p.
- Williamson, G. B.; Wiemann, M. C. 2010. Measuring Wood Specific Gravity Correctly. American Journal of Botany, 97, 519-524.

- Whittaker, R. H.; Marks, P. L. 1975. Methods of assessing terrestrial productivity. In
 H. Lieth and R. H. Whittaker eds., Primary productivity of the biosphere. Springer-Verlag, New York, US.
- Zamora, J. 2003. Estimación del contenido de carbono en biomasa aérea en el bosque de pino del Ejido "La Majada" Municipio de Periban de Ramos, Michoacán. Tesis para obtener el título de Ingeniero Agrónomo especialidad en bosques, Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo. 59 p.

VIII. ANEXOS

Anexo 1: Formato para el levantamiento de datos en campo

NT 1																
	Nombre del evaluador:															
	Especie:															
Fecha																
Árbol	N°.:										-					1 (0)
	Coord.	inic	iale	es UTM	1:		E: N:					A	zimut a	l siguie	nte árb	ol (°):
A 14	4 - 4 - 1 4	()	_	14 C-	4- 4	()				4	.1	D:	-4	1 .:		.11
Altur	a total ((m):	A	Altura fu	iste ((III):	Cii	rcunfere	encia ai (m):	tura pec	cno	וט m)		i ai sigi	iiente ái	TOOI
									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				<i>/</i> ·			
Fuste																
			Ci	irc. base	е	Cir	c. 2		Cir3				Cir4		Cir.5	!
			A.	ltura 1		Alt	ura2		Altui	ra 3			Altur	a 4	Altui	ra 5
Rama	.S															
R1		R2			R3 R4				R5			R6		R7		
Circ	Lon	Cir	c	Lon	Cir	c	Lon	Circ	Lon	Circ	Lor	1	Circ	Lon	Circ	Lon
	g			g			g		g		g			g		g
R8		R9	R10		.0 R11		R11		R12			R13		R14		
Circ	Lon	Cir	c	Lon	Cir	c	Lon	Circ	Lon	Circ	Lor	1	Lon	Circ	Lon	Circ
	g			g			g		g		g		g		g	
R15		R10	6		R1'	7		R18		R19			R20		R21	
Lon	Circ	Lor	1	Circ	Lo	ı	Circ	Lon	Circ	Lon	Lor	1	Circ	Lon	Circ	
g		g			g			g		g	g			g		
Obser	Observaciones:															

Anexo 2: Circunferencias del fuste

Huaranguay:

Árbol Nº.	circ. base (m)	circ. 1 (m)	circ. 2 (m)	circ. 3 (m)	circ. 4 (m)
1	0.171	0.145	0.14	0.135	0.12
2	0.152	0.125	0.11	0.1	0.075
3	0.15	0.125	0.12	0.11	0.076
4	0.24	0.15	0.14	0.12	0.08
5	0.16	0.134	0.12	0.11	0.109
6	0.16	0.12	0.115	0.095	0.075
7	0.17	0.145	0.13	0.125	0.11
8	0.17	0.14	0.12	0.11	0.086
9	0.18	0.16	0.14	0.132	0.06
10	0.174	0.13	0.1	0.075	0.059
11	0.18	0.14	0.135	0.123	0.08
12	0.15	0.126	0.123	0.1	0.06
13	0.15	0.12	0.106	0.09	0.082
14	0.14	0.125	0.12	0.1	0.08
15	0.175	0.14	0.118	0.106	0.07
16	0.158	0.136	0.134	0.115	0.09
17	0.186	0.143	0.14	0.122	0.08
18	0.157	0.14	0.14	0.125	0.097
19	0.165	0.142	0.133	0.105	0.07
20	0.172	0.145	0.13	0.112	0.103
21	0.155	0.14	0.133	0.119	0.07
22	0.16	0.14	0.131	0.102	0.079
23	0.15	0.13	0.12	0.1	0.07
24	0.15	0.125	0.12	0.11	0.085
25	0.18	0.16	0.155	0.145	0.13
26	0.16	0.145	0.13	0.08	0.07
27	0.155	0.13	0.12	0.11	0.06
28	0.15	0.14	0.13	0.12	0.105
29	0.16	0.145	0.125	0.1	0.08
30	0.16	0.15	0.14	0.135	0.105

Molle serrano:

Árbol Nº.	circ. base (m)	circ. 1 (m)	circ. 2 (m)	circ. 3 (m)	circ. 4 (m)
1	0.185	0.164	0.113	0.087	0.06
2	0.23	0.16	0.128	0.09	0.068
3	0.226	0.131	0.103	0.095	0.062
4	0.17	0.116	0.113	0.07	0.064
5	0.18	0.108	0.069	0.055	0.047
6	0.15	0.138	0.105	0.095	0.077
7	0.205	0.18	0.13	0.11	0.081
8	0.225	0.135	0.114	0.106	0.097
9	0.14	0.104	0.088	0.06	0.049
10	0.21	0.13	0.118	0.105	0.094
11	0.194	0.135	0.13	0.094	0.072
12	0.204	0.132	0.113	0.086	0.06
13	0.165	0.137	0.104	0.097	0.076
14	0.27	0.199	0.197	0.151	0.114
15	0.27	0.18	0.137	0.076	0.04
16	0.2	0.15	0.068	0.035	0.031
17	0.24	0.183	0.145	0.114	0.083
18	0.27	0.205	0.161	0.102	0.068
19	0.2	0.165	0.12	0.08	0.065
20	0.2	0.15	0.13	0.12	0.09
21	0.195	0.124	0.1	0.075	0.05
22	0.19	0.155	0.095	0.085	0.065
23	0.185	0.14	0.125	0.11	0.05
24	0.23	0.17	0.13	0.085	0.07
25	0.173	0.135	0.12	0.09	0.048
26	0.2	0.18	0.1	0.09	0.07
27	0.225	0.16	0.12	0.07	0.066
28	0.16	0.095	0.08	0.065	0.06
29	0.22	0.14	0.085	0.075	0.053
30	0.2	0.135	0.095	0.075	0.058

Tipa:

Árbol Nº.	circ. base (m)	circ. 1 (m)	circ. 2 (m)	circ. 3 (m)	circ. 4 (m)
1	0.265	0.18	0.155	0.109	0.097
2	0.195	0.14	0.121	0.117	0.115
3	0.183	0.132	0.126	0.115	0.093
4	0.187	0.148	0.13	0.11	0.089
5	0.16	0.12	0.118	0.108	0.06
6	0.21	0.158	0.155	0.136	0.11
7	0.21	0.135	0.115	0.095	0.093
8	0.205	0.15	0.135	0.103	0.084
9	0.2	0.14	0.132	0.12	0.114
10	0.173	0.125	0.115	0.073	0.065
11	0.194	0.15	0.14	0.122	0.088
12	0.203	0.148	0.128	0.091	0.083
13	0.23	0.165	0.156	0.135	0.097
14	0.205	0.146	0.14	0.131	0.09
15	0.18	0.167	0.156	0.125	0.09
16	0.16	0.134	0.126	0.104	0.081
17	0.175	0.156	0.132	0.117	0.097
18	0.155	0.113	0.109	0.106	0.105
19	0.135	0.123	0.114	0.08	0.065
20	0.21	0.155	0.1	0.08	0.068
21	0.23	0.155	0.145	0.114	0.09
22	0.223	0.15	0.13	0.1	0.087
23	0.21	0.16	0.14	0.135	0.11
24	0.23	0.17	0.16	0.12	0.1
25	0.22	0.155	0.14	0.13	0.09
26	0.185	0.15	0.134	0.103	0.09
27	0.18	0.16	0.146	0.142	0.136
28	0.18	0.135	0.12	0.11	0.1
29	0.22	0.145	0.125	0.11	0.087
30	0.195	0.145	0.14	0.11	0.095

Tara:

Árbol Nº.	circ. base (m)	circ. 1 (m)	circ. 2 (m)	circ. 3 (m)	circ. 4 (m)
1	0.15	0.105	0.073	0.055	0.04
2	0.135	0.12	0.086	0.05	0.03
3	0.13	0.095	0.08	0.055	0.03
4	0.14	0.107	0.09	0.064	0.06
5	0.135	0.105	0.084	0.05	0.034
6	0.13	0.108	0.079	0.06	0.045
7	0.142	0.125	0.081	0.057	0.032
8	0.17	0.11	0.086	0.065	0.03
9	0.172	0.106	0.08	0.065	0.048
10	0.173	0.1	0.083	0.06	0.03
11	0.17	0.14	0.106	0.08	0.062
12	0.172	0.106	0.075	0.05	0.03
13	0.174	0.136	0.085	0.078	0.044
14	0.168	0.116	0.079	0.063	0.04
15	0.175	0.1	0.085	0.067	0.043
16	0.145	0.105	0.076	0.048	0.04
17	0.143	0.124	0.105	0.095	0.07
18	0.13	0.11	0.097	0.063	0.044
19	0.165	0.127	0.101	0.07	0.04
20	0.165	0.129	0.114	0.073	0.055
21	0.162	0.1	0.068	0.05	0.035
22	0.129	0.09	0.073	0.05	0.038
23	0.145	0.105	0.069	0.054	0.045
24	0.15	0.116	0.094	0.085	0.045
25	0.153	0.11	0.068	0.056	0.035
26	0.15	0.108	0.07	0.05	0.03
27	0.145	0.12	0.093	0.06	0.045
28	0.13	0.102	0.084	0.053	0.03
29	0.151	0.105	0.082	0.053	0.03
30	0.145	0.115	0.107	0.078	0.038

Anexo 3: Alturas parciales del fuste

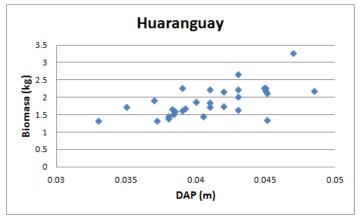
Huaranguay:

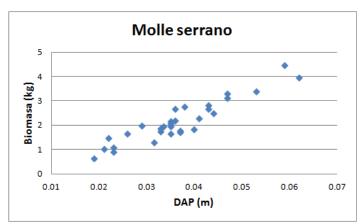
Árbol Nº.	H1 (m)	H2 (m)	H3 (m)	H4 (m)
1	0.66	1.32	1.98	2.64
2	0.745	1.49	2.235	2.98
3	0.715	1.43	2.145	2.86
4	0.975	1.95	2.925	3.9
5	0.565	1.13	1.695	2.26
6	0.775	1.55	2.325	3.1
7	0.7375	1.475	2.2125	2.95
8	0.7925	1.585	2.3775	3.17
9	0.67	1.34	2.01	2.68
10	0.7625	1.525	2.2875	3.05
11	0.525	1.05	1.575	2.1
12	0.71	1.42	2.13	2.84
13	0.7075	1.415	2.1225	2.83
14	0.74	1.48	2.22	2.96
15	0.91	1.82	2.73	3.64
16	0.6075	1.215	1.8225	2.43
17	0.745	1.49	2.235	2.98
18	0.68	1.36	2.04	2.72
19	0.6575	1.315	1.9725	2.63
20	0.6425	1.285	1.9275	2.57
21	0.81	1.62	2.43	3.24
22	0.8	1.6	2.4	3.2
23	0.75	1.5	2.25	3
24	0.65	1.3	1.95	2.6
25	0.625	1.25	1.875	2.5
26	0.675	1.35	2.025	2.7
27	0.77	1.54	2.31	3.08
28	0.88	1.76	2.64	3.52
29	0.6875	1.375	2.0625	2.75
30	0.6375	1.275	1.9125	2.55

