UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO MAESTRÍA EN PRODUCCIÓN AGRÍCOLA

"ESTABILIDAD DE RENDIMIENTO DE HÍBRIDOS DE MAÍZ AMARILLO DURO (Zea mays L.) EN LA COSTA NORTE DEL PERÚ"

Presentada por:

BARTOLOME MILTON QUIJANO PAULINO

TESIS PARA OPTAR EL GRADO DE MAESTRO MAGISTER SCIENTIAE EN PRODUCCIÓN AGRÍCOLA

> Lima – Perú 2024

Reporte de Similitud

TESIS MILTON QUIJANO

INFORM	1E DE	ORIGIN	VALIDAD
---------------	-------	--------	---------

INDICE DE SIMILITUD

2%

FUENTES DE INTERNET

PUBLICACIONES

TRABAJOS DEL **ESTUDIANTE**

FUENTES PRIMARIAS

docplayer.es

Fuente de Internet

%

doczz.es

Fuente de Internet

Submitted to Universidad Cesar Vallejo

Trabajo del estudiante

core.ac.uk

Fuente de Internet

www.slideshare.net

Fuente de Internet

proyectos.idiap.gob.pa

Fuente de Internet

www.researchgate.net

Fuente de Internet

Excluir citas Apagado Excluir bibliografía Activo

Excluir coincidencias Apagado

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

ESCUELA DE POSGRADO MAESTRÍA EN PRODUCCIÓN AGRÍCOLA

"ESTABILIDAD DE RENDIMIENTO DE HÍBRIDOS DE MAÍZ AMARILLO DURO (Zea mays L.) EN LA COSTA NORTE DEL PERÚ"

TESIS PARA OPTAR EL GRADO DE MAESTRO MAGISTER SCIENTIAE

Presentada por:

BARTOLOME MILTON QUIJANO PAULINO

Sustentada y aprobada ante el siguiente jurado:

Dr. Javier Arias Carbajal

PRESIDENTE

Mg.Sc Julián Chura Chuquija

ASESOR

Mg.Sc. Gilberto Rodríguez Soto

MIEMBRO

Mg.Sc. Jorge Tobaru Hamada

MIEMBRO

DEDICATORIA

A mi esposa Gloria y a mi amado hijo Smith por darme las fuerzas y su apoyo incondicional, a mi madre Elconida, a mis hermanos Aníbal, Elida y Clemencia por su motivación permanente para continuar mi formación profesional. A mis sobrinos Joel, Yamil, Jayer, Pamela y Yaser

AGRADECIMIENTOS

Mi sincero agradecimiento al Mg. Sc. Julián Chura Chuquija, asesor del presente trabajo de tesis, por su valioso asesoramiento y enseñanza.

Un agradecimiento especial al Ing. Augusto Larrain Egusquiza, por su compresión y brindarme las facilidades con los tiempos desde el sector privado. Así mismo mi agradecimiento a los catedráticos de la UNALM por sus exigencias y compartir sus conocimientos de manera abierta.

A los agricultores Sr. Luis Moron, Sr. Pedro Solórzano, Sr. Carlos Neyra, Sr. James Dalton Dávila Asenjo, Sr. Carlos Matos, Sr. Wilson Sánchez y Sr. Ernesto Roller Alarcón León por brindarnos su total predisposición, confianza, apoyo y acompañamiento en las labores de campo y cosecha del experimento.

ÍNDICE GENERAL

I.	IN'	TRO	DUCCIÓN	1
II.	REV	ISIÓ	N DE LITERATURA	4
	2.1	CU	LTIVO DE MAÍZ AMARILLO DURO	4
	2.1	.1	LA PLANTA DE MAÍZ	4
	2.1	.1.1	ORIGEN E IMPORTANCIA MUNDIAL Y NACIONAL	4
	2.1	.1.2	TAXONOMIA, BOTANICA Y COMPOSICIÓN QUÍMICA	6
	2.1	.2	CONDICIONES GENERALES PARA EL CULTIVO DE MAÍZ	8
	2.2	INT	TERACIÓN GENOTIPO – AMBIENTE	12
	2.3 E	STA	BILIDAD EN MAÍZ AMARILLO DURO	14
	2.4	RE	NDIMIENTO DEL CULTIVO DE MAÍZ	15
	2.5	DE	FINICIONES	17
	2.5	5.1	CULTIVAR	17
	2.5	5.2	VARIEDAD	17
	2.5	5.3	HIBRIDO	18
	2.5	5.4	SEMILLA NO CERTIFICADA	
	2.5	5.5	ESTABILIDAD DE UN CULTIVAR	19
	2.5	5.6	ENSAYO DE ADAPTACIÓN Y EFICACIA	19
Ш	. MA	TER	IALES Y METODOS	20
	3.1	UB	ICACIÓN Y AMBIENTE DEL CAMPO EXPERIMENTAL	20
	3.2	MA	TERIAL GENÉTICO	23
	3.3	MA	TERIALES Y EQUIPOS	24
	3.5	DIS	SEÑO EXPERIMENTAL	24
	3.5	5.1	ANÁLISIS ESTADÍSTICO	25
	3.5	5.1.1	ANÁLISIS DE VARIANCIA	25
	3.5	5.1.2	ANÁLISIS DE ESTABILIDAD	26

	3.5.2	CAMPO EXPERIMENTAL	28
	3.5.2.1	CARACTERÍSTICAS DE LA PARCELA EXPERIMENTAL	29
	3.5.2.2	CARACTERÍSTICAS DEL BLOQUE	30
	3.5.2.3	CARACTERISTICAS DEL CAMPO EXPERIMENTAL	30
	3.5.2.4	MANEJO AGRONOMICO DEL CAMPO EXPERIMENTAL	31
	3.5.3	EVALUACIONES EN LA CONDUCCION DEL EXPERIMENTO	31
	3.5.3.1	DÍAS A FLORACIÓN MASCULINA	31
	3.5.3.2	DÍAS A FLORACIÓN FEMENINA	32
	3.5.3.3	ALTURA DE PLANTA	32
	3.5.3.4	ALTURA DE INSERCIÓN DE MAZORCA	32
	3.5.3.5	RENDIMIENTO DE GRANO AL 14% DE HUMEDAD	32
IV. F	RESULT	CADOS Y DISCUSIÓN	34
4.	1 AN	ÁLISIS DE VARIANCIA	34
	4.1.1	Rendimiento de grano	36
	4.1.2	Altura de planta	36
	4.1.3	Altura de inserción de la mazorca	40
	4.1.4	Días a floración masculina	42
	4.1.5	Días a floración femenina	44
4.	2 AN	ÁLISIS DE ESTABILIDAD EBERHART Y RUSSELL	46
4.	3 AN	ÁLISIS DE ESTABILIDAD AMMI	49
	4.3.1	Rendimiento de grano	49
	4.3.2	Altura de planta	51
	4.3.3	Altura de mazorca	54
	4.3.4	Días a floración masculina	56
	4.3.5	Días a floración femenina	58
V. C	ONCLU	JSIONES	61
VI. F	RECOM	ENDACIONES	62

VII. REFERENCIAS BIBLIOGRÁFICAS	63
VIII. ANEXOS	74

INDICE DE TABLAS

Tabla 1: Composición nutricional básica del grano de maíz en base seca
Tabla 2: Tipos de híbridos de maíz más comunes y sus características
Tabla 3: Ubicación geográfica, altitud, temperatura media anual y precipitación media de
las siete localidades de los campos experimentales
Tabla 4: Semillas hibridas de maíz amarillo duro evaluado en los ambientes de los ensayos
experimentales. 23
Tabla 5: Campañas de siembra de maíz amarillo duro evaluados por ambiente o localidad.
Tabla 6: Cuadro de análisis de variancia individual
Tabla 7: Cuadro del análisis de variancia combinado de los ambientes
Tabla 8: Interpretación de los parámetros de estabilidad del Método de Eberhart y Russell.
Tabla 9: Cuadrados medios del análisis de variancia combinado de localidades para
rendimiento de grano (t/ha), altura de planta (cm), altura de mazorca (cm), días a floración
masculina y días a floración femenina
Tabla 10: Promedios para rendimiento de grano (t/ha), altura de planta (cm), altura de
mazorca (cm), días a floración masculina y días a floración femenina en promedio de
localidades
Tabla 11:Promedios para rendimiento de grano (t/ha), altura de planta (cm), altura de
mazorca (cm), días a floración masculina y días a floración femenina en promedio de
genotipos35
Tabla 12: Promedios para rendimiento de grano (t/ha) en las diferentes localidades 38
Tabla 13: Promedios para altura de planta (cm) en las diferentes localidades
Tabla 14: Promedios para altura de mazorca (cm) en las diferentes localidades
Tabla 15: Promedios para días a floración masculina en las diferentes localidades 43
Tabla 16: Promedios para días a floración femenina en las diferentes localidades 45
Tabla 17: Análisis de varianza de Eberhart y Russell (1966) de 15 genotipos de maíz
amarillo duro en siete localidades para rendimiento de grano (t/ha), altura de planta (cm),
altura de mazorca (cm), días a floración masculina y días a floración femenina47
Tabla 18: Promedios para rendimiento de grano (t/ha), altura de planta (cm), altura de
mazorca (cm), días a floración masculina y días a floración femenina y sus parámetros de
estabilidad coeficiente de regresión (bi) y desviación de la regresión (Sdi)