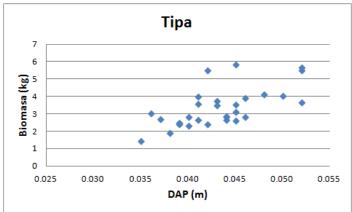
Molle serrano:

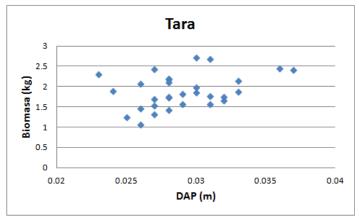
Árbol Nº.	H1 (m)	H2 (m)	H3 (m)	H4 (m)
1	0.675	1.35	2.025	2.7
2	0.7075	1.415	2.1225	2.83
3	0.73	1.46	2.19	2.92
4	0.4575	0.915	1.3725	1.83
5	0.4625	0.925	1.3875	1.85
6	0.5425	1.085	1.6275	2.17
7	0.5575	1.115	1.6725	2.23
8	0.5175	1.035	1.5525	2.07
9	0.495	0.99	1.485	1.98
10	0.5275	1.055	1.5825	2.11
11	0.4825	0.965	1.4475	1.93
12	0.69	1.38	2.07	2.76
13	0.76	1.52	2.28	3.04
14	0.6	1.2	1.8	2.4
15	0.85	1.7	2.55	3.4
16	0.755	1.51	2.265	3.02
17	0.63	1.26	1.89	2.52
18	0.8625	1.725	2.5875	3.45
19	0.9625	1.925	2.8875	3.85
20	0.725	1.45	2.175	2.9
21	0.695	1.39	2.085	2.78
22	0.6	1.2	1.8	2.4
23	0.6625	1.325	1.9875	2.65
24	0.65	1.3	1.95	2.6
25	0.555	1.11	1.665	2.22
26	0.75	1.5	2.25	3
27	0.57	1.14	1.71	2.28
28	0.4375	0.875	1.3125	1.75
29	0.5	1	1.5	2
30	0.4	0.8	1.2	1.6

Tipa:

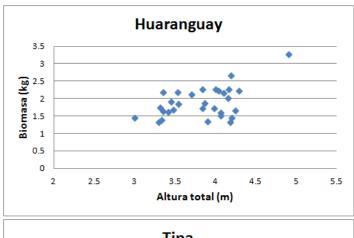

Árbol Nº.	H1 (m)	H2(m)	H3 (m)	H4 (m)
1	0.6325	1.265	1.8975	2.53
2	0.6775	1.355	2.0325	2.71
3	0.75	1.5	2.25	3
4	0.4825	0.965	1.4475	1.93
5	0.6325	1.265	1.8975	2.53
6	0.69	1.38	2.07	2.76
7	0.725	1.45	2.175	2.9
8	0.61	1.22	1.83	2.44
9	0.53	1.06	1.59	2.12
10	1.0325	2.065	3.0975	4.13
11	0.85	1.7	2.55	3.4
12	0.8	1.6	2.4	3.2
13	0.745	1.49	2.235	2.98
14	0.745	1.49	2.235	2.98
15	0.9125	1.825	2.7375	3.65
16	0.7775	1.555	2.3325	3.11
17	0.5875	1.175	1.7625	2.35
18	0.625	1.25	1.875	2.5
19	0.685	1.37	2.055	2.74
20	0.8625	1.725	2.5875	3.45
21	0.65	1.3	1.95	2.6
22	0.825	1.65	2.475	3.3
23	0.7875	1.575	2.3625	3.15
24	0.845	1.69	2.535	3.38
25	0.625	1.25	1.875	2.5
26	0.725	1.45	2.175	2.9
27	0.665	1.33	1.995	2.66
28	0.765	1.53	2.295	3.06
29	0.7	1.4	2.1	2.8
30	0.7325	1.465	2.1975	2.93

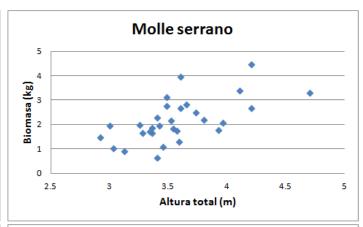

Tara:

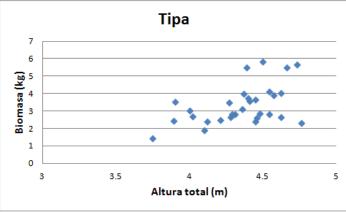

Árbol Nº.	H1 (m)	H2 (m)	H3 (m)	H4 (m)
1	0.78	1.56	2.34	3.12
2	0.835	1.67	2.505	3.34
3	0.033	1.4	2.1	2.8
4	0.57	1.14	1.71	2.28
5	0.725	1.45	2.175	2.9
6	0.7875	1.575	2.3625	3.15
7	0.735	1.47	2.205	2.94
8	0.76	1.52	2.28	3.04
9	0.52	1.04	1.56	2.08
10	0.715	1.43	2.145	2.86
11	0.48	0.96	1.44	1.92
12	0.735	1.47	2.205	2.94
13	0.685	1.37	2.055	2.74
14	0.6675	1.335	2.0025	2.67
15	0.715	1.43	2.145	2.86
16	0.7	1.4	2.1	2.8
17	0.48	0.96	1.44	1.92
18	0.675	1.35	2.025	2.7
19	0.85	1.7	2.55	3.4
20	0.745	1.49	2.235	2.98
21	0.7875	1.575	2.3625	3.15
22	0.7275	1.455	2.1825	2.91
23	0.875	1.75	2.625	3.5
24	0.69	1.38	2.07	2.76
25	0.74	1.48	2.22	2.96
26	0.8	1.6	2.4	3.2
27	0.725	1.45	2.175	2.9
28	0.7625	1.525	2.2875	3.05
29	0.9	1.8	2.7	3.6
30	0.615	1.23	1.845	2.46

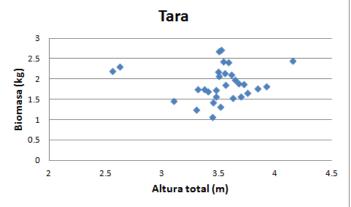

Anexo 4: Relación entre biomasa total, DAP y altura total

Biomasa total vs DAP

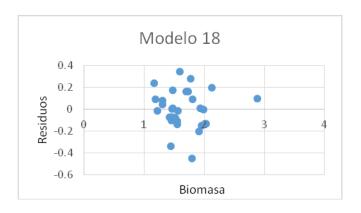


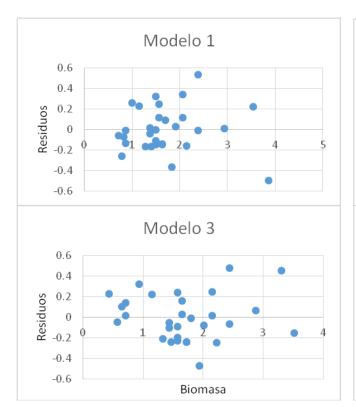


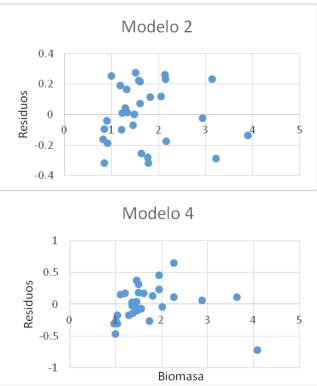


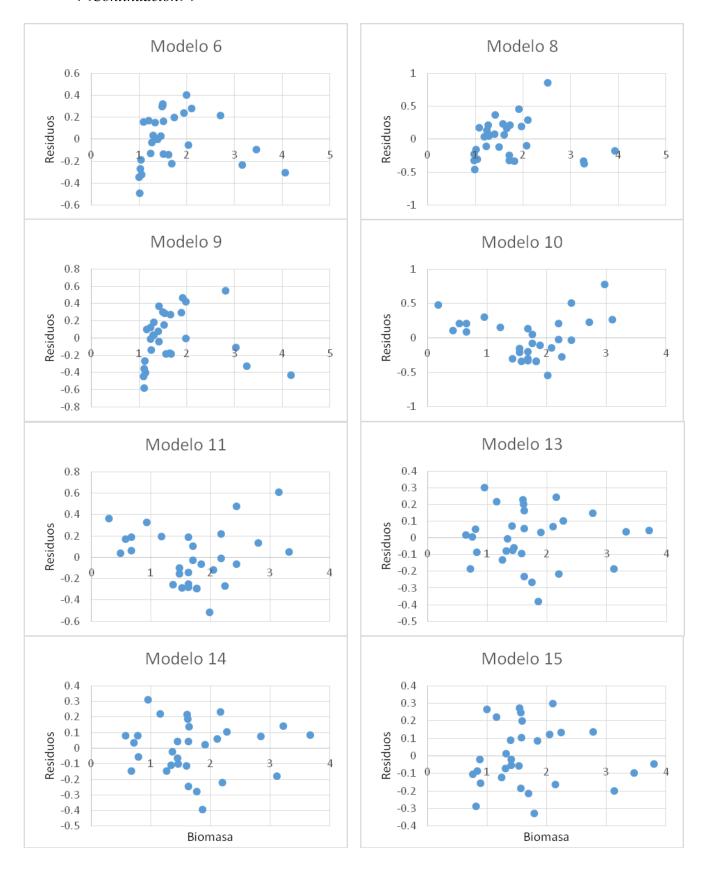


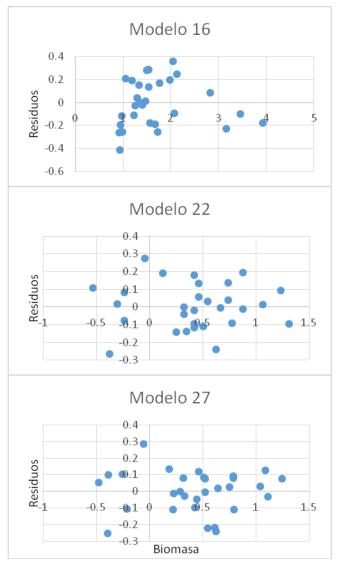
Biomasa total vs Altura total

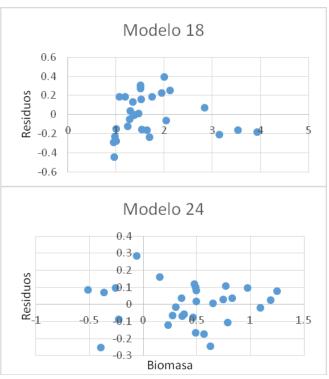


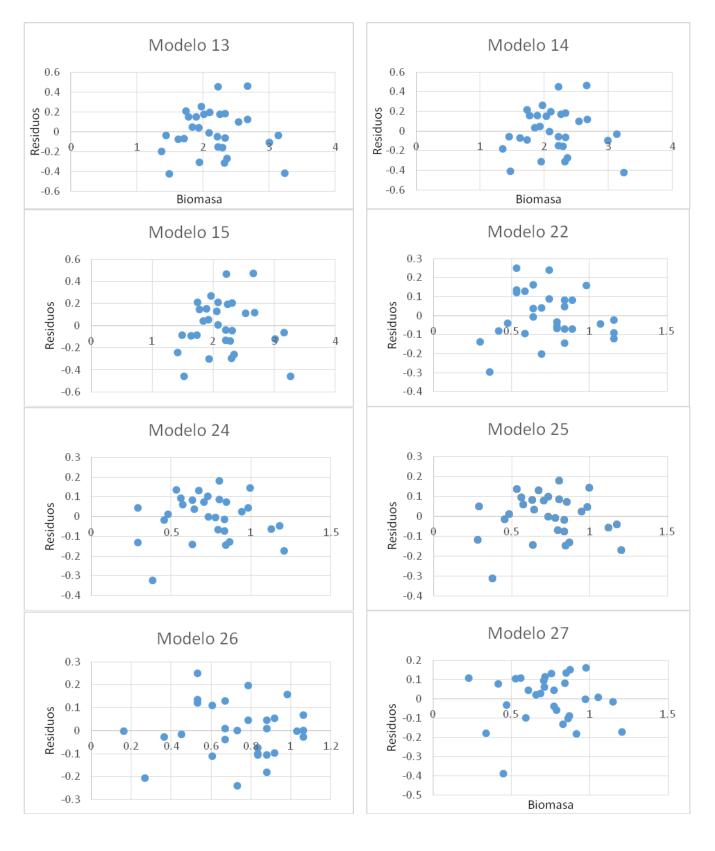


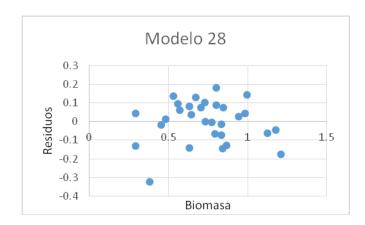

Anexo 5: Análisis de residuos

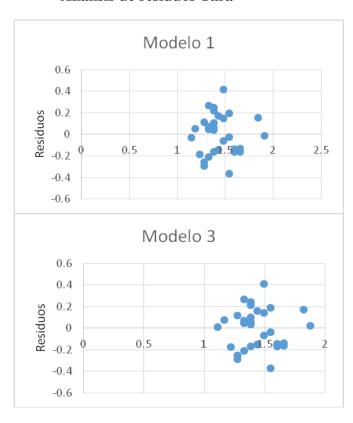

Análisis de residuos Huaranguay

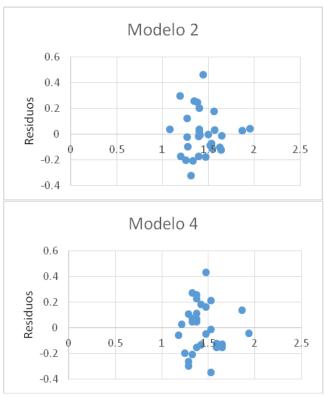


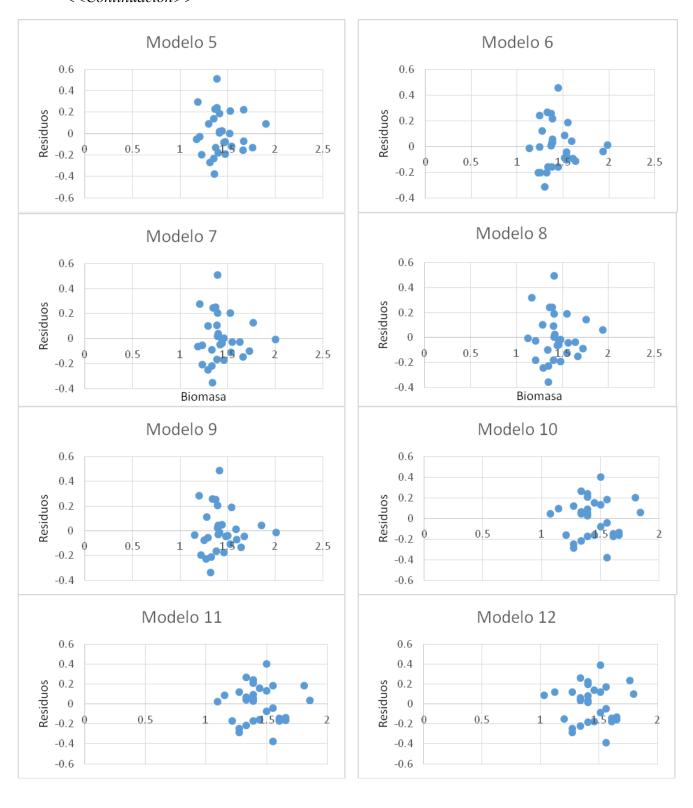

Análisis de residuos Molle serrano

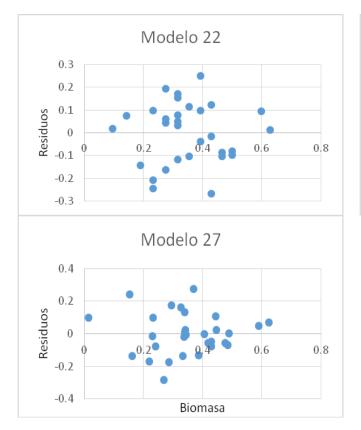


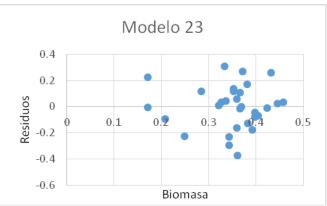





Análisis de residuos Tipa






Análisis de residuos Tara

Anexo 6: Factores de ponderación

	Huaranguay						
N°	Modelo	k					
18	$B = b_0 + b_1 dap^3 + b_2 dap^2 h^3$	$ \begin{array}{l} (dap^3)^{0.1}; (dap^3)^{0.2}; (dap^3)^{0.3} (dap^3)^{0.4}; (dap^3)^{0.5}; (dap^3)^{0.6}; (dap^3)^{0.7}; (dap^3)^{0.8}; \\ (dap^3)^{0.9}; (dap^3)^{1}; (dap^3)^{1.1}; (dap^3)^{1.2}; (dap^3)^{1.3}; (dap^3)^{1.4}; (dap^3)^{1.5}; (dap^3)^{1.6}; \\ (dap^3)^{1.7}; (dap^3)^{1.8}; (dap^3)^{1.9}; (dap^3)^2; (dap^3)^2; (dap^3)^3; (dap^3)^3; (dap^3)^{3.5}; (dap^3)^4; \\ (dap^2h^3)^{0.1}; (dap^2h^3)^{0.2}; (dap^2h^3)^{0.3} (dap^2h^3)^{0.4}; (dap^2h^3)^{0.5}; (dap^2h^3)^{0.6}; (dap^2h^3)^{0.7}; \\ (dap^2h^3)^{0.8}; (dap^2h^3)^{0.9}; (dap^2h^3)^{1}; (dap^2h^3)^{1.1}; (dap^2h^3)^{1.2}; (dap^2h^3)^{1.3}; (dap^2h^3)^{1.5}; (dap^2h^3)^{1.6}; (dap^2h^3)^{1.7}; (dap^2h^3)^{1.8}; (dap^2h^3)^{1.9}; (dap^2h^3)^2; (dap^2h^3)^2; (dap^2h^3)^3; (dap^2h^3)^{3.5}; (dap^2h^3)^4 \end{array}$					
		Molle serrano					
N°	Modelo	k					
1	$B = b_0 + b_1 dap^2$	$\begin{array}{l} (dap^2)^{0.1};\ (dap^2)^{0.2};\ (dap^2)^{0.3}\ (dap^2)^{0.4};\ (dap^2)^{0.5};\ (dap^2)^{0.6};\ (dap^2)^{0.7};\ (dap^2)^{0.8};\\ (dap^2)^{0.9};\ (dap^2)^{1.};\ (dap^2)^{1.2};\ (dap^2)^{1.3};\ (dap^2)^{1.4};\ (dap^2)^{1.5};\ (dap^2)^{1.6};\\ (dap^2)^{1.7};\ (dap^2)^{1.8};\ (dap^2)^{1.9};\ (dap^2)^{2.5};\ (dap^2)^{3};\ (dap^2)^{3.5};\ (dap^2)^{4} \end{array}$					
2	$B = b_0 + b_1 dap^2 h$	$\begin{array}{l} (dap^2h)^{0.1}; (dap^2h)^{0.2}; (dap^2h)^{0.3} (dap^2h)^{0.4}; (dap^2h)^{0.5}; (dap^2h)^{0.6}; (dap^2h)^{0.7}; \\ (dap^2h)^{0.8}; (dap^2h)^{0.9}; (dap^2h)^{1}; (dap^2h)^{1.1}; (dap^2h)^{1.2}; (dap^2h)^{1.3}; (dap^2h)^{1.4}; \\ (dap^2h)^{1.5}; (dap^2h)^{1.6}; (dap^2h)^{1.7}; (dap^2h)^{1.8}; (dap^2h)^{1.9}; (dap^2h)^{2}; (dap^2h)^{2.5}; \\ (dap^2h)^{3}; (dap^2h)^{3.5}; (dap^2h)^{4} \end{array}$					
3	$B = b_0 + b_1 dap$	$(dap)^{0.1}$; $(dap)^{0.2}$; $(dap)^{0.3}$ $(dap)^{0.4}$; $(dap)^{0.5}$; $(dap)^{0.6}$; $(dap)^{0.7}$; $(dap)^{0.8}$; $(dap)^{0.9}$; $(dap)^{1}$; $(dap)^{1.1}$; $(dap)^{1.2}$; $(dap)^{1.3}$; $(dap)^{1.4}$; $(dap)^{1.5}$; $(dap)^{1.6}$; $(dap)^{1.7}$; $(dap)^{1.8}$; $(dap)^{1.9}$; $(dap)^{2.5}$; $(dap)^{3.5}$; $(dap)^{3.5}$; $(dap)^{4}$					
4	$B = b_0 + b_1 dap^3$	$\begin{array}{l} (dap^3)^{0.1};\ (dap^3)^{0.2};\ (dap^3)^{0.3}\ (dap^3)^{0.4};\ (dap^3)^{0.5};\ (dap^3)^{0.6};\ (dap^3)^{0.7};\ (dap^3)^{0.8};\\ (dap^3)^{0.9};\ (dap^3)^{1};\ (dap^3)^{1.1};\ (dap^3)^{1.2};\ (dap^3)^{1.3};\ (dap^3)^{1.4};\ (dap^3)^{1.5};\ (dap^3)^{1.6};\\ (dap^3)^{1.7};\ (dap^3)^{1.8};\ (dap^3)^{1.9};\ (dap^3)^{2};\ (dap^3)^{2.5};\ (dap^3)^{3};\ (dap^3)^{3.5};\ (dap^3)^{4} \end{array}$					
6	$B = b_0 + b_1 dap^3 h$	$ (dap^3h)^{0.1}; (dap^3h)^{0.2}; (dap^3h)^{0.3} (dap^3h)^{0.4}; (dap^3h)^{0.5}; (dap^3h)^{0.6}; (dap^3h)^{0.7}; (dap^3h)^{0.8}; (dap^3h)^{0.9}; (dap^3h)^{1}; (dap^3h)^{1.1}; (dap^3h)^{1.2}; (dap^3h)^{1.3}; (dap^3h)^{1.4}; (dap^3h)^{1.5}; (dap^3h)^{1.6}; (dap^3h)^{1.7}; (dap^3h)^{1.8}; (dap^3h)^{1.9}; (dap^3h)^{2}; (dap^3h)^{2.5}; (dap^3h)^3; (dap^3h)^3; (dap^3h)^4 $					
8	$B = b_0 + b_1 dap^2 h^2$	$ \begin{array}{l} (dap^2h^2)^{0.1}; (dap^2h^2)^{0.2}; (dap^2h^2)^{0.3} (dap^2h^2)^{0.4}; (dap^2h^2)^{0.5}; (dap^2h^2)^{0.6}; (dap^2h^2)^{0.7}; \\ (dap^2h^2)^{0.8}; (dap^2h^2)^{0.9}; (dap^2h^2)^{1}; (dap^2h^2)^{1.1}; (dap^2h^2)^{1.2}; (dap^2h^2)^{1.3}; (dap^2h^2)^{1.4}; \\ (dap^2h^2)^{1.5}; (dap^2h^2)^{1.6}; (dap^2h^2)^{1.7}; (dap^2h^2)^{1.8}; (dap^2h^2)^{1.9}; (dap^2h^2)^{2}; (dap^2h^2)^{2.5}; \\ (dap^2h^2)^3; (dap^2h^2)^{3.5}; (dap^2h^2)^4 \end{array} $					
9	$B = b_0 + b_1 dap^3 h^2$	$ \frac{(dap^3h^2)^{0.1}; (dap^3h^2)^{0.2}; (dap^3h^2)^{0.3} (dap^3h^2)^{0.4}; (dap^3h^2)^{0.5}; (dap^3h^2)^{0.6}; (dap^3h^2)^{0.7}; (dap^3h^2)^{0.8}; (dap^3h^2)^{0.9}; (dap^3h^2)^{1}; (dap^3h^2)^{1.1}; (dap^3h^2)^{1.2}; (dap^3h^2)^{1.3}; (dap^3h^2)^{1.4}; (dap^3h^2)^{1.5}; (dap^3h^2)^{1.6}; (dap^3h^2)^{1.7}; (dap^3h^2)^{1.8}; (dap^3h^2)^{1.9}; (dap^3h^2)^{2}; (dap^3h^2)^{2.5}; (dap^3h^2)^{3.5}; (dap^3h^2)^{4} $					
11	$B = b_0 + b_1 dap^{0.5}$	$ \begin{array}{l} (dap^{0.5})^{0.1}; \ (dap^{0.5})^{0.2}; \ (dap^{0.5})^{0.3} \ (dap^{0.5})^{0.4}; \ (dap^{0.5})^{0.5}; \ (dap^{0.5})^{0.6}; \ (dap^{0.5})^{0.7}; \\ (dap^{0.5})^{0.8}; \ (dap^{0.5})^{0.9}; \ (dap^{0.5})^{1}; \ (dap^{0.5})^{1.1}; \ (dap^{0.5})^{1.2}; \ (dap^{0.5})^{1.3}; \ (dap^{0.5})^{1.4}; \\ (dap^{0.5})^{1.5}; \ (dap^{0.5})^{1.6}; \ (dap^{0.5})^{1.7}; \ (dap^{0.5})^{1.8}; \ (dap^{0.5})^{1.9}; \ (dap^{0.5})^{2}; \ (dap^{0.5})^{2.5}; \\ (dap^{0.5})^{3}; \ (dap^{0.5})^{3.5}; \ (dap^{0.5})^{4} \end{array} $					
13	$B = b_0 + b_1 dap + b_2 dap^2 h$	$ \begin{array}{l} (dap)^{0.1}; (dap)^{0.2}; (dap)^{0.3} (dap)^{0.4}; (dap)^{0.5}; (dap)^{0.6}; (dap)^{0.7}; (dap)^{0.8}; (dap)^{0.9}; \\ (dap)^{1}; (dap)^{1.1}; (dap)^{1.2}; (dap)^{1.3}; (dap)^{1.4}; (dap)^{1.5}; (dap)^{1.6}; (dap)^{1.7}; (dap^{2})^{1.8}; \\ (dap)^{1.9}; (dap)^{2}; (dap)^{2.5}; (dap)^{3}; (dap)^{3.5}; (dap)^{4}; (dap^{2}h)^{0.1}; (dap^{2}h)^{0.2}; (dap^{2}h)^{0.3}; \\ (dap^{2}h)^{0.4}; (dap^{2}h)^{0.5}; (dap^{2}h)^{0.6}; (dap^{2}h)^{0.7}; (dap^{2}h)^{0.8}; (dap^{2}h)^{0.9}; (dap^{2}h)^{1}; \\ (dap^{2}h)^{1.1}; (dap^{2}h)^{1.2}; (dap^{2}h)^{1.3}; (dap^{2}h)^{1.4}; (dap^{2}h)^{1.5}; (dap^{2}h)^{1.6}; (dap^{2}h)^{1.7}; \\ (dap^{2}h)^{1.8}; (dap^{2}h)^{1.9}; (dap^{2}h)^{2.5}; (dap^{2}h)^{3.5}; (dap^{2}h)^{3.5}; (dap^{2}h)^{4} \end{array} $					
14	$B = b_0 + b_1 dap + b_2 dap^2 h^2$	$(dap)^{0.1}$; $(dap)^{0.2}$; $(dap)^{0.3}$ $(dap)^{0.4}$; $(dap)^{0.5}$; $(dap)^{0.6}$; $(dap)^{0.7}$; $(dap)^{0.8}$; $(dap)^{0.9}$;					