Tabla 19: Modelos de efectos aditivos principales e interacción multiplicativa para
rendimiento de grano (t/ha)
Tabla 20: Modelos de efectos aditivos principales e interacción multiplicativa para altura
de planta (cm)
Tabla 21: Modelos de efectos aditivos principales e interacción multiplicativa para altura
de mazorca (cm)
Tabla 22: Modelos de efectos aditivos principales e interacción multiplicativa para días a
floración masculina56
Tabla 23: Modelos de efectos aditivos principales e interacción multiplicativa para días a
floración femenina58

INDICE DE FIGURAS

Figura 1: Fotografía aérea de un área experimental dentro de la parcela del agricultor 29
Figura 2: Croquis del área experimental
Figura 3: Biplot de las coordenadas del primer eje del componente principal (CP-1) en
función del contenido promedio de rendimiento de grano (t/ha) de los 14 genotipos y 7
localidades
Figura 4: Biplot del primer eje del análisis de componentes principales de la interacción
(CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7
localidades para rendimiento de grano (t/ha)
Figura 5: Biplot de las coordenadas del primer eje del componente principal (CP-1) en
función del contenido promedio de altura de planta (cm) de los 14 genotipos y 7
localidades
Figura 6: Biplot del primer eje del análisis de componentes principales de la interacción
(CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7
localidades para altura de planta (cm)
Figura 7: Biplot de las coordenadas del primer eje del componente principal (CP-1) en
función del contenido promedio de altura de mazorca (cm) de los 14 genotipos y 7
localidades
Figura 8: Biplot del primer eje del análisis de componentes principales de la interacción
(CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7
localidades para altura de mazorca (cm)
Figura 9: Biplot de las coordenadas del primer eje del componente principal (CP-1) en
función del contenido promedio de días a floración masculina de los 14 genotipos y 7
localidades
Figura 10: Biplot del primer eje del análisis de componentes principales de la interacción
(CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7
localidades para floración masculina
Figura 11: Biplot de las coordenadas del primer eje del componente principal (CP-1) en
función del contenido promedio de días a floración femenina de los 14 genotipos y 7
localidades
Figura 12: Biplot del primer eje del análisis de componentes principales de la interacción
(CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7
localidades para floración femenina

INDICE DE ANEXOS

Anexo 1: Análisis de variancia para rendimiento de grano (t/ha) en las diferentes
localidades74
Anexo 2: Análisis de variancia para altura de planta (cm) en las diferentes localidades74
Anexo 3: Análisis de variancia para altura de mazorca (cm) en las diferentes localidades.74
Anexo 4: Análisis de variancia para días a floración masculina en las diferentes
localidades75
Anexo 5: Análisis de variancia para días a floración femenina en las diferentes localidades.
75
Anexo 6: Descripción de los genotipos estudiados para rendimiento de grano (t/ha) de
acuerdo a Carballo y Márquez 1970
Anexo 7: Descripción de los genotipos estudiados para altura de planta (cm) de acuerdo a
Carballo y Márquez 1970
Anexo 8: Descripción de los genotipos estudiados para altura de mazorca (cm) de acuerdo
a Carballo y Márquez 1970
Anexo 9: Descripción de los genotipos estudiados para días a floración masculina de
acuerdo a Carballo y Márquez 1970
Anexo 10: Descripción de los genotipos estudiados para días a floración femenina de
acuerdo a Carballo y Márquez 197077

RESUMEN

El presente trabajo de investigación tuvo como objetivos determinar la estabilidad de quince híbridos de maíz amarillo duro (*Zea mays* L.) en siete localidades contrastantes de la costa norte del Perú e identificar los híbridos de mayor estabilidad y potencial de rendimiento a fin de recomendar el híbrido más estable para cada localidad. Se ha empleado para el análisis de estabilidad el modelo de Eberhart y Russel y el modelo AMMI, el diseño experimental utilizado fue el de Bloques Completos al Azar con cuatro repeticiones y quince híbridos en siete localidades, las variables estudiadas fueron rendimiento de grano, altura de planta y mazorca, días a floración masculina y femenina. Todas las variables estudiadas presentaron interacción genotipo con las localidades; los híbridos Exp 003 y Exp 007 de acuerdo al análisis de estabilidad de Eberhart y Russell y AMMI se considera como estables. Los mayores rendimientos se obtuvieron en las localidades de Alto Perú y Lunar bajo, destacando el híbrido P3862, DK-1596 y DK-7088 en la localidad de Alto Perú y en la localidad de Lunar bajo el híbrido DK 7088.

Palabras clave: Maíz, Eberhart y Russell, AMMI, Estabilidad, Genotipo por ambiente

ABSTRACT

The present research aimed to determine the stability of fifteen hard yellow corn (*Zea mays* L.) hybrids in seven contrasting locations on the northern coast of Peru and identify hybrids with the greatest stability and yield potential in order to recommend the most stable hybrid for each location. The Eberhart and Russell model and the AMMI model have been used for the stability analysis. The experimental design used was a Randomized Complete Block with four replications, and fifteen hybrids in seven locations. The variables studied were grain yield, plant height, ear characteristics, and days to male and female flowering. All studied variables presented genotype interaction with the locations, the hybrids Exp. 003 and Exp. 007 according to the stability analysis of Eberhart and Russell and AMMI are considered as stable. The highest yields were obtained in the locations of Alto Perú and Lunar Bajo, highlighting hybrids P3862, DK-1596 and DK-7088 in the Alto Perú locality and in the Lunar Bajo Loclity, the hybrid DK-7088.

.

Keywords: Maize, Eberhart and Russell, AMMI, Stability, Genotype by environment

I. INTRODUCCIÓN

El maíz amarillo duro en el Perú, es el segundo cultivo más importante dentro de los cereales después del arroz y es uno de los productos agrícolas más importantes de la economía nacional y que es consumido como materia prima, principalmente por la industria avícola y porcina.

MIDAGRI (2023), menciona que el maíz amarillo duro en el Perú, es el segundo cultivo más importante dentro de los cereales después del arroz y es uno de los productos agrícolas más importantes de la economía nacional. Según Barandiarán, (2020) el maíz es consumido como materia prima, principalmente por la industria avícola y porcina

De acuerdo a MIDAGRI (2023), el Perú en el año 2021 tuvo producción nacional de maíz amarillo duro de 1'271,082 toneladas, la costa se produjo 785,315 toneladas (62%) y mientras que la selva produjo 487,289 toneladas (38%); en el mismo año se reportó una área cosechada de 252,679 hectáreas, en la costa se cosechó 93,873 hectáreas (37%) y en la selva 158,807 hectáreas (63%); el rendimiento promedio nacional fue de 5.04 toneladas por hectárea, el rendimiento promedio de la costa fue de 7.16 toneladas por hectárea y el rendimiento promedio de la selva fue de 2.79 toneladas por hectárea. En el año 2021, la demanda interna nacional de maíz amarillo duro fue 4.9 millones de toneladas, lo cual fue cubierta en un 74% con las importaciones de 3'649,00 toneladas, teniendo como origen en un 82% de Argentina.

Barandiarán (2020), manifiesta que el maíz tiene una gran versatilidad de uso por lo tanto es una materia prima para la producción de múltiples productos industriales incluyendo los biocombustibles (Núñez y Ayala, 2009). De acuerdo a Ranum *et al.*, (2014) el 90% de los cereales que consume la humanidad está basado en el maíz, trigo y arroz, por lo que estos tres cereales son elementales para la seguridad alimentaria. Según MIDAGRI (2023) y USDA (2023), a nivel mundial el maíz amarillo duro constituye el primer cereal en rendimiento y segundo en producción después del trigo, cuya producción en el año 2021 fue

de 1,217'310,000 toneladas, donde Estados Unidos, China y Brasil concentran el 63.4% de la producción mundial; la superficie sembrada fue de 207'260,000 hectáreas y el rendimiento promedio mundial es de 3.58 toneladas

Shaw (1998), indica que el maíz (*Zea mays L.*) es una especie de gran diversidad genética y su cultivo se ha expandido por todo el mundo debido a su amplia adaptabilidad a estreses ambientales. Según Castro et al., (2021) el Perú, posee una gran diversidad climática debido a la influencia de los andes y las corrientes marinas de Humboldt y del niño y que en términos generales la costa peruana presenta un clima árido y templado; entre las localidades de Lambayeque y Tacna, es subtropical, con temperatura media que fluctúa entre 18°C y 21°C y una excesiva humedad atmosférica que alcanza a 90 y 98%; entre Tumbes y Piura es semitropical, con temperatura media anual de 24°C, lluvias periódicas de verano y abundante humedad. Zarazúa-Villaseñor *et al.*, (2011) indican que mejores rendimientos de maíz se obtienen en ambientes templados y sub tropicales es decir en climas cálidos y semicálidos en donde la temperatura media óptima para el cultivo se encuentra entre 18°C y 24°C. En el Perú el maíz se siembra durante todos los meses del año y en particular la costa presenta un clima propicio para el desarrollo óptimo del cultivo de maíz amarillo duro; sin embrago los rendimientos son muy variables debido a la interacción genotipo ambiente.