		$ \begin{array}{l} (dap)^{I}; (dap)^{I.1}; (dap)^{I.2}; (dap)^{I.3}; (dap)^{I.4}; (dap)^{I.5}; (dap)^{I.6}; (dap)^{I.7}; (dap^2)^{I.8}; \\ (dap)^{I.9}; (dap)^{2}; (dap)^{3}; (dap)^{3}; (dap)^{4}; (dap^2h^2)^{0.1}; (dap^2h^2)^{0.2}; \\ (dap^2h^2)^{0.3} (dap^2h^2)^{0.4}; (dap^2h^2)^{0.5}; (dap^2h^2)^{0.6}; (dap^2h^2)^{0.7}; (dap^2h^2)^{0.8}; \\ (dap^2h^2)^{0.9}; (dap^2h^2)^{I}; (dap^2h^2)^{I.1}; (dap^2h^2)^{I.2}; (dap^2h^2)^{I.3}; (dap^2h^2)^{I.4}; (dap^2h^2)^{I.5}; \\ (dap^2h^2)^{I.6}; (dap^2h^2)^{I.7}; (dap^2h^2)^{I.8}; (dap^2h^2)^{I.9}; (dap^2h^2)^{2}; (dap^2h^2)^{2.5}; (dap^2h^2)^{3}; \\ (dap^2h^2)^{3.5}; (dap^2h^2)^{4} \end{array} $
15	$B = b_0 + b_1 dap^2 + b_2 dap^2 h^2$	$ \begin{array}{l} (dap^2)^{0.1}; (dap^2)^{0.2}; (dap^2)^{0.3} (dap^2)^{0.4}; (dap^2)^{0.5}; (dap^2)^{0.6}; (dap^2)^{0.7}; (dap^2)^{0.8}; \\ (dap^2)^{0.9}; (dap^2)^{l.}; (dap^2)^{l.1}; (dap^2)^{l.2}; (dap^2)^{l.3}; (dap^2)^{l.4}; (dap^2)^{l.5}; (dap^2)^{l.6}; \\ (dap^2)^{l.7}; (dap^2)^{l.8}; (dap^2)^{l.9}; (dap^2)^{2}; (dap^2)^{2.5}; (dap^2)^{3}; (dap^2)^{3.5}; (dap^2)^{4}; (dap)^{0.1}; \\ (dap)^{0.2}; (dap)^{0.3} (dap)^{0.4}; (dap)^{0.5}; (dap)^{0.6}; (dap)^{0.7}; (dap)^{0.8}; (dap)^{0.9}; (dap)^{l.}; \\ (dap)^{l.1}; (dap)^{l.2}; (dap)^{l.3}; (dap)^{l.4}; (dap)^{l.5}; (dap)^{l.6}; (dap)^{l.7}; (dap^2)^{l.8}; (dap)^{l.9}; \\ (dap)^{2}; (dap)^{2.5}; (dap)^{3}; (dap)^{3.5}; (dap)^{4}; (dap^2h^2)^{0.1}; (dap^2h^2)^{0.2}; (dap^2h^2)^{0.3} \\ (dap^2h^2)^{0.4}; (dap^2h^2)^{0.5}; (dap^2h^2)^{1.3}; (dap^2h^2)^{0.7}; (dap^2h^2)^{1.5}; (dap^2h^2)^{1.6}; \\ (dap^2h^2)^{l.1}; (dap^2h^2)^{l.2}; (dap^2h^2)^{l.3}; (dap^2h^2)^{2.5}; (dap^2h^2)^{3.5}; (dap^2h^2)^{3.5}; \\ (dap^2h^2)^{4} \end{array} $
16	$B = b_0 + b_1 dap^3 + b_2 dap^2 h^2$	$ \begin{array}{l} (dap^3)^{0.1}; (dap^3)^{0.2}; (dap^3)^{0.3} (dap^3)^{0.4}; (dap^3)^{0.5}; (dap^3)^{0.6}; (dap^3)^{0.7}; (dap^3)^{0.8}; \\ (dap^3)^{0.9}; (dap^3)^{l.}; (dap^3)^{l.1}; (dap^3)^{l.2}; (dap^3)^{l.3}; (dap^3)^{l.4}; (dap^3)^{l.5}; (dap^3)^{l.6}; \\ (dap^3)^{l.7}; (dap^3)^{l.8}; (dap^3)^{l.9}; (dap^3)^{2.5}; (dap^3)^{3.5}; (dap^3)^{3.5}; (dap^3)^{4}; \\ (dap^2h^2)^{0.1}; (dap^2h^2)^{0.2}; (dap^2h^2)^{0.3} (dap^2h^2)^{0.4}; (dap^2h^2)^{0.5}; (dap^2h^2)^{0.6}; (dap^2h^2)^{0.7}; \\ (dap^2h^2)^{0.8}; (dap^2h^2)^{0.9}; (dap^2h^2)^{l.}; (dap^2h^2)^{l.1}; (dap^2h^2)^{l.2}; (dap^2h^2)^{l.3}; (dap^2h^2)^{l.4}; \\ (dap^2h^2)^{1.5}; (dap^2h^2)^{1.6}; (dap^2h^2)^{1.7}; (dap^2h^2)^{l.8}; (dap^2h^2)^{l.9}; (dap^2h^2)^{2.5}; \\ (dap^2h^2)^3; (dap^2h^2)^{3.5}; (dap^2h^2)^4 \end{array}$
18	$B = b_0 + b_1 dap^3 + b_2 dap^2 h^3$	$ \begin{array}{l} (dap^3)^{0.1}; (dap^3)^{0.2}; (dap^3)^{0.3} (dap^3)^{0.4}; (dap^3)^{0.5}; (dap^3)^{0.6}; (dap^3)^{0.7}; (dap^3)^{0.8}; \\ (dap^3)^{0.9}; (dap^3)^{l.}; (dap^3)^{l.1}; (dap^3)^{l.2}; (dap^3)^{l.3}; (dap^3)^{l.4}; (dap^3)^{l.5}; (dap^3)^{l.6}; \\ (dap^3)^{l.7}; (dap^3)^{l.8}; (dap^3)^{l.9}; (dap^3)^{2.5}; (dap^3)^{3.5}; (dap^3)^{3.5}; (dap^3)^{4}; \\ (dap^2h^3)^{0.1}; (dap^2h^3)^{0.2}; (dap^2h^3)^{0.3} (dap^2h^3)^{0.4}; (dap^2h^3)^{0.5}; (dap^2h^3)^{0.6}; (dap^2h^3)^{l.7}; \\ (dap^2h^3)^{0.8}; (dap^2h^3)^{0.9}; (dap^2h^3)^{l.7}; (dap^2h^3)^{l.1}; (dap^2h^3)^{l.2}; (dap^2h^3)^{l.3}; (dap^2h^3)^{l.5}; \\ (dap^2h^3)^{3.5}; (dap^2h^3)^{3.5}; (dap^2h^3)^{4} \end{array} $
		Tipa
N°	Modelo	k
13	$B = b_0 + b_1 dap + b_2 dap^2 h$	$(dap)^{0.1}$; $(dap)^{0.2}$; $(dap)^{0.3}$ $(dap)^{0.4}$; $(dap)^{0.5}$; $(dap)^{0.6}$; $(dap)^{0.6}$; $(dap)^{0.8}$; $(dap)^{0.9}$; $(dap)^{1}$; $(dap)^{1.1}$; $(dap)^{1.2}$; $(dap)^{1.3}$; $(dap)^{1.4}$; $(dap)^{1.5}$; $(dap)^{1.6}$; $(dap)^{1.7}$; $(dap^{2})^{1.8}$; $(dap)^{1.9}$; $(dap)^{2}$; $(dap)^{2.5}$; $(dap)^{3}$; $(dap)^{3.5}$; $(dap)^{4}$; $(dap^{2}h)^{0.1}$; $(dap^{2}h)^{0.2}$; $(dap^{2}h)^{0.5}$; $(dap^{2}h)^{0.6}$; $(dap^{2}h)^{0.7}$; $(dap^{2}h)^{0.8}$; $(dap^{2}h)^{0.9}$; $(dap^{2}h)^{1}$;
		$\begin{array}{l} (dap^2h)^{1.1}; (dap^2h)^{1.2}; (dap^2h)^{1.3}; (dap^2h)^{1.4}; (dap^2h)^{1.5}; (dap^2h)^{1.6}; (dap^2h)^{1.7}; \\ (dap^2h)^{1.8}; (dap^2h)^{1.9}; (dap^2h)^{2}; (dap^2h)^{2.5}; (dap^2h)^{3}; (dap^2h)^{3.5}; (dap^2h)^{4} \end{array}$

15	$B = b_0 + b_1 dap^2 + b_2 dap^2 h^2$	$ (dap^2)^{0.1}; (dap^2)^{0.2}; (dap^2)^{0.3} (dap^2)^{0.4}; (dap^2)^{0.5}; (dap^2)^{0.6}; (dap^2)^{0.7}; (dap^2)^{0.8}; (dap^2)^{0.9}; (dap^2)^{1}; (dap^2)^{1.2}; (dap^2)^{1.3}; (dap^2)^{1.4}; (dap^2)^{1.5}; (dap^2)^{1.6}; (dap^2)^{1.7}; (dap^2)^{1.8}; (dap^2)^{1.9}; (dap^2)^{2}; (dap^2)^{2.5}; (dap^2)^{3}; (dap^2)^{3.5}; (dap^2)^{4}; (dap)^{0.1}; (dap)^{0.2}; (dap)^{0.3} (dap)^{0.4}; (dap)^{0.5}; (dap)^{0.6}; (dap)^{0.7}; (dap)^{0.8}; (dap)^{0.9}; (dap)^{1}; (dap)^{1.1}; (dap)^{1.2}; (dap)^{1.3}; (dap)^{1.4}; (dap)^{1.5}; (dap)^{1.6}; (dap)^{1.7}; (dap^2)^{1.8}; (dap)^{1.9}; (dap)^{2}; (dap)^{2.5}; (dap)^{3}; (dap)^{3.5}; (dap)^{4}; (dap^2h^2)^{0.1}; (dap^2h^2)^{0.2}; (dap^2h^2)^{0.3} (dap^2h^2)^{0.5}; (dap^2h^2)^{0.6}; (dap^2h^2)^{0.7}; (dap^2h^2)^{0.8}; (dap^2h^2)^{0.9}; (dap^2h^2)^{1.7}; (dap^2h^2)^{1.2}; (dap^2h^2)^{1.3}; (dap^2h^2)^{1.4}; (dap^2h^2)^{1.5}; (dap^2h^2)^{1.5}; (dap^2h^2)^{1.5}; (dap^2h^2)^{1.5}; (dap^2h^2)^{3.5}; (dap^2h^2)^{4} $
		Tara
N°	Modelo	k
1	$B = b_0 + b_1 dap^2$	$ (dap^2)^{0.1}; (dap^2)^{0.2}; (dap^2)^{0.3} (dap^2)^{0.4}; (dap^2)^{0.5}; (dap^2)^{0.6}; (dap^2)^{0.7}; (dap^2)^{0.8}; (dap^2)^{0.9}; (dap^2)^{1}; (dap^2)^{1.1}; (dap^2)^{1.2}; (dap^2)^{1.3}; (dap^2)^{1.4}; (dap^2)^{1.5}; (dap^2)^{1.6}; (dap^2)^{1.7}; (dap^2)^{1.8}; (dap^2)^{1.9}; (dap^2)^{2.5}; (dap^2)^{3.5}; (dap^2)^{3.5}; (dap^2)^{4} $
2	$B = b_0 + b_1 dap^2 h$	$\begin{array}{l} (dap^2h)^{0.1}; (dap^2h)^{0.2}; (dap^2h)^{0.3} (dap^2h)^{0.4}; (dap^2h)^{0.5}; (dap^2h)^{0.6}; (dap^2h)^{0.7}; \\ (dap^2h)^{0.8}; (dap^2h)^{0.9}; (dap^2h)^{1}; (dap^2h)^{1.1}; (dap^2h)^{1.2}; (dap^2h)^{1.3}; (dap^2h)^{1.4}; \\ (dap^2h)^{1.5}; (dap^2h)^{1.6}; (dap^2h)^{1.7}; (dap^2h)^{1.8}; (dap^2h)^{1.9}; (dap^2h)^{2}; (dap^2h)^{2.5}; \\ (dap^2h)^{3}; (dap^2h)^{3.5}; (dap^2h)^{4} \end{array}$
3	$B = b_0 + b_1 dap$	$(dap)^{0.1}$; $(dap)^{0.2}$; $(dap)^{0.3}$ $(dap)^{0.4}$; $(dap)^{0.5}$; $(dap)^{0.6}$; $(dap)^{0.7}$; $(dap)^{0.8}$; $(dap)^{0.9}$; $(dap)^{1}$; $(dap)^{1.1}$; $(dap)^{1.2}$; $(dap)^{1.3}$; $(dap)^{1.4}$; $(dap)^{1.5}$; $(dap)^{1.6}$; $(dap)^{1.7}$; $(dap)^{1.7}$; $(dap)^{1.9}$; $(dap)^{2.5}$; $(dap)^{3}$; $(dap)^{3.5}$; $(dap)^{4}$
4	$B = b_0 + b_1 dap^3$	$ \begin{array}{l} ((dap^3)^{0.1}; (dap^3)^{0.2}; (dap^3)^{0.3} (dap^3)^{0.4}; (dap^3)^{0.5}; (dap^3)^{0.6}; (dap^3)^{0.7}; (dap^3)^{0.8}; \\ (dap^3)^{0.9}; (dap^3)^{1}; (dap^3)^{1.1}; (dap^3)^{1.2}; (dap^3)^{1.3}; (dap^3)^{1.4}; (dap^3)^{1.5}; (dap^3)^{1.6}; \\ (dap^3)^{1.7}; (dap^3)^{1.8}; (dap^3)^{1.9}; (dap^3)^{2}; (dap^3)^{2.5}; (dap^3)^{3}; (dap^3)^{3.5}; (dap^3)^{4} \end{array} $
5	$B = b_0 + b_1 dap^2 h^3$	$ \begin{array}{l} (dap^2h^3)^{0.1}; \ (dap^2h^3)^{0.2}; \ (dap^2h^3)^{0.3} \ (dap^2h^3)^{0.4}; \ (dap^2h^3)^{0.5}; \ (dap^2h^3)^{0.6}; \ (dap^2h^3)^{0.7}; \\ (dap^2h^3)^{0.8}; \ (dap^2h^3)^{0.9}; \ (dap^2h^3)^{1}; \ (dap^2h^3)^{1.1}; \ (dap^2h^3)^{1.2}; \ (dap^2h^3)^{1.3}; \ (dap^2h^3)^{1.4}; \\ (dap^2h^3)^{1.5}; \ (dap^2h^3)^{1.6}; \ (dap^2h^3)^{1.7}; \ (dap^2h^3)^{1.8}; \ (dap^2h^3)^{1.9}; \ (dap^2h^3)^2; \ (dap^2h^3)^3; \ (dap^2h^3)^3; \ (dap^2h^3)^4 \end{array} $
6	$B = b_0 + b_1 dap^3 h$	$ (dap^3h)^{0.1}; (dap^3h)^{0.2}; (dap^3h)^{0.3} (dap^3h)^{0.4}; (dap^3h)^{0.5}; (dap^3h)^{0.6}; (dap^3h)^{0.7}; (dap^3h)^{0.8}; (dap^3h)^{0.9}; (dap^3h)^{1}; (dap^3h)^{1.1}; (dap^3h)^{1.2}; (dap^3h)^{1.3}; (dap^3h)^{1.4}; (dap^3h)^{1.5}; (dap^3h)^{1.6}; (dap^3h)^{1.7}; (dap^3h)^{1.8}; (dap^3h)^{1.9}; (dap^3h)^{2.5}; (dap^3h)^{3.5}; (dap^3h)^{3.5}; (dap^3h)^{4} $
7	$B = b_0 + b_1 dap^3 h^3$	$ \frac{(dap^3h^3)^{0.1}; (dap^3h^3)^{0.2}; (dap^3h^3)^{0.3} (dap^3h^3)^{0.4}; (dap^3h^3)^{0.5}; (dap^3h^3)^{0.6}; (dap^3h^3)^{0.7}; (dap^3h^3)^{0.8}; (dap^3h^3)^{0.9}; (dap^3h^3)^{1}; (dap^3h^3)^{1.1}; (dap^3h^3)^{1.2}; (dap^3h^3)^{1.3}; (dap^3h^3)^{1.4}; (dap^3h^3)^{1.5}; (dap^3h^3)^{1.6}; (dap^3h^3)^{1.7}; (dap^3h^3)^{1.8}; (dap^3h^3)^{1.9}; (dap^3h^3)^{2.5}; (dap^3h^3)^{3.5}; (dap^3h^3)^{4} $
8	$B = b_0 + b_1 dap^2 h^2$	$ \begin{array}{l} (dap^2h^2)^{0.1}; \ (dap^2h^2)^{0.2}; \ (dap^2h^2)^{0.3} \ (dap^2h^2)^{0.4}; \ (dap^2h^2)^{0.5}; \ (dap^2h^2)^{0.6}; \ (dap^2h^2)^{0.7}; \ (dap^2h^2)^{0.8}; \ (dap^2h^2)^{0.9}; \ (dap^2h^2)^{1}; \ (dap^2h^2)^{1.1}; \ (dap^2h^2)^{1.2}; \ (dap^2h^2)^{1.3}; \ (dap^2h^2)^{1.4}; \ (dap^2h^2)^{1.5}; \ (dap^2h^2)^{1.6}; \ (dap^2h^2)^{1.7}; \ (dap^2h^2)^{1.8}; \ (dap^2h^2)^{1.9}; \ (dap^2h^2)^2; \ (dap^2h^2)^2; \ (dap^2h^2)^3; \ (dap^2h^2)^{3.5}; \ (dap^2h^2)^4 \end{array} $
9	$B = b_0 + b_1 dap^3 h^2$	$ (dap^3h^2)^{0.1}; (dap^3h^2)^{0.2}; (dap^3h^2)^{0.3} (dap^3h^2)^{0.4}; (dap^3h^2)^{0.5}; (dap^3h^2)^{0.6}; (dap^3h^2)^{0.7}; (dap^3h^2)^{0.8}; (dap^3h^2)^{0.9}; (dap^3h^2)^{1}; (dap^3h^2)^{1.1}; (dap^3h^2)^{1.2}; (dap^3h^2)^{1.3}; (dap^3h^2)^{1.4}; (dap^3h^2)^{1.5}; (dap^3h^2)^{1.6}; (dap^3h^2)^{1.7}; (dap^3h^2)^{1.8}; (dap^3h^2)^{1.9}; (dap^3h^2)^{2}; (dap^3h^2)^{2.5}; (dap^3h^2)^{3}; (dap^3h^2)^{3.5}; (dap^3h^2)^4 $
11	$B = b_0 + b_1 dap^{0.5}$	$ (dap^{0.5})^{0.1}; (dap^{0.5})^{0.2}; (dap^{0.5})^{0.3} (dap^{0.5})^{0.4}; (dap^{0.5})^{0.5}; (dap^{0.5})^{0.6}; (dap^{0.5})^{0.7}; (dap^{0.5})^{0.8}; (dap^{0.5})^{0.9}; (dap^{0.5})^{1}; (dap^{0.5})^{1.1}; (dap^{0.5})^{1.2}; (dap^{0.5})^{1.3}; (dap^{0.5})^{1.4}; (dap^{0.5})^{1.5}; (dap^{0.5})^{1.6}; (dap^{0.5})^{1.7}; (dap^{0.5})^{1.8}; (dap^{0.5})^{1.9}; (dap^{0.5})^{2}; (dap^{0.5})^{2.5}; (dap^{0.5})^{3}; (dap^{0.5})^{3}; (dap^{0.5})^{3}; (dap^{0.5})^{4} $