MIDAGRI (2022) menciona que la demanda potencial de semilla certificada para la campaña agrícola de siembra de maíz amarillo 2020/2021 alcanzó los 6.4 mil toneladas, esta demanda fue cubierta con el 5.6% de semilla certificada de producción nacional que abarca una superficie de siembra de 22,854 hectáreas, el 37.8% es cubierta con semillas no certificadas o grano de consumo o industrial y finalmente el 56.6% de la demanda total de semillas de maíz es cubierta con semillas importadas convencionales o foráneas. Según VERITRADRE (2023) en los últimos cinco años 2018 – 2022 se importó en promedio 3.9 mil toneladas semillas de maíz hibrido, por un valor FOB promedio de los últimos cinco años de US\$ 23 729 938.00. La tasa de crecimiento de importación de semillas híbridas de maíz amarillo duro de los últimos 5 años fue de 29%, esto implica una mayor oferta de semillas de marcas foráneas

El INIA mediante programas de mejoramiento genético desarrollan nuevos cultivares de maíz con alto potencial de rendimiento con amplio rango de adaptabilidad y estabilidad a fin de cubrir la demanda nacional de semillas en zonas de menor nivel tecnológico de

producción. El SENASA como autoridad en semillas y ente adscrito al Ministerio de agricultura y Riego, mediante la ley general de semillas 27262 establece que todas las semillas foráneas o importadas para su introducción y comercialización son previamente evaluados mediante los ensayos de identificación, adaptación y eficacia en campo durante dos campañas consecutivas, como mínimo en seis localidades diferentes, cuyos ensayos son supervisados por el personal designado por el INIA.

Debido a una mayor oferta de semillas de marcas foráneas se requiere el conocimiento del comportamiento de estabilidad de rendimiento de cada una de las semillas; por esta razón se estableció el ensayo de quince cultivares de maíz en siete diferentes ambientes de la costa norte del Perú para obtener información de rendimiento de los cultivares en función a la interacción genotipo-ambiente y determinar la estabilidad de rendimiento de cada uno de los híbridos a fin de que los productores maiceros tengan la oportunidad de elegir el hibrido que mejor se adapten a las condiciones de cada región y exploten el real potencial de rendimiento que redunde en mejores ingresos económicos a fin de mejorar la calidad de vida del productor maicero; en base a esto se plantea en el presente trabajo de investigación con los siguientes objetivos:

- a.) Determinar la estabilidad de quince híbridos de maíz amarillo duro (*Zea mays*L.) en siete localidades contrastantes de la costa norte del Perú.
- b.) Identificar los híbridos de mayor estabilidad y potencial de rendimiento a fin de recomendar el cultivar más estable para cada localidad.

.

II. REVISIÓN DE LITERATURA

2.1 CULTIVO DE MAÍZ AMARILLO DURO

2.1.1 LA PLANTA DE MAÍZ

2.1.1.1 ORIGEN E IMPORTANCIA MUNDIAL Y NACIONAL

Kato et al., (2009) refiere que el origen del maíz se inicia con la domesticación, cuyo suceso ocurrió en Mesoamérica, región comprendida entre México y Nicaragua hace 8000 A.C. y que en la actualidad los investigadores coinciden que el ancestro del maíz cultivado es el Teocintle, sin embrago Bonavia (2008) aún menciona que el maíz proviene de un maíz silvestre que hoy en día ya no existe. Carrillo (2009) también considera a Mesoamérica como el lugar de domesticación sobre todo del maíz por lo que Briceño et al., (2022) indica que el maíz se cultiva desde hace 10000 años.

Grobman (2004), indica que en América y en especial los andes peruanos son el centro de origen y domesticación de plantas y animales, tal es así que el Portal Agraria.pe, (2012) refiere que las muestras arqueológicas obtenidas demuestran que el maíz peruano es igual o más antiguo que los Mejicanos, por ello concluyen que el maíz Peruano es ajeno al maíz mejicano y que desciende de otra variedad.

Serratos (2009), indica que el lugar donde existen una mayor diversidad de cultivo y la coexistencia de parientes silvestres se define con el centro de origen de plantas cultivadas en tanto Caballero *et al.*, (2019), refiere que la mayor cantidad de parientes silvestres del maíz se encuentran en México y por lo tanto dicho país es considerado como el centro de origen y diversificación del Maíz y que además el maíz surge entre los años 9000 a 5000 A.C.

CIMMYT (2021), refiere que uno de los hechos más importantes dentro de nuestro proceso evolutivo ha sido la domesticación de las especies vegetales, hecho que fascinó a Charles Darwin (1809-1882); en tanto el maíz es uno de los ejemplos de la domesticación y existen evidencias que el maíz se consumía en América Media desde hace 11 000 años. Los primeros cambios genéticos realizaron los americanos por cientos y miles de años y el teocintle se convirtió en el maíz haciendo posible su consumo y que 750 d.c. el maíz alcanza el tamaño que en la actualidad conocemos.

Grobman (1982), menciona que las variedades de maíz peruano son genéticamente puros localizados en las zonas alto andinas y que no tienen relación con los tripsacoides ni con el teocintle como lo tiene el maíz mexicano, esto confirmaría su origen peruano, así mismo Briceño *et al.*, (2022) manifiesta que los espacios comprendidos entre Perú y Bolivia se encontraron una diversidad de razas de maíz por lo que se presume que Perú se considere como centro de origen del maíz; sin embrago Philippe (2018), indica que esta afirmación no es aceptada debido a que no se conoce ningún pariente salvaje del maíz en el Perú; por ello Serratos (2009) y Briceño *et al.*, (2022) menciona que el origen y la evolución del maíz aún no ha sido dilucidado por completo.

Grobman *et al.*, (2012) manifiesta que el maíz desde su origen en México hace 9000 a 8000 años, su llegada al Perú fue muy temprano, tal es así que de acuerdo a los hallazgos arqueológicos dan cuenta que diversas razas de maíz se cultivaban desde hace 7000 años en el valle de Chicama.

Ranum *et al.*, (2014) indica que dentro de los cereales que consume la humanidad el 90% está referido al arroz, trigo y maíz y que estás a su vez nos representa más del 50% del consumo energía de la humanidad y por lo tanto se consideran como los cereales claves para la seguridad alimentaria. Steduto *et al.*, (2012) indican que en términos de producción el maíz se ubica en el primer lugar de importancia a nivel mundial y su consumo puede ser directo o procesado y es el insumo vital de los piensos.

Barandiarán (2020), el maíz es un producto muy versátil y por lo tanto es usado como materia prima para la producción de más de 3000 diferentes productos industriales incluyendo la producción de biocombustibles, en esa misma línea Núñez y Ayala (2009) indicaron que el

maíz tiene múltiples usos como forraje, extracción de grasas y para la síntesis de

biocombustibles como etanol E5 y E10.

MIDAGRI (2020), refiere que la agricultura maicera del Perú está compuesta principalmente

por la agricultura familiar, esto implica un sistema caracterizado por el predominio de

pequeñas unidades agropecuarias que representan el 63.7% del total de las unidades

agropecuarias. MIDAGRI (2023), también indica que los productores dedicados al cultivo

de maíz ascienden a los 201 mil; en tanto Briceño et al., (2022) manifiestan que el maíz es

un cultivo que contribuye en la generación de empleo de mano de obra, siendo así una

actividad relevante en la economía del agricultor y que además en los sectores más

marginales contribuye de manera directa a la alimentación humana y de los animales.

En el Perú el cultivo de maíz amarillo posee una gran importancia nacional ya que ocupa el

segundo lugar del valor bruto de la producción agrícola dentro de los cereales con el 20.2%,

año 2017. MIDAGRI (2023) menciona que el maíz amarillo duro se ubica en la posición

séptima de la actividad agrícola con un valor bruto de producción (VBP) de 3.02% en el año

2022, cabe precisar que el VBP agrícola el en el año 2015 fue de 3.41%; es decir el VBP

agrícola del maíz amarillo duro muestra una tendencia a la baja debido al crecimiento de los

cultivos de agro exportación.

El maíz amarillo duro es el principal insumo para la producción de alimentos balanceados

tanto para la industria avícola, porcina y láctea ya que proporciona un gran contenido

energético debido a su alto valor nutritivo por su elevado contenido de almidón y bajo

contenido en fibra

2.1.1.2 TAXONOMIA, BOTANICA Y COMPOSICIÓN QUÍMICA.

Takhtajan (1980) indica que el maíz se encuentra clasificado de acuerdo al siguiente perfil

taxonómico:

Reino : Plantae

División : Magnoliophyta

Clase : Liliopsida

Orden : Poales

Familia : Poaceae

6

Sub Familia : Panicoideae

Tribu : Andropogoneae

Género : Zea

Especie : mays

Nombre : Maíz

Sánchez (2014), indica que cada parte del maíz tiene una composición diferente y por lo tanto hay múltiples formas de utilización basado en la composición nutricional del grano de maíz en base seca como se muestra en la tabla 1.