Anexo 7: Análisis de regresión (modelos no ponderados Huaranguay) Modelo 18

Resumen

Estadísticas de la regresión							
Coeficiente de correlación							
múltiple	0.89616914						
Coeficiente de determinación							
R^2	0.80311913						
R^2 ajustado	0.78853536						
Error típico	0.1790148						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	3.52953992	1.76476996	55.0693825	2.9631E-10
Residuos	27	0.8652501	0.0320463		
Total	29	4.39479002			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.52488501	0.13262793	3.95757528	0.00049508	0.25275498	0.79701504	0.25275498	0.79701504
Variable X 1	9390.52639	2005.53793	4.68229807	7.1534E-05	5275.50246	13505.5503	5275.50246	13505.5503
Variable X 2	10.5785153	1.62254232	6.5197161	5.445E-07	7.24933344	13.9076971	7.24933344	13.9076971

Anexo 8: Análisis de regresión (modelos no ponderados Molle serrano)

Modelo 1

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.96001681						
Coeficiente de determinación R^2	0.92163227						
R^2 ajustado	0.91883343						
Error típico	0.22382774						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	16.4970502	16.4970502	329.289941	5.1157E-17
Residuos	28	1.40276804	0.05009886		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.38537601	0.08278669	4.65504775	7.1194E-05	0.21579516	0.55495687	0.21579516	0.55495687
Variable X 1	905.308564	49.8892984	18.1463479	5.1157E-17	803.114969	1007.50216	803.114969	1007.50216

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.9694722							
Coeficiente de determinación R^2	0.93987635							
R^2 ajustado	0.93772908							
Error típico	0.1960505							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	16.8236159	16.8236159	437.706954	1.2407E-18
Residuos	28	1.07620234	0.0384358		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilida d	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
							0.5052918	
Intercepción	0.63232629	0.06201619	10.1961483	6.2576E-11	0.50529188	0.7593607	8	0.7593607
						297.76413	244.65607	
Variable X 1	271.210104	12.9632573	20.9214472	1.2407E-18	244.656075	3	5	297.764133

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.95827032						
Coeficiente de determinación R^2	0.91828201						
R^2 ajustado	0.91536351						
Error típico	0.22856205						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	16.4370812	16.4370812	314.641819	9.208E-17
Residuos	28	1.46273713	0.05224061		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-0.93673088	0.15395264	-6.08453936	1.4582E-06	-1.25208856	-0.6213732	-1.25208856	-0.6213732
Variable X 1	71.8852218	4.05257812	17.7381459	9.208E-17	63.5838919	80.1865518	63.5838919	80.1865518

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.93505289						
Coeficiente de determinación R^2	0.87432391						
R^2 ajustado	0.86983547						
Error típico	0.28344685						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	15.650239	15.65023905	194.794958	3.9006E-14
Residuos	28	2.24957924	0.080342116		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.86719435	0.07854553	11.0406587	1.0358E-11	0.70630113	1.02808757	0.70630113	1.02808757
Variable X 1	13503.5803	967.520275	13.95689643	3.9006E-14	11521.7048	15485.4557	11521.7048	15485.4557

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.95371982						
Coeficiente de determinación R^2	0.90958149						
R^2 ajustado	0.90635226						
Error típico	0.24042186						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	16.2813435	16.2813435	281.67112	3.8127E-16
Residuos	28	1.61847483	0.05780267		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.94600099	0.0624647	15.1445706	5.1337E-15	0.81804786	1.07395411	0.81804786	1.07395411
Variable X 1	4392.68593	261.733307	16.7830605	3.8127E-16	3856.54956	4928.82231	3856.54956	4928.82231

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.92695179						
Coeficiente de determinación R^2	0.85923961						
R^2 ajustado	0.85421246						
Error típico	0.29997532						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	15.380233	15.380233	170.919602	1.9223E-13
Residuos	28	2.51958533	0.08998519		_
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.88453261	0.08254076	10.7163125	2.0452E-11	0.71545552	1.0536097	0.71545552	1.0536097
Variable X 1	73.4853275	5.62088496	13.0736224	1.9223E-13	61.9714666	84.9991884	61.9714666	84.9991884

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.92561246							
Coeficiente de determinación R^2	0.85675843							
R^2 ajustado	0.85164266							
Error típico	0.3026076							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	15.3358202	15.3358202	167.473984	2.4583E-13
Residuos	28	2.56399804	0.09157136		_
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.06856015	0.07329562	14.5787722	1.3275E-14	0.91842088	1.21869942	0.91842088	1.21869942
Variable X 1	1274.48886	98.4832491	12.941174	2.46E-13	1072.75507	1476.22265	1072.75507	1476.22265

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.92248245						
Coeficiente de determinación R^2	0.85097387						
R^2 ajustado	0.84565151						
Error típico	0.30865727						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	\overline{F}	Valor crítico de F
Regresión	1	15.2322776	15.2322776	159.886511	4.2924E-13
Residuos	28	2.66754069	0.09526931		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	9.98215107	0.65805401	15.1691972	4.9289E-15	8.63418853	11.3301136	8.63418853	11.3301136
Variable X 1	2.47545961	0.19577171	12.6446238	4.2924E-13	2.07443944	2.87647977	2.07443944	2.87647977

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.94455021						
Coeficiente de determinación R^2	0.8921751						
R^2 ajustado	0.88832421						
Error típico	0.26254565						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	15.9697721	15.9697721	231.680274	4.5247E-15
Residuos	28	1.93004615	0.06893022		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-3.45280506	0.34137961	-10.1142685	7.4852E-11	-4.1520895	-2.75352062	-4.1520895	-2.75352062
Variable X 1	27.1731149	1.78523296	15.2210471	4.5247E-15	23.5162309	30.8299988	23.5162309	30.8299988

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.97736327						
Coeficiente de determinación R^2	0.95523896						
R^2 ajustado	0.95192333						
Error típico	0.1722632						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	17.0986038	8.54930191	288.101579	6.1256E-19
Residuos	27	0.80121446	0.02967461		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-0.03015991	0.22434527	-0.13443524	0.89405555	-0.49047839	0.43015857	-0.49047839	0.43015857
Variable X 1	29.1063032	9.56142859	3.04413749	0.00515502	9.48787222	48.7247341	9.48787222	48.7247341
Variable X 2	168.353275	35.6567463	4.72149852	6.4383E-05	95.1916746	241.514875	95.1916746	241.514875

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.97664919						
Coeficiente de determinación R^2	0.95384363						
R^2 ajustado	0.95042464						
Error típico	0.17492756						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	17.0736277	8.53681384	278.984019	9.271E-19
Residuos	27	0.8261906	0.03059965		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-0.35570078	0.17352714	-2.04982798	0.05020858	-0.71174906	0.00034749	-0.71174906	0.00034749
Variable X 1	46.8712127	6.30064964	7.43910793	5.2981E-08	33.9433475	59.7990779	33.9433475	59.7990779
Variable X 2	30.3692507	6.65851282	4.56096602	9.9085E-05	16.7071109	44.0313905	16.7071109	44.0313905

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.97522306							
Coeficiente de determinación R^2	0.95106001							
R^2 ajustado	0.94743482							
Error típico	0.18012516							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	17.0238013	8.51190065	262.348018	2.0439E-18
Residuos	27	0.87601698	0.03244507		-
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.50432826	0.07287044	6.92088902	1.9464E-07	0.35481046	0.65384606	0.35481046	0.65384606
Variable X 1	604.035801	84.8678448	7.11736939	1.1839E-07	429.901367	778.170235	429.901367	778.170235
Variable X 2	28.7473095	7.13458754	4.02928821	0.00040956	14.108345	43.3862739	14.108345	43.3862739

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.96520469							
Coeficiente de determinación R^2	0.9316201							
R^2 ajustado	0.92655492							
Error típico	0.21291519							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	16.6758305	8.33791526	183.92644	1.8687E-16
Residuos	27	1.22398777	0.04533288		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.81473211	0.06002272	13.5737277	1.4078E-13	0.69157565	0.93788857	0.69157565	0.93788857
Variable X 1	7645.28516	1430.0963	5.34599324	1.2037E-05	4710.96993	10579.6004	4710.96993	10579.6004
Variable X 2	37.3401934	7.85047651	4.75642381	5.8615E-05	21.2323461	53.4480407	21.2323461	53.4480407

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.96159412							
Coeficiente de determinación R^2	0.92466325							
R^2 ajustado	0.91908275							
Error típico	0.22348371							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	16.5513041	8.27565207	165.695413	6.9118E-16
Residuos	27	1.34851414	0.04994497		
Total	29	17.8998183			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.86169078	0.06194279	13.9110758	7.8605E-14	0.73459469	0.98878688	0.73459469	0.98878688
Variable X 1	9419.59429	1227.36346	7.67465758	2.965E-08	6901.25248	11937.9361	6901.25248	11937.9361
Variable X 2	7.95894155	1.87379942	4.24748854	0.00022929	4.11422273	11.8036604	4.11422273	11.8036604

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.9614873						
Coeficiente de determinación R^2	0.92445784						
R^2 ajustado	0.9217599						
Error típico	0.13270053						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	6.03394044	6.03394044	342.653928	3.055E-17
Residuos	28	0.49306405	0.01760943		
Total	29	6.52700448			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	5.63940342	0.28291611	19.9331291	4.429E-18	5.05987604	6.21893081	5.05987604	6.21893081
Variable X 1	1.55802324	0.08416782	18.5109138	3.055E-17	1.38561328	1.7304332	1.38561328	1.7304332

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.96697793						
Coeficiente de determinación R^2	0.93504632						
R^2 ajustado	0.93023493						
Error típico	0.12530747						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	6.10305151	3.05152576	194.340413	9.3358E-17
Residuos	27	0.42395297	0.01570196		
Total	29	6.52700448			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	4.66273247	0.5367432	8.68708252	2.655E-09	3.56142639	5.76403855	3.56142639	5.76403855
Variable X 1	1.35945804	0.1235916	10.9995992	1.7698E-11	1.10586903	1.61304705	1.10586903	1.61304705
Variable X 2	0.34767158	0.16571901	2.09795838	0.0454032	0.00764426	0.6876989	0.00764426	0.6876989

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.96405317						
Coeficiente de determinación R^2	0.92939851						
R^2 ajustado	0.92687703						
Error típico	0.12828766						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	6.06618823	6.06618823	368.592185	1.1822E-17
Residuos	28	0.46081626	0.01645772		
Total	29	6.52700448			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	3.88674399	0.18200106	21.3556124	7.2133E-19	3.51393173	4.25955625	3.51393173	4.25955625
Variable X 1	0.59728352	0.03111053	19.1987548	1.1822E-17	0.53355648	0.66101057	0.53355648	0.66101057

Anexo 9: Análisis de regresión (modelos no ponderados Tipa) Modelo 13

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.9020065						
Coeficiente de determinación R^2	0.81361573						
R^2 ajustado	0.79980949						
Error típico	0.23295117						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	6.39592892	3.19796446	58.9310048	1.4142E-10
Residuos	27	1.46518867	0.05426625		_
Total	29	7.86111759			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-1.10312114	0.62554112	-1.76346702	0.08913706	-2.38662551	0.18038322	-2.38662551	0.18038322
Variable X 1	59.7931787	20.2829392	2.94795434	0.00652504	18.176025	101.410332	18.176025	101.410332
Variable X 2	123.966878	54.8395878	2.26053628	0.03205881	11.4453382	236.488418	11.4453382	236.488418

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.90197233						
Coeficiente de determinación R^2	0.81355408						
R^2 ajustado	0.79974328						
Error típico	0.23298969						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	6.39544432	3.19772216	58.9070567	1.4206E-10
Residuos	27	1.46567327	0.0542842		
Total	29	7.86111759			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-1.48500049	0.51032641	-2.90990328	0.00715725	-2.53210379	-0.43789719	-2.53210379	-0.43789719
Variable X 1	76.6515984	14.1279435	5.42553122	9.7294E-06	47.6634529	105.639744	47.6634529	105.639744
Variable X 2	20.4584123	9.05966338	2.25818681	0.03222325	1.86951855	39.0473061	1.86951855	39.0473061

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.89455188						
Coeficiente de determinación R^2	0.80022306						
R^2 ajustado	0.78542477						
Error típico	0.24117536						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	6.29064759	3.14532379	54.0753675	3.6088E-10
Residuos	27	1.57047	0.05816556		
Total	29	7.86111759			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.2152905	0.22793944	0.94450746	0.35328645	-0.2524026	0.6829836	-0.2524026	0.6829836
Variable X 1	848.180309	167.406278	5.06659797	2.5466E-05	504.690999	1191.66962	504.690999	1191.66962
Variable X 2	21.1120674	9.46105211	2.23147142	0.03414751	1.69959198	40.5245429	1.69959198	40.5245429

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.87161534						
Coeficiente de determinación R^2	0.7597133						
R^2 ajustado	0.75113163						
Error típico	0.13037641						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	1.50479046	1.50479046	88.5274641	3.63E-10
Residuos	28	0.4759442	0.01699801		
Total	29	1.98073466			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	7.55803735	0.72524018	10.4214267	3.8394E-11	6.07245019	9.04362451	6.07245019	9.04362451
Variable X 1	2.16589533	0.23019636	9.40890345	3.63E-10	1.69435946	2.6374312	1.69435946	2.6374312

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.90206121						
Coeficiente de determinación R^2	0.81371443						
R^2 ajustado	0.7999155						
Error típico	0.11690171						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	1.61175237	0.80587618	58.9693802	1.4042E-10
Residuos	27	0.36898229	0.01366601		
Total	29	1.98073466			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	6.36765075	0.77712062	8.19390265	8.4577E-09	4.77313093	7.96217056	4.77313093	7.96217056
Variable X 1	1.92478902	0.2236746	8.60530896	3.2101E-09	1.46584666	2.38373139	1.46584666	2.38373139
Variable X 2	0.41110273	0.14694563	2.797652	0.00937728	0.10959521	0.71261025	0.10959521	0.71261025

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.90515047						
Coeficiente de determinación R^2	0.81929738						
R^2 ajustado	0.805912						
Error típico	0.11513663						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	1.62281071	0.81140535	61.2083786	9.3115E-11
Residuos	27	0.35792395	0.01325644		
Total	29	1.98073466			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	3.36939265	0.43074588	7.82222832	2.0685E-08	2.4855751	4.2532102	2.4855751	4.2532102
Variable X 1	-0.3081302	0.03507522	-8.78483937	2.1182E-09	-0.38009861	-0.23616179	-0.38009861	-0.23616179
Variable X 2	0.40716552	0.14478322	2.81224248	0.00905579	0.11009489	0.70423615	0.11009489	0.70423615

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.89416832						
Coeficiente de determinación R^2	0.79953699						
R^2 ajustado	0.78468788						
Error típico	0.12126861						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	1.58367063	0.79183532	53.844096	3.7797E-10
Residuos	27	0.39706403	0.01470608		
Total	29	1.98073466			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-31.4202337	16.8436268	-1.86540785	0.07302596	-65.9805013	3.14003377	-65.9805013	3.14003377
Variable X 1	-22.6805888	10.7303994	-2.11367611	0.04392502	-44.6975497	-0.66362789	-44.6975497	-0.66362789
Variable X 2	-3.95524722	1.70780429	-2.31598389	0.02839206	-7.45937218	-0.45112227	-7.45937218	-0.45112227

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.87685511						
Coeficiente de determinación R^2	0.76887489						
R^2 ajustado	0.76062042						
Error típico	0.12786677						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	1.52293714	1.52293714	93.146509	2.0949E-10
Residuos	28	0.45779751	0.01634991		
Total	29	1.98073466			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	4.62370321	0.40328802	11.4650151	4.3349E-12	3.79760515	5.44980126	3.79760515	5.44980126
Variable X 1	0.74030114	0.07670526	9.65124391	2.0949E-10	0.58317755	0.89742474	0.58317755	0.89742474

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.90206121							
Coeficiente de determinación R^2	0.81371443							
R^2 ajustado	0.7999155							
Error típico	0.11690171							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	1.61175237	0.80587618	58.9693802	1.4042E-10
Residuos	27	0.36898229	0.01366601		
Total	29	1.98073466			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	6.36765075	0.77712062	8.19390265	8.4577E-09	4.77313093	7.96217056	4.77313093	7.96217056
Variable X 1	0.96239451	0.1118373	8.60530896	3.2101E-09	0.73292333	1.1918657	0.73292333	1.1918657
Variable X 2	-0.55129178	0.21625128	-2.54931102	0.01678776	-0.99500277	-0.1075808	-0.99500277	-0.1075808

Anexo 10: Análisis de regresión (modelos no ponderados Tara) Modelo 1

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.68547703						
Coeficiente de determinación R^2	0.46987876						
R^2 ajustado	0.45094585						
Error típico	0.19025504						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.89834053	0.89834053	24.8181059	2.915E-05
Residuos	28	1.01351549	0.03619698		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.66730862	0.15881145	4.20189226	0.00024401	0.3419981	0.99261914	0.3419981	0.99261914
Variable X 1	907.034071	182.070374	4.98177739	2.915E-05	534.079817	1279.98833	534.079817	1279.98833

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.73957453						
Coeficiente de determinación R^2	0.54697049						
R^2 ajustado	0.53079086						
Error típico	0.17587812						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	1.04572882	1.04572882	33.8061282	3.0197E-06
Residuos	28	0.86612719	0.03093311		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.79251625	0.11578454	6.84475022	1.9472E-07	0.55534237	1.02969013	0.55534237	1.02969013
Variable X 1	263.61337	45.3387681	5.81430376	3.0197E-06	170.741114	356.485626	170.741114	356.485626

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.68822315						
Coeficiente de determinación R^2	0.4736511						
R^2 ajustado	0.45485293						
Error típico	0.18957691						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.90555271	0.90555271	25.1966537	2.6284E-05
Residuos	28	1.00630331	0.0359394		_
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-0.14345541	0.31721042	-0.45224053	0.65458001	-0.79323149	0.50632068	-0.79323149	0.50632068
Variable X 1	54.578309	10.8729813	5.01962685	2.6284E-05	32.3060164	76.8506016	32.3060164	76.8506016

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.68018948						
Coeficiente de determinación R^2	0.46265773						
R^2 ajustado	0.44346694						
Error típico	0.19154644						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.88453497	0.88453497	24.1083146	3.5469E-05
Residuos	28	1.02732105	0.03669004		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.9409702	0.10735151	8.76531847	1.6225E-09	0.72107059	1.1608698	0.72107059	1.1608698
Variable X 1	19706.3244	4013.49015	4.91002186	3.5469E-05	11485.0625	27927.5863	11485.0625	27927.5863

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.65373319						
Coeficiente de determinación R^2	0.42736708						
R^2 ajustado	0.40691591						
Error típico	0.19773645						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.81706433	0.81706433	20.8969446	8.9465E-05
Residuos	28	1.09479169	0.0390997		-
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.09779996	0.08297386	13.230673	1.4393E-13	0.92783572	1.2677642	0.92783572	1.2677642
Variable X 1	15.8545765	3.4682728	4.5713176	8.9465E-05	8.75014175	22.9590113	8.75014175	22.9590113

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.73973259						
Coeficiente de determinación R^2	0.54720431						
R^2 ajustado	0.53103304						
Error típico	0.17583273						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	1.04617585	1.04617585	33.8380446	2.9974E-06
Residuos	28	0.86568016	0.03091715		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.97317682	0.08632441	11.2734838	6.4057E-12	0.79634929	1.15000436	0.79634929	1.15000436
Variable X 1	6374.60296	1095.84848	5.81704776	2.9974E-06	4129.8591	8619.34681	4129.8591	8619.34681

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.69874383						
Coeficiente de determinación R^2	0.48824294						
R^2 ajustado	0.46996591						
Error típico	0.18693064						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.93345021	0.93345021	26.7134615	1.7497E-05
Residuos	28	0.97840581	0.03494306		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.13226229	0.06851379	16.5260496	5.6527E-16	0.99191815	1.27260643	0.99191815	1.27260643
Variable X 1	475.696362	92.0374857	5.1685067	1.7497E-05	287.166119	664.226605	287.166119	664.226605

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.69767082						
Coeficiente de determinación R^2	0.48674458						
R^2 ajustado	0.46841403						
Error típico	0.1872041						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.93058555	0.93058555	26.5537345	1.8253E-05
Residuos	28	0.98127046	0.03504537		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0.9793576	0.09557965	10.2465073	5.6071E-11	0.78357155	1.17514364	0.78357155	1.17514364
Variable X 1	63.7876815	12.3786708	5.15303159	1.8253E-05	38.4311239	89.1442391	38.4311239	89.1442391

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.72826506						
Coeficiente de determinación R^2	0.53036999						
R^2 ajustado	0.51359749						
Error típico	0.17907151						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	1.01399106	1.01399106	31.621403	5.0668E-06
Residuos	28	0.89786496	0.03206661		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.0584756	0.07520389	14.0747462	3.1711E-14	0.90442742	1.21252377	0.90442742	1.21252377
Variable X 1	1767.15294	314.255994	5.62329112	5.0668E-06	1123.42872	2410.87717	1123.42872	2410.87717