Shukla y Cheryan (2000) mencionan que la parte más importante del grano de maíz con mayor contenido de almidón es el endospermo y el germen con el mayor contenido de aceite. Del mismo modo Dickerson (2003), USDA (2006) y Gonzales (2009), señalaron que dentro de los componentes o partes más importantes del grano de maíz se encuentran el endospermo (almidón y gluten), germen u embrión (contiene aceite alrededor del 30%), Pericarpio (Celulosa + pentoglican) y la punta y que además Tovar *et al.*, (2013) manifiesta que la materia química de mayor importancia y valor comercial del grano de maíz es el almidón.

Tabla 1: Composición nutricional básica del grano de maíz en base seca.

Composición (%)	Endospermo	Embrión	Pericarpio	Punta
Almidón	87.6	8.3	7.3	5.3
Grasas	0.8	33.2	1	3.8
Proteínas	8	18.4	3.7	9.1
Cenizas	0.3	10.5	0.8	1.6
Azúcares	0.6	10.8	0.3	1.6
Restos ¹	2.7	18.8	86.9	78.6
Materia seca (%)	83	11	5.2	0.8

Fuente: Modificado de PALIWAL, 2001 y tomado de Sánchez (2014)

Según Golik et al. (2018), "el maíz (*Zea mays* L.) es una planta C4 con una alta tasa de actividad fotosintética, teniendo el más alto potencial para la producción de carbohidratos por unidad de superficie por día", del mismo modo Barandiarán (2020) indica que el maíz es una especie eficiente en la producción de materia seca, lo que significa que el maíz tiene un alto potencial de rendimiento.

⁽¹⁾ Incluyen fibra, azucares, ácido fitico, entre otras.

Hogares (2004) refiere que el maíz es un cereal de una especie monocotiledónea de crecimiento anual cuyo periodo de cultivo o periodo vegetativo de siembra a cosecha oscila entre los 80 a 200 días dependiendo de la variedad.

2.1.2 CONDICIONES GENERALES PARA EL CULTIVO DE MAÍZ

Zarazúa-Villaseñor *et al.*, (2011) manifiestan que el maíz es un cultivo de origen tropical, que se adapta a diferentes ambientes agroecológicos; sin embrago se obtienen mejores rendimientos en ambientes templados y sub tropicales es decir de climas cálidos y semicálidos en donde la temperatura media óptima para el cultivo se encuentra entre 18°C y 24°C del mismo modo Reyes (1990) manifiesta que la mejor producción de maíz se logra alcanzar en los meses calurosos en donde la temperatura fluctúa entre 21°C y 27°C, en tanto Barandiarán (2020), indica que la temperatura juega un papel preponderante en el crecimiento y desarrollo de la planta maíz ya que de ella puede retardar o acelerar el proceso metabólico que se verá reflejado en el periodo vegetativo de la planta de maíz acortando o alargando el ciclo y en ese sentido Lizaso *et al.*, (2018) mencionan que las etapas vegetativas y reproductivas se ven aceleradas por influencia de las temperaturas cálidas y que el ciclo puede acortarse en 30 días aproximadamente; del mismo modo Zarazúa-Villaseñor *et al.*, (2011) refieren que el aumento en la tasa de crecimiento y desarrollo del cultivo de maíz se ve influenciado por el aumento de las temperaturas diurnas y que ello implica el acortamiento del ciclo del cultivo.

Según Gordón (2021), los cambios en la fenología del cultivo de maíz ocurre en función a la acumulación térmica por encima de los 10° C (temperatura base) y según Barandiarán, G. (2020) refiere que el umbral máximo se encuentra entre 32°C y 35°C y en esa misma línea manifiesta que nuestra costa peruana presenta un clima propicio para la producción del cultivo de maíz amarillo duro con temperaturas que oscilan entre 10 a 30° C; no obstante en cuanto la temperatura supera los 35° C refleja directamente en la disminución de rendimiento. Gordón (2021), también manifiesta que el estrés por calor influye directamente en el componente masculino que es la viabilidad del polen y menor efecto en el componente femenino; en tanto preciso que la temperatura crítica en el cual se interrumpe los procesos fisiológicos se sitúa entre 40° C y 44° C.

Steduto *et al.*, (2012) refieren que el maíz es una planta C4 y se siembra en estaciones calurosas para alcanzar mejores rendimientos y que además precisa que el maíz es sensible al frío.

Según Barandiarán (2020), el agua es uno de los factores más limitantes de producción de maíz y la demanda está en función al ciclo fenológico del cultivo, siendo esta según manifiesta Kato *et al.*, (2009) que en etapa de germinación demanda menos volumen y en la etapa de crecimiento requiere un suministro mayor en volumen; el periodo crítico de requerimiento hídrico se encuentra en el periodo alrededor de la floración en el cual la dotación debe ser en mayores volumen ya que de esto depende la polinización y llenado de granos que redundara en el rendimiento.

. Lafitte, (2001) y Steduto *et al.*, (2012) mencionan que el cultivo de maíz para un desempeño normal y redunde en buen rendimiento requiere de 500 a 800 mm de lluvia, por lo que el maíz desde la siembra a la cosecha tiene un requerimiento promedio de 650 mm de agua; cabe precisar que el maíz debe contar con una dotación de agua entre 6 a 8 mm/día desde la iniciación de la mazorca hasta grano pastoso. Al ser una planta de alta actividad fotosintética también tiene una alta eficiencia de uso de agua, por lo que se entiende que es un cultivo exigente al agua.

Udom y Kamalu (2019) reportan que "el requerimiento total de agua del cultivo durante la temporada de desarrollo fue de 456.9 mm, con una tasa media diaria consumida de 4.22 mm y 3.91 mm agua" siendo los picos de 5.66 mm/día 6.31 mm/día en la etapa de emergencia de espiga y formación de rendimiento respectivamente.

Rodríguez *et al.*, (2013) y Trout y Bausch (2017) hacen mención aparte en función al crecimiento poblacional que demanda una mayor producción de alimentos y el agua como factor limitante de la producción que implica aumentar la productividad del maíz por unidad de área, criterio que hoy en día conlleva a sostener que la productividad del maíz esté basada en el incremento de la productividad del maíz por unidad de agua consumida. Steduto *et al.*, (2012) manifiestan que la producción de biomasa tiene una relación directa con la cantidad de agua consumida.

SENAMHI (2017), indica que el maíz es un cultivo cuyo fotoperiodo es de días cortos, es decir requiere menos horas luz en el ambiente donde crecen o dicho de otra manera el maíz antes del inicio de la floración requiere mayor oscuridad. Según Birch *et al.*, (1998) manifiesta que es fotoperiodo crítico para la mayor parte del germoplasma del maíz es de 11 a 14 horas; cabe indicar que según Allison y Daynard, (1979) manifiestan que la influencia del fotoperiodo en ambientes tropicales no tiene mayor relevancia ya que no influye en el factor rendimiento del maíz como lo es el número de hileras.

Gordón (2021), que el maíz se puede producir en una diversidad de suelos; sin embargo el cultivo tiene un mejor desempeño productivo en suelos de textura media con pH que va desde 5.5 a 8.0, en referencia al pH Barandiarán (2020), especifica que el rango más adecuado para el cultivo de maíz se sitúa entre 5.5 a 6.5 y Lafitte y Edmeades (1994) indican que el pH óptimo para el cultivo de maíz se encuentra entre el rango de pH de 6 a 7; es decir suelos con una tendencia a una ligera acidez y precisan también que es medianamente tolerante a las sales del suelo y agua y con referencia a la conductividad eléctrica Paliwal (2001), refiere que el maíz es muy sensible a la salinidad y que el umbral para la reducción de crecimiento se estima en 1.7 mS/cm.

Según lo manifestado por y Briceño *et al.*, (2022) los híbridos de maíz son más exigentes en la dotación de fertilizantes en volumen y oportunidad; además requieren de una mejor distribución espacial de plantas en función a su arquitectura.

Según Shaw (1988), el maíz debido a su amplia variabilidad genética y adaptabilidad crece y se desarrolla en una amplia diversidad de condiciones climáticas por lo que no es preciso establecer un rango definido por lo tanto se cultiva en zonas tropicales, subtropicales y templadas y en altitudes que van desde el nivel del mar.

Salisbury y Ross (1994), manifestaron que los efectos de la radiación solar sobre las plantas son fotoenergéticos que está relacionado con la fotosíntesis y fotoestimulantes que está relacionado con el crecimiento y los movimientos násticos, en ese sentido Taiz y Zeiger (2002) y Allen (2006), mencionaron que la radiación solar es uno de los factores ambientales elementales y principal fuente de energía en el planeta y en particular para las especies vegetales para que puedan elaborar carbohidratos mediante la fotosíntesis

Barandiarán, G. (2020) manifiesta que "la relación entre la radiación solar y el rendimiento del cultivo es directa, es decir, a mayor radiación solar, mayor rendimiento y viceversa" en razón a ello es elemental el establecimiento y distribución espacial adecuado de la población de plantas en el campo a fin de que cada individuo vegetal capture eficientemente la radiación solar; en tanto Steduto *et al.*, (2012) refieren que la radiación solar interceptada es la fuerza que impulsa la transpiración y la fotosíntesis del cultivo y por lo tanto la tasa de producción de materia seca está influenciada indirectamente por la radiación interceptada y en referencia a ello Aschalew *et al.*, (2016) indica que la tasa de fotosíntesis del maíz además de la radiación solar y otros factores ambientales responde a la concentración de CO₂ y la disponibilidad de la nutrientes hídricos y minerales, en tanto Monteith (1977) indicó que la intercepción y la utilización de la radiación solar son dos procesos fundamentales que rigen el crecimiento y rendimiento de los cultivos, esto implica que la producción agrícola es el resultado del ingreso de la energía que es la radiación solar y que el producto de ese ingreso de energía es la producción del carbohidrato.

Según refieren Wahid et al, (2007), Cairns et al (2012) y Ordóñez et al., (2015) que las altas temperaturas provocan una reducción de las etapas de desarrollo del maíz, reducen la interceptación de la luz, disminuyen la fotosíntesis, aumenta las tasas de respiración y en consecuencia provocan la esterilidad del polen.

Lee y Tollenaar (2007) precisan que la "La interceptación de la luz está impulsada principalmente por el área foliar, mientras que la utilización de la luz es una función de la fotosíntesis del dosel" y que además la materia seca es el resultado de la intercepción y utilización de la radiación solar incidente sobre el dosel del cultivo.

Díaz et al., (2011) refirieron que el índice de área foliar óptimo es en el que se tiene la máxima producción de materia seca, y se alcanza cuando los estratos inferiores del dosel pueden mantener un balance positivo de carbono, es decir, cuando el cultivo absorbe toda la radiación fotosintéticamente activa.

Birch *et al.*, (1999) mencionaron que en diversos estudios en maíz "la eficiencia de uso de radiación del maíz varía de 2 a 3.4 g MJ⁻¹ variación que depende del híbrido, de la disponibilidad de N y del ambiente de producción."

Andrade et al. (2023) manifiestan que el maíz es un cultivo muy eficiente en la conversión de radiación en biomasa, por lo que el autor también refiere que las mayores producciones de biomasa y rendimiento de maíz bajo provisiones adecuadas y oportunas de agua y nutrientes se obtienen en zonas de alta radiación solar, alta amplitud térmica y temperaturas nocturnas bajas que prolongan la etapa fenológica y disminuye la respiración.

2.2 INTERACIÓN GENOTIPO – AMBIENTE

Es muy importante conocer la interacción genotipo por ambiente, debido a que la expresión del fenotipo de un individuo está en función del genotipo, el ambiente y su interacción genotipo por ambiente. En el desarrollo de genotipos mejorados es muy importante estudiar la interacción genotipo ambiente (IGA) (Yue et al., 2022; Zystro et al., 2021). El estudio de la IGA nos ayuda a seleccionar genotipos estables en diferentes ambientes, debido a la IGA el comportamiento de cada genotipo es muy diferente en cada ambiente (Singamsetti et al., 2021)

Gonzales (2001) menciona que los términos "lugar" o "localidad" indican una variación espacial; mientras que, "ambiente" es un término general que cubre todas las condiciones bajo las cuales crecen las plantas, y puede englobar lugares, años, prácticas de manejo o una combinación de estos factores. Comúnmente cada lugar por año es considerado un ambiente separado. La interacción genotipo por ambiente hace ver la importancia del efecto ambiental en la adaptación y el comportamiento varietal. Su estudio ayuda a incrementar la eficiencia de la mejora. Es importante que los ensayos cubran un rango representativo de condiciones ambientales para determinar las respuestas genotípicas.

Córdova et al. (2002) Manifiestan que la liberación de los híbridos modernos de maíz, tolerantes a factores adversos, bióticos y abióticos, contribuirá a reducir las pérdidas pos cosecha. Un adecuado entendimiento de los aspectos fisiológicos correlacionados con el rendimiento y la incorporación de los índices de selección más eficientes en las metodologías de mejoramiento para ambientes adversos, han mejorado las técnicas de selección. También indica que la adaptabilidad se refiere a la capacidad de los genotipos de aprovechar ventajosamente los estímulos del ambiente, en cuanto a la estabilidad se refiere a la capacidad de los genotipos de mostrar un comportamiento altamente previsible en función del estímulo ambiental.

Gordon et al. (2006), indican que para evaluar el comportamiento agronómico de los cultivares es necesario medir la estabilidad relativa de los genotipos sometidos a la totalidad de los ambientes predominantes en una región potencial de adaptación. Las etapas finales de la evaluación de experimentos en diferentes localidades durante varios años y épocas.

Acevedo et al. (2019) indican que "la selección de cultivares basada en efectos genéticos y ambientales es insuficiente para el fitomejorador cuando no considera la interacción genotipo por ambiente (IGA). Estudios de IGA permiten identificar exitosamente materiales con alto desempeño para varios o específicos ambientes".

Dentro de un programa de mejoramiento de genotipos mejorados; la evaluación de un genotipo mejorado para ser recomendado para sembrar en diferentes ambientes, es muy importante estudiar su interacción con el ambiente. Existen diversas metodologías para estudiar la interacción de un genotipo con el ambiente, dentro de ellos los que se utilizan con mayor frecuencia son la metodología de Eberhart y Russell y AMMI.

La metodología Eberhart y Russell. Es una de las metodologías utilizadas para determinar la IGA propuesta por Eberhart y Russell (1966), considera dos parámetros el coeficiente de regresión lineal y la desviación de la regresión de cada genotipo. El coeficiente de regresión lineal nos indica la adaptabilidad del genotipo a los ambientes y la desviación de la regresión nos indica la estabilidad de los genotipos. La estabilidad de un genotipo se determina cuando se tiene un promedio mayor y presente un coeficiente de regresión igual a uno $(b_i = 1)$ y una desviación de la regresión igual a cero $(S_{d_i}^2 = 0)$.

Utilizando la metodología de Eberhart y Russell, Zambrano et al. (2017) determinaron que el efecto de la interacción genotipo por ambiente (IGA) fue superior al efecto del genotipo y del ambiente, debido a la variabilidad de los híbridos.

AMMI (Efectos principales aditivos e interacción multiplicativa). Es una metodología utilizada por diversos investigadores e indican al modelo AMMI como un método eficaz para el análisis del IGA (Crossa, 1990; Gauch, 2006). El modelo utiliza el análisis de variancia para los efectos principales de genotipos y ambientes con el análisis de componentes principales de la IGA. (Gauch, 1992).

Vargas et al. (2016). Menciona que la metodología "AMMI presenta el mejor ajuste en el análisis de comportamiento de los genotipos evaluados a través de ambientes, ya que permite hacer una clasificación por ambientes e identificar los genotipos de mejor comportamiento en un ambiente determinado".

El modelo AMMI es muy útil para identificar los híbridos de maíz de mayor rendimiento de grano, discrimina los genotipos y buena estabilidad ambiental (Ponce-Encinas et al. 2022, Caicedo et. al. 2017).

Para la variable rendimiento de grano encontraron la mayor estabilidad con los métodos de Eberhart y Russell, AMMI (Vargas et al. 2016).

2.3 ESTABILIDAD EN MAÍZ AMARILLO DURO.

Zambrano et al. (2017) al estudiar la interacción genotipo por ambiente mediante la metodología de Eberhart y Russell para rendimiento de grano, concluyen que los genotipos G2 (POB.3F4.27-1-1-1×CML-451) y G9 (PORT.PHAEO.1AS2.4-1-1-1×L.I.4) presentaron mayor estabilidad.

Sierra-Macias et al (2018) estudiaron 20 híbridos triples en cuarto ambientes y mediante la metodología de Eberhart y Russell, la interacción genotipo por ambiente, encontró que los híbridos triples sobresalientes fueron: (LT171xLT172) xCML247, H-567, (LT164x LT165) xLT155, (LT154xLT155) xLT165, H-520 y (LT154xLT155) xLT170, caracterizados como estables.

Sierra-Macias et al (2023) evaluaron 28 genotipos, de los cuales, 20 son cruzas varietales, cinco sintéticos experimentales, las variedades VS-536 y V-537C y el híbrido H-520 como testigos; al estudiar la interacción genotipo ambiente y de acuerdo con los parámetros de estabilidad (Eberhart y Russell, 1966), los 28 genotipos fueron caracterizados como estables para rendimiento de grano.

López-Morales (2019) al estudiar 25 híbridos de maíz amarillo duro utilizando el modelo AMMI determinó que los dos primeros componentes explican el 70.47% de la IGA para rendimiento de grano y los genotipos más estables fueron: POOL26xHPM302,

CML359xHPM302 y CML229xHPM302 (los tres híbridos trilineales), y HPM302 (híbrido simple), los que se encuentran cercanos al origen.

Ponce-Encinas (2022) trabajó con 36 híbridos de maíz amarillo duro y en siete ambientes utilizando el modelo AMMI encontró para rendimiento de grano que los híbridos de maíz 26) 736×730, 15) 743×707, 14) 726×723 y 25)729×723 fueron los de mayor estabilidad y ser más cercanos al origen de los ejes.

Díaz-Chuquizuta et al (2023) estudió 5 híbridos triples HTE1 (cruza [PIMLE 29♀ x PIMLE 26♂] x CML197♂), HTE2 (cruza [PIMLE 29♀ x PIMLE 26♂] x CL 02410♂), HTE3 (cruza [PIMLE 29♀ x PIMLE 26♂] x CML 165♂), HTE4 (cruza [PIMLE 29♀ x PIMLE 26♂] x CML 161♂) y HTE6 (cruza [PIMLE 29♀ x PIMLE 26♂] x CLYN 240) y como testigo el Marginal 28T en ocho localidades; utilizando AMMI para determinar la interacción genotipo por ambiente encontró para rendimiento de grano que el híbrido triple HTE6 fue el más estable.

2.4 RENDIMIENTO DEL CULTIVO DE MAÍZ

Fleury (1990) refirió que el rendimiento del cultivo de maíz puede ser descompuesto en dos elementos principales: el número de granos por m² (NG, gr m²), y el peso unitario de grano (PUG). El componente del rendimiento NG, sintetiza los mecanismos relacionados con la definición del número de órganos reproductores que se realiza en etapas sucesivas: número de plantas, número de espigas por planta y número de granos por espiga. Este último se descompone en número de hileras por espiga y número de granos por hilera y en tanto Otegui y Bonhomme (1998) mencionaron que el NG queda determinado en el estado límite de aborto de granos, es decir, aproximadamente, 15 a 20 días después de la floración.

Márquez (1992) mencionó que el rendimiento de los cultivos es el resultado de la interacción entre el genotipo y el ambiente; a partir de ella, al fenotipo lo determina la ecuación F = A + G + (GA), donde: F es el fenotipo, A el ambiente, G el genotipo y (GA) es la interacción entre el genotipo y el ambiente.

Vásconez et al. (2021), manifiestan que la producción de biomasa vegetativa o biomasa reproductiva o semillas, o dicho de otro modo el rendimiento de los cultivos es diferente

para los agroecosistemas, tal como lo manifiesta Setimela, et al., (2017) que los híbridos de maíz expresan rendimientos muy variados debido a la respuesta del genotipo al medio donde se desarrolla.

Carrera et al., (2023) refirieron que el componente crítico y determinante en el rendimiento de los cereales es el número de granos o semillas por unidad de superficie y el peso unitario del grano; de hecho que los factores ambientales y genotípicos no son ajenos a la influencia del rendimiento y que según Vásconez *et al.* (2021), refieren que los híbridos modernos de maíz responden de manera muy positiva a una mayor absorción de N, K, Ca y Mg. Otegui y Bonhomme (1997) refieren que el número de granos es determinado en la fase límite de aborto de granos que es alrededor de los 15 a 20 días después de la floración y que está muy relacionado a la dotación hídrica oportuna, en esa misma línea Andrade et al. (2023), Andrade et al., 2008 y Otegui et al., (2021) mencionan que es de vital importancia identificar las etapas críticas de la determinación y consolidación del número de granos y de rendimiento a fin de dotar los recursos de manera eficiente.

Según indican Otegui y Bonhomme, (1998) y Lizaso *et al.*, (2018) el rendimiento final del grano de maíz depende del tamaño del sumidero de asimilados; es decir el número de granos y su tamaño es un componente clave del rendimiento del maíz, este componente está influenciado con la fuente de asimilados alrededor de las cuatro o cinco semanas de antesis.

Contreras *et al.*, (2012) y Andrade et al. (2023) sostienen que la estimación del rendimiento de grano en maíz (*Zea mays* L.) se basa en la acumulación de la materia seca hasta la madurez fisiológica por el índice de cosecha que es la relación del peso total de la mazorca entre el peso del grano.

Andrade et al. (2023) indican que el rendimiento de grano está controlado por factores ambientales y la respuesta del genotipo y que peso del grano depende de la relación entre la fuente de asimilados y la demanda conjunta de las espigas durante el crecimiento y desarrollo del grano, tal es así que el peso potencial del grano se determina entre R1 y R3 y el llenado efectivo del grano se extiende desde R3 hasta R6

Cicchino et al., (2010) manifiesta que el estrés que provocada el calor alrededor de la etapa de formación de los estigmas conlleva a una elevada diminución del rendimiento; no obstante el autor indica que aún no se ha encontrado una dependencia del número de granos con la tasa de crecimiento previo a la floración como consecuencia del estrés por calor.

2.5 **DEFINICIONES**

2.5.1 CULTIVAR

INIA (2012) señaló que el cultivar es un conjunto de plantas cultivadas de una misma especie que son distinguibles por determinadas características (morfológicas, fisiológicas, químicas u otras) significativas para propósitos agrícolas, las cuales cuando son reproducidas sexual o asexualmente tienen sus características distintivas. Así mismo Brickell et al (2016) señalan que un cultivar como categoría taxonómica es un conjunto de plantas seleccionadas a partir de un cultivo diverso, con caracteres de importancia e utilidad, por lo que un cultivar debe tener las siguientes características como distinta, uniforme y estable; los cultivares pueden tener origen sexual o asexual. La primera generación híbrida de dos líneas puras, hibrido F1 se considera un cultivar, al igual las plantas genéticamente modificadas con nuevas características.

2.5.2 VARIEDAD

INIA (2012) señaló que una variedad es una población de plantas de una misma especie que tiene una constitución genética común y homogeneidad citológica, fisiológica, morfológica y otros caracteres comunes y que para legislación nacional el término variedad es sinónimo de cultivar.

La variedad es una población con caracteres que la hacen reconocible a pesar de que hibrida libremente con otras poblaciones de la misma especie. Es un rango taxonómico por debajo de la subespecie y por encima de la forma. Hay variedades que son poblaciones silvestres y hay variedades cultivadas, y están reguladas por el Código Internacional de Nomenclatura Botánica.

2.5.3 HIBRIDO

Guadalupe (2009) manifiesta que la hibridación es uno de los procesos más significativos en la evolución de las plantas con flores, esto ocurre cuando un grupo de poblaciones diferenciadas en caracteres heredables pueden cruzarse entre sí, si están separados reproductivamente de otros grupos afines y la descendencia puede ser parcialmente fértil o estéril. Uno de los resultados más sobresalientes en los híbridos es que poseen mayor vigor que sus parentales y en su mayoría es el componente para la obtención de mayor rendimiento.

MacRobert et al., (2015) indican que el hibrido de maíz es el resultado de la cruza de líneas endogámicas; es decir una planta de maíz fecunda a otra genéticamente no emparentada, donde genéticamente cada línea endogámica es diferente de la otra línea endogámica; en términos más sencillos implica decir que una planta hembra es cruzada con una planta macho cuyo fruto o semilla es un hibrido, el cual posee una configuración genética única y produce una planta con características genéticas como madurez específica, resistencia a enfermedades, color de grano, etc., es decir plantas de renovado vigor y con rendimiento superior a sus dos progenitores, al cual se conoce como "vigor hibrido". En la tabla 11se muestra los tipos de híbridos de maíz más comunes y sus características.

Tabla 2: Tipos de híbridos de maíz más comunes y sus características

Tipo de híbrido	Progenitor hembra	Progenitor macho	Rendimiento de semilla	Características de los híbridos	Rendimiento de grano
Simple	Línea endogámica	Línea endogámica	El más bajo	Uniforme	El más alto
Triple	Híbrido simple	Línea endogámica	Alto	Apenas variable	Alto
Doble	Híbrido simple	Híbrido simple	El más alto	Muy variable	De moderado a alto

Fuente: Tomado y adaptado de MacRobert et al., (2015)

2.5.4 SEMILLA NO CERTIFICADA

INIA (2012) mencionó que se entiende por semilla no-certificada, cualquier semilla que se ofrezca a la venta y que no cumple con los requisitos indicados para la semilla certificada; sin embargo deberá rotularse y reunir los requisitos mínimos de calidad. Como la semilla no-certificada no es sometida a los controles oficiales de producción, la garantía de su calidad es responsabilidad de su productor.

2.5.5 ESTABILIDAD DE UN CULTIVAR

INIA (2012) señala que cuando las características esenciales del cultivar no cambian durante multiplicaciones sucesivas o al final de cada ciclo reproductivo.

2.5.6 ENSAYO DE ADAPTACIÓN Y EFICACIA

INIA (2012) refirió a la prueba que se somete un cultivar con el objeto de comprobar su valor agronómico o de utilización, con el fin de lograr su inscripción en el registro de cultivares comerciales.

III. MATERIALES Y METODOS

3.1 UBICACIÓN Y AMBIENTE DEL CAMPO EXPERIMENTAL

El trabajo de investigación fue realizado en siete ambientes o localidades contrastantes de la costa norte del Perú, comprendidos entre los departamentos de Ancash, La Libertad y Lambayeque tal como se indica en la tabla 13. Se sembraron 15 híbridos de maíz amarillo duro en campañas de siembra de otoño, invierno, primavera y verano. Las condiciones agroecológicas de los ambientes experimentales presentaron un clima cálido a semicálido con temperaturas medias anuales entre 18.3° C y 23.1° C, con bajas precipitaciones medias de 3 mm a 28 mm entre Chimbote y Ascope; a excepción de las precipitaciones medias de 104 mm en la zona de Chongoyape - Lambayeque.

Tabla 3: Ubicación geográfica, altitud, temperatura media anual y precipitación media de las siete localidades de los campos experimentales.

Ambiente	Sector	Distrito	Provincia	Departamento	Altitud (msnm)	Temp.	Precip. (mm)
1	Alto Perú	Santa	Santa	Ancash	70	19	14
2	Lunar Bajo	Chao	Viru	La Libertad	93	18.8	15
3	El Socorra	Viru	Viru	La Libertad	87	18.9	14
4	Paredones	Chongoyape	Chiclayo	La Libertad	229	23.1	104
5	Cascajal	Chimbote	Santa	Ancash	130	19	14
6	El Mulato	Chongoyape	Chiclayo	Lambayeque	213	23.1	104
7	San Antonio	Ascope	Ascope	La Libertad	266	20.9	28

Ambiente 1: Campo agrícola del Sr. Luis Moron, ubicado en la zona de Alto Perú, distrito y provincia del Santa, Departamento de Ancash. Altitud: 70 m.s.n.m., Latitud 8,939403, Longitud 78,573837.

Suelo franco arenoso sin salinidad con bajo contenido de materia orgánica.

La temperatura media anual en Alto Perú es de 18.3 °C y la precipitación media anual es de 3 mm. Marzo es el mes más cálido con un promedio de 22.2 °C, y agosto es el mes más frío, con temperaturas promedio de 15.7 °C. A lo largo del año, las temperaturas varían en 6.5 °C. El mes más seco es enero, con 0 mm de precipitación. La mayor precipitación ocurre en febrero promediando de 1 mm. La diferencia en la precipitación entre los meses más secos y los más lluviosos es de 1 mm.

Ambiente 2: Campo agrícola del Sr. Pedro Solórzano, ubicado en la zona de Lunar Bajo, distrito de Chao, provincia de Virú y Departamento de La Libertad. Altitud: 93 m.s.n.m., Latitud 8,523133, Longitud 78,672798.

Suelo franco arenoso con cierta presencia de sales y con bajo contenido de materia orgánica. La temperatura media anual en Chao es de 18.8 °C y la precipitación media anual es de 15 mm. Marzo es el mes más cálido con un promedio de 22.2 °C, y agosto es el mes más frío, con temperaturas promedio 16.4 °C. A lo largo del año, las temperaturas varían en 5.8 °C. El mes más seco es junio con 0 mm de precipitación. La mayor parte de la precipitación cae en marzo, promediando 3 mm. La precipitación varía 3 mm entre el mes más seco y el mes más húmedo.

Ambiente 3: Campo agrícola del Sr. Carlos Neyra, ubicado en la zona de El Socorro, distrito y provincia de Virú, departamento de La Libertad. Altitud: 87 m.s.n.m., Latitud 8,406613, Longitud 78,738801.

Suelo franco arenoso sin salinidad con bajo contenido de materia orgánica.

La temperatura media anual en Virú es de 18.9 °C y la precipitación media anual es de 14 mm. Marzo es el mes más cálido con un promedio de 22.2 °C, y agosto es el mes más frío, con temperaturas promediando 16.6 °C. A lo largo del año, las temperaturas varían en 5.6 °C. El mes más seco es mayo con 0 mm de precipitación. La mayor parte de la precipitación cae en enero, promediando 3 mm. La diferencia en la precipitación entre el mes más seco y el mes más lluvioso es de 3 mm.

Ambiente 4: Campo agrícola del Sr. James Dalton Dávila Asenjo, ubicado en la zona de Paredones, Distrito de Chongoyape, Provincia de Chiclayo y Departamento de Lambayeque. Altitud: 229 m.s.n.m., Latitud 6,622546, Longitud 79,382915.

Suelo franco arcilloso sin salinidad con contenido medio de materia orgánica.

La temperatura media anual es 23.1 ° C en Chongoyape. En un año, la precipitación media es 104 mm. El mes más seco es junio 0 mm de precipitación. La mayor parte de la precipitación aquí cae en marzo, promediando 37 mm. La precipitación varía 37 mm entre el mes más seco y el mes más húmedo. Marzo es el mes más cálido con un promedio de 26.0 °C, y agosto es el mes más frío, con temperaturas promediando 20.5 °C. A lo largo del año, las temperaturas varían en 5.5 °C.

Ambiente 5: Campo agrícola del Sr. Carlos Matos, ubicado en la zona de Cascajal, distrito y provincia del Santa - Ancash. Altitud: 130 m.s.n.m., Latitud 8,911862, Longitud 78,528007.

Suelo franco arenoso sin salinidad con bajo contenido de materia orgánica.

La temperatura media anual es 18.5 °C. En un año, la precipitación media es 6 mm. El mes más seco es mayo con 0 mm de precipitación. La mayor parte de la precipitación aquí cae en marzo, promediando 2 mm. La precipitación varía 2 mm entre el mes más seco y el mes más húmedo. Marzo es el mes más cálido con un promedio de 22.1 °C, y agosto es el mes más frío, con temperaturas promediando 16.0 °C. A lo largo del año, las temperaturas varían en 6. °C.

Ambiente 6: Campo agrícola del Sr. Wilson Sánchez, ubicado en la zona de El Mulato, Distrito de Chongoyape, Provincia de Chiclayo y Departamento de Lambayeque. Altitud: 213 m.s.n.m., Latitud 6,632172, Longitud 79,381731.

Suelo franco arcilloso sin salinidad con contenido medio de materia orgánica.

La temperatura media anual es 23.1 °C. La precipitaciones es de alrededor de 104 mm. El mes más seco es junio, con 0 mm. La mayor parte de la precipitación aquí cae en marzo promediando 37 mm. Marzo es el mes más cálido con un promedio de 26.0 °C y agosto es el mes más frio con temperaturas promedio de 20.5 °C. La diferencia en la precipitación entre el mes más seco y el mes más lluvioso es de 37 mm. A lo largo del año, las temperaturas varían en 5.5 °C.

Ambiente 7: Campo agrícola del Sr. Ernesto Roller Alarcón León, ubicado en la zona San Antonio, Distrito y Provincia de Ascope y Departamento de La Libertad, Altitud: 266 m.s.n.m., Latitud 7,702158, Longitud 79,05393.

Suelo franco arenoso sin salinidad con baja materia orgánica.

Ascope tiene un clima desértico. Virtualmente no hay precipitaciones durante el año. La temperatura media anual es 20.9 ° C en Ascope. En un año, la precipitación media es 28 mm. El mes más seco es mayo, con 0 mm. En marzo, la precipitación alcanza su pico, con un promedio de 8 mm. El mes más caluroso del año con un promedio de 24.2 °C es febrero y el mes más frio es agosto con un promedio de 18.4 °C. La diferencia en la precipitación entre el mes más seco y el mes más lluvioso es de 8 mm. La variación en la temperatura anual está alrededor de 5.8 ° C.

3.2 MATERIAL GENÉTICO

Los materiales genéticos evaluados constan de 15 híbridos de semillas de maíz amarillo duro de procedencia importada o foránea tal como se lo indicado en la tabla 14.

Tabla 4: Semillas hibridas de maíz amarillo duro evaluado en los ambientes de los ensayos experimentales.

Genotipo	Marca	Hibrido	Tipo de Hibrido	Observación
1	Pioneer	EXP 01	Simple	Hibrido experimental
2	Pioneer	EXP 02	Simple	Hibrido experimental
3	Pioneer	EXP 03	Simple	Hibrido experimental
4	Pioneer	EXP 04	Simple	Hibrido experimental
5	Pioneer	EXP 05	Simple	Hibrido experimental
6	Pioneer	EXP 06	Simple	Hibrido experimental
7	Pioneer	EXP 07	Simple	Hibrido experimental
8	Pioneer	EXP 08	Simple	Hibrido experimental
9	Pioneer	30F35	Simple	Hibrido comercial
10	Pioneer	3041	Triple	Hibrido comercial
11	Pioneer	30K73	Simple	Hibrido comercial
12	Pioneer	P3862	Simple	Hibrido comercial
13	Dekalb	DK 1596	Simple	Hibrido comercial
14	Dekalb	DK 7088	Simple	Hibrido comercial
15	Advanta	Insignia 860	Simple	Hibrido comercial

3.3 MATERIALES Y EQUIPOS

Los materiales y equipos utilizados en cada uno los experimentos de los siete ambientes, fueron los mismos y consistentes en: wincha, cal, cordel, lampa, bolsas de papel, etiquetas, engrampadora, baldes, costales de polipropileno, rafia, balanza electrónica y digital, determinador de humedad de grano, libreta de apuntes, lápiz y cámara.

3.4 METODO

El trabajo de investigación se estableció en las campañas de siembra de otoño, invierno, primavera, y de verano entre los meses de junio a febrero, tal como se muestra en la tabla 15. Se sembraron y evaluaron 15 híbridos de maíz amarillo duro, 7 híbridos experimentales y 8 híbridos comerciales, en cada localidad o ambiente.

Tabla 5: Campañas de siembra de maíz amarillo duro evaluados por ambiente o localidad.

Ambiente	Localidad	Distrito	Provincia	Fecha Siembra	Fecha Cosecha	Campaña
1	Alto Perú	Santa	Santa	10/06/16	28/11/16	Otoño
2	Lunar bajo	Chao	Virú	28/06/16	07/12/16	Inverno
3	El Socorra	Virú	Virú	19/07/16	21/12/16	Inverno
4	Paredones	Chongoyape	Chiclayo	05/11/16	03/03/17	Primavera
5	Cascajal	Chimbote	Santa	28/12/16	03/05/17	Verano
6	El Mulato	Chongoyape	Chiclayo	19/01/17	17/05/17	Verano
7	San Antonio	Ascope	Ascope	09/02/17	30/05/17	Verano

3.5 DISEÑO EXPERIMENTAL

Para la evaluación de los cultivares en estudio, del presente trabajo de investigación se empleó el diseño de Bloques Completos a azar (BDCA) con 15 tratamientos (híbridos) y con 4 repeticiones (bloques) en cada uno los 7 ambientes. Cada bloque se dividió en 15 parcelas o unidades experimentales, donde los híbridos fueron distribuidos de manera aleatoria.

3.5.1 ANÁLISIS ESTADÍSTICO

3.5.1.1 ANÁLISIS DE VARIANCIA

Se realizó el análisis de variancia individual en un diseño de bloque completo al azar con cuatro repeticiones, siendo el modelo aditivo lineal el siguiente:

$$Y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$

 $i = 1, 2, \ldots, c$ genotipos.
 $j = 1, 2, \ldots, r$ bloques.

Donde:

Y_{ij} = Es la respuesta de la unidad experimental del i-ésimo genotipo en el j-ésimo bloque.

 μ = Promedio de la variable respuesta en todas las unidades experimentales

 β_j = Efecto del j-ésimo bloque.

 τ_i = Efecto del i-ésimo genotipo.

 ε_{ij} = Error experimental

Tabla 6: Cuadro de análisis de variancia individual

Fuente de Variación	G.L:	E[CM]
Bloques	r-1	$\hat{\sigma}_e^2 + g\hat{\sigma}_\beta^2$
Genotipos	g-1	$\hat{\sigma}_e^2 + r \sum_i \tau_i^2 / (g-1)$
Error	(g-1)(r-1)	—
Total	gr-1	$\hat{\sigma}_e^2$

Después de realizar la prueba de homogeneidad de varianza de los errores de cada ambiente se realizó el análisis de variancia combinado de ambientes.

Modelo aditivo lineal:

Tabla 7: Cuadro del análisis de variancia combinado de los ambientes

Fuente de Variación	G.L:	E[CM]
Ambientes (A)	a-1	$\hat{\sigma}_e^2 + g\hat{\sigma}_{eta/lpha}^2 + rg\sigma_lpha^2 +$
Bloques/A	a(r-1)	$\hat{\sigma}_e^2 + g \hat{\sigma}_{eta/lpha}^2$
Genotipos (G)	g-1	$\hat{\sigma}_e^2 + \hat{\sigma}_{\tau\alpha}^2 + r \sum_i \tau_i^2 / (g-1)$
GxA	a(g-1)(r-1)	$\hat{\sigma}_e^2 + r\hat{\sigma}_{ aulpha}^2$
Error conjunto	(g-1)(r-1)	$\hat{\sigma}_e^2$
Total	agr-1	

3.5.1.2 ANÁLISIS DE ESTABILIDAD

Para la análisis de estabilidad fenotípica se utilizó los métodos propuestos por: Eberhart y Russell, 1966 y el modelo de Análisis de Componentes Principales Aditivos e Interacciones Multiplicativas (Modelo AMMI)

a) EL MÉTODO DE EBERHART Y RUSSELL (1966)

Este método se basa en análisis de regresión lineal simple. El coeficiente de regresión lineal $(\beta i \text{ o bi})$ es utilizado como respuesta del comportamiento de cada genotipo en los diferentes ambientes, conjuntamente con la estabilidad de cada genotipo es evaluada a través de varianza de los desvíos de regresión $(\delta ij \text{ o S}^2 \text{di})$. El modelo de análisis de acuerdo al método propuesto por Eberhart y Russell es:

$$Y_{ij} = \mu + \beta_i I_i + \delta_{ij} + \epsilon_{ij}$$

Donde:

 Y_{ij} = promedio del genotipo i en el ambiente j.

 μ = media general.

 β_i = coeficiente de regresión que mide la respuesta del genotipo i a la variación ambiental.

 I_j = índice ambiental.

 δ_{ij} = desviación de la regresión del genotipo i en el ambiente j.

 ε_{ij} = la desviación de la regresión del genotipo y el ambiente.

El índice ambiental, en cada ambiente, es calculado por el desvío del promedio de todos los genotipos en ese ambiente, en relación con el promedio general: $I_i = Y.j - Y$.

Tabla 8: Interpretación de los parámetros de estabilidad del Método de Eberhart y Russell.

Parámetro	Interpretación
$B_{1i}=1$	Estabilidad media. Si se tiene un promedio alto: adaptabilidad
Dli – I	general; promedio bajo: pobre adaptabilidad.
$B_{1i} > 1$	Genotipos sensibles Adaptación a ambientes favorables.
$B_{1i}\!<\!1$	Resistencia a cambios ambientales. Adaptación a malos ambientes.
$B_{1i}\!=0$	Estabilidad absoluta. Si tiene un promedio alto: Genotipo ideal.
$S^2_{di} = 0$	Buena estabilidad.
$S^2_{di} > 0$	Mala estabilidad.

b) EL ANÁLISIS AMMI

En los casos en donde el análisis de variancia combinado de la interacción genotipoambiente es significativo se procede a analizar ésta mediante análisis AMMI (additive main effect and multiplicative interaction). En este análisis se descompone la suma de cuadrados de la interacción en una serie de componentes multiplicativos empleando análisis de componentes principales (Mandel 1971), siguiendo el modelo:

$$Yij = \mu + Gi + Ej + \Sigma \lambda k \gamma i k \delta j k + eij$$

Donde:

Yij es el carácter medido del ith genotipo en el jth ambiente;

μ es la media general;

Gi y Ej es el efecto del genotipo y del ambiente respectivamente,

 λk es el autovalor del eje k del análisis de componentes principales (ACP),

 γik y δjk son los vectores propios unitarios del genotipo y del ambiente, respectivamente, asociados a λk

eij es el error.

Las coordenadas genotípicas y ambientales se expresan como el producto de la raíz cuadrada de λk por su vector propio asociado. Multiplicando las coordenadas genotípicas por las ambientales obtenemos la estimación de la interacción ($\lambda k \gamma i k \delta j k$) de un determinado genotipo en cualquier ambiente (Zobel et al. 1988).

El análisis AMMI se divide en dos partes:

- 1. La parte aditiva donde los efectos principales del modelo son analizados por ANOVA
- 2. La interacción genotipo-ambiente (GxE) que es analizada por ACP para concentrar la interacción en unos pocos componentes.

Los grados de libertad de cada ACP se calcularon por el método de Gollob (1968).

La estabilidad de cada línea se estudió por su medida en los componentes principales (λk 0.5 γik) y se eligieron los componentes significativos que explicaron un alto porcentaje de la interacción GxE.

3.5.2 CAMPO EXPERIMENTAL

Las etapas de campo se realizaron en las campañas de siembra de otoño en el mes de junio en la localidad de Alto Perú - Santa - Santa - Ancash, donde el ciclo del cultivo fue de 171 días después de la siembra; campaña de siembra de invierno se realizó entre los meses de Junio y julio distribuidos en los ambientes o localidades Lunar bajo - Chao - Virú - La Libertad y la localidad de Socorra - Virú - Virú - La Libertad, donde el ciclo del cultivo fluctuó entre los 162 y 155 días después de siembra respectivamente; campaña de siembra de primavera se realizó en el mes de noviembre en la localidad de Paredones - Chongoyape - Chiclayo - Lambayeque, donde el ciclo del cultivo fue de 118 días después de siembra y la campaña de siembra de verano se efectuó entre los meses de diciembre y febrero distribuidos en tres ambientes o localidades, localidad de Cascajal - Chimbote - Santa - Ancash, localidad de Mulato - Chongoyape - Chiclayo - Lambayeque y la localidad de San Antonio - Ascope - Ascope - La Libertad, donde el ciclo del cultivo a la cosecha fue de 126, 118 y 110 días respectivamente.

Las semillas fueron puestas en sobres manila de 10 x 15 cm; cada sobre se identificó con el nombre del agricultor perteneciente a cada campo experimental y la campaña correspondiente, la entrada de cada híbrido, el número de repetición