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.68810838						
Coeficiente de determinación R^2	0.47349315						
R^2 ajustado	0.45468933						
Error típico	0.18960535						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.90525072	0.90525072	25.1806941	2.6399E-05
Residuos	28	1.0066053	0.03595019		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	7.14439806	1.13744211	6.28110915	8.6186E-07	4.81445351	9.4743426	4.81445351	9.4743426
Variable X 1	1.60872254	0.32058803	5.01803688	2.6399E-05	0.95202773	2.26541734	0.95202773	2.26541734

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.68853889						
Coeficiente de determinación R^2	0.4740858						
R^2 ajustado	0.45530315						
Error típico	0.18949861						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.90638379	0.90638379	25.2406236	2.5972E-05
Residuos	28	1.00547223	0.03590972		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-1.75565089	0.6368806	-2.75664056	0.01015986	-3.06024165	-0.45106012	-3.06024165	-0.45106012
Variable X 1	18.7892333	3.73989164	5.02400473	2.5972E-05	11.1284126	26.4500541	11.1284126	26.4500541

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.68380625						
Coeficiente de determinación R^2	0.46759099						
R^2 ajustado	0.44857639						
Error típico	0.19066513						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.89396665	0.89396665	24.5911464	3.1028E-05
Residuos	28	1.01788936	0.03635319		
Total	29	1.91185602			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.70419227	0.25743408	10.5044066	3.2123E-11	2.17686245	3.23152208	2.17686245	3.23152208
Variable X 1	0.01019053	0.00205498	4.9589461	3.1028E-05	0.0059811	0.01439997	0.0059811	0.01439997

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.67918953						
Coeficiente de determinación R^2	0.46129842						
R^2 ajustado	0.44205907						
Error típico	0.13536539						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.43934637	0.43934637	23.9768289	3.6794E-05
Residuos	28	0.51306611	0.01832379		
Total	29	0.95241248			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	4.32300279	0.81205672	5.32352322	1.1459E-05	2.65958001	5.98642556	2.65958001	5.98642556
Variable X 1	1.12072802	0.22887816	4.89661402	3.6794E-05	0.65189235	1.58956368	0.65189235	1.58956368

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.39231166						
Coeficiente de determinación R^2	0.15390844						
R^2 ajustado	0.12369088						
Error típico	0.16964545						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.14658432	0.14658432	5.09334514	0.03201052
Residuos	28	0.80582816	0.02877958		
Total	29	0.95241248			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	-0.12734091	0.21311351	-0.59752622	0.55495821	-0.56388416	0.30920233	-0.56388416	0.30920233
Variable X 1	0.45699131	0.20249131	2.25684407	0.03201052	0.04220667	0.87177595	0.04220667	0.87177595

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.7134642							
Coeficiente de determinación R^2	0.50903116							
R^2 ajustado	0.49149656							
Error típico	0.12922915							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.48480763	0.48480763	29.0300957	9.6122E-06
Residuos	28	0.46760485	0.01670017		
Total	29	0.95241248			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	3.00399673	0.49341906	6.08812459	1.4442E-06	1.9932736	4.01471986	1.9932736	4.01471986
Variable X 1	0.43882056	0.08144468	5.3879584	9.6122E-06	0.27198869	0.60565242	0.27198869	0.60565242

Anexo 11: Análisis de regresión (modelo ponderado Huaranguay) Modelo 18

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.99478273							
Coeficiente de determinación R^2	0.98959268							
R^2 ajustado	0.95178473							
Error típico	0.89956054							
Observaciones	30							

	Grados de	Suma de	Promedio de	E	Valor crítico
	libertad	cuadrados	los cuadrados	Γ	de F
Regresión	3	2077.50542	692.501806	855.776032	4.3064E-26
Residuos	27	21.8486474	0.80920916		
Total	30	2099.35407			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap2h3)0.5	0.61666733	0.12685758	4.86109947	4.4239E-05	0.35637707	0.87695759	0.35637707	0.87695759
(dap3)/(dap2h3)0.5	9042.24521	1900.39883	4.75807765	5.8355E-05	5142.94889	12941.5415	5142.94889	12941.5415
dap2h3/(dap2h3)0.5	9.01712866	2.03883426	4.42268841	0.00014355	4.8337863	13.200471	4.8337863	13.200471

Anexo 12: Análisis de regresión (modelos ponderados Molle serrano) Modelo 1

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99185243						
Coeficiente de determinación R^2	0.98377123						
R^2 ajustado	0.94747735						
Error típico	11.4775027						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	223594.673	111797.336	848.665693	4.2563E-25
Residuos	28	3688.52593	131.733069		
Total	30	227283.198			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap2)0.6	0.30224045	0.06228826	4.85228598	4.1535E-05	0.17464873	0.42983217	0.17464873	0.42983217
dap2/(dap2)0.6	964.621478	54.3292874	17.7550917	8.984E-17	853.332978	1075.90998	853.332978	1075.90998

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99423573						
Coeficiente de determinación R^2	0.98850468						
R^2 ajustado	0.95237984						
Error típico	0.34921698						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	293.633972	146.816986	1203.88668	4.0385E-27
Residuos	28	3.41466989	0.1219525		
Total	30	297.048642	·		

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap2h)0.1	0.61272208	0.05967321	10.267959	5.3515E-11	0.49048705	0.73495711	0.49048705	0.73495711
dap2h/(dap2h)0.1	275.298148	13.5744838	20.2805611	2.8141E-18	247.492078	303.104217	247.492078	303.104217

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99125124						
Coeficiente de determinación R^2	0.98257902						
R^2 ajustado	0.94624256						
Error típico	11.891618						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	223323.702	111661.851	789.628699	1.1089E-24
Residuos	28	3959.4962	141.410579		
Total	30	227283.198			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/dap1.2	-0.7108038	0.11913966	-5.96613902	2.0047E-06	-0.95485034	-0.46675726	-0.95485034	-0.46675726
dap/dap1.2	65.3679099	3.82698495	17.0807857	2.4311E-16	57.5286866	73.2071332	57.5286866	73.2071332

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99342255						
Coeficiente de determinación R^2	0.98688836						
R^2 ajustado	0.94888009						
Error típico	2.18443461						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	3	9697.3446	3232.4482	677.412921	8.6754E-25
Residuos	27	128.837373	4.77175457		
Total	30	9826.18198			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap2h2)0.5	-0.29805808	0.15455103	-1.92854149	0.06436361	-0.61517061	0.01905445	-0.61517061	0.01905445
dap/(dap2h2)0.5	45.0955457	6.973103	6.46707007	6.2401E-07	30.7879202	59.4031712	30.7879202	59.4031712
dap2h2/(dap2h2)0.5	31.0325726	10.7663602	2.88236433	0.00765055	8.94182621	53.1233189	8.94182621	53.1233189

Anexo 13: Análisis de regresión (modelos ponderados Tipa) Modelo 13

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99492922						
Coeficiente de determinación R^2	0.98988415						
R^2 ajustado	0.95209779						
Error típico	5.25164394						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	3	72867.8849	24289.295	880.69263	2.9767E-26
Residuos	27	744.65363	27.5797641		
Total	30	73612.5385			

							Inferior	
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
Variable X 1	-1.31450688	0.60613135	-2.16868321	0.03908408	-2.55818568	-0.07082808	-2.55818568	-0.07082808
Variable X 2	62.6055295	19.9092219	3.14454928	0.00401954	21.7551804	103.455879	21.7551804	103.455879
Variable X 3	140.544894	55.0898816	2.55119252	0.01671528	27.5097936	253.579994	27.5097936	253.579994

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99464322						
Coeficiente de determinación R^2	0.98931514						
R^2 ajustado	0.95148663						
Error típico	48.9842592						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	\overline{F}	Valor crítico de F
Regresión	3	5998498.48	1999499.49	833.313099	6.0633E-26
Residuos	27	64785.3566	2399.45765		
Total	30	6063283.83			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
						-		
1/dap1.7	-1.66283516	0.49616246	-3.35139254	0.00238836	-2.68087644	0.64479389	-2.68087644	-0.64479389
dap/dap1.7	79.0971592	13.9385818	5.67469206	5.0063E-06	50.4975518	107.696767	50.4975518	107.696767
dap2h2/dap1.7	25.1271655	8.99801513	2.79252315	0.00949282	6.66476352	43.5895676	6.66476352	43.5895676

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.99474136							
Coeficiente de determinación R^2	0.98951038							
R^2 ajustado	0.95169634							
Error típico	1.23817626							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	3	3904.71558	1301.57186	848.991227	4.7708E-26
Residuos	27	41.3931724	1.53308046		
Total	30	3946.10875			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap2h2)0.4	0.0511366	0.21856407	0.23396617	0.81677623	-0.39731983	0.49959303	-0.39731983	0.49959303
dap2/(dap2h2)0.4	905.102274	169.107856	5.35221897	1.1838E-05	558.121615	1252.08293	558.121615	1252.08293
dap2h2/(dap2h2)0.4	24.4874593	9.82646424	2.49199088	0.01914033	4.32522007	44.6496985	4.32522007	44.6496985

Anexo 14: Análisis de regresión (modelos ponderados Tara) Modelo 1

Resumen

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.99161842							
Coeficiente de determinación R^2	0.98330709							
R^2 ajustado	0.94699663							
Error típico	233.906658							
Observaciones	30							

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	90240256.9	45120128.5	824.679427	6.2295E-25
Residuos	28	1531945.09	54712.3246		
Total	30	91772202			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap2)	0.60970203	0.16359961	3.72679396	0.00086978	0.27458342	0.94482063	0.27458342	0.94482063
dap2/(dap2)	976.514137	205.865515	4.74345661	5.5923E-05	554.817746	1398.21053	554.817746	1398.21053

Resumen

Estadísticas de la regresión							
Coeficiente de correlación múltiple	0.99182148						
Coeficiente de determinación R^2	0.98370986						
R^2 ajustado	0.94741378						
Error típico	0.55567491						
Observaciones	30						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	522.085596	261.042798	845.415375	4.4789E-25
Residuos	28	8.64568891	0.3087746		_
Total	30	530.731284			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap3)0.1	0.93411763	0.10790019	8.65723827	2.0976E-09	0.71309412	1.15514115	0.71309412	1.15514115
dap3/(dap3)0.1	19964.1979	4124.72465	4.84012864	4.2938E-05	11515.0825	28413.3134	11515.0825	28413.3134

Resumen

Estadísticas de la regresión						
Coeficiente de correlación múltiple	0.99191367					
Coeficiente de determinación R^2	0.98389273					
R^2 ajustado	0.94760318					
Error típico	2.46771039					
Observaciones	30					

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	10415.3099	5207.65497	855.17269	3.8455E-25
Residuos	28	170.508648	6.08959457		
Total	30	10585.8186			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap3h2)0.3	1.05096056	0.07507897	13.9980681	3.6279E-14	0.89716826	1.20475286	0.89716826	1.20475286
dap3h/(dap3h2)0.3	1800.63343	357.786135	5.0327088	2.5361E-05	1067.74176	2533.52511	1067.74176	2533.52511

Resumen

Estadísticas de la regresión						
Coeficiente de correlación múltiple	0.98901215					
Coeficiente de determinación R^2	0.97814503					
R^2 ajustado	0.94165021					
Error típico	83.539135					
Observaciones	30					

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	8745629.87	4372814.94	626.586667	2.3729E-23
Residuos	28	195406.038	6978.78708		
Total	30	8941035.91			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
1/(dap0.5)3.5	-2.47421051	0.23792236	-10.399235	4.0275E-11	-2.96157237	-1.98684865	-2.96157237	-1.98684865
dap0.5/(dap0.5)3.5	21.7204827	1.44337743	15.0483735	6.0217E-15	18.7638581	24.6771073	18.7638581	24.6771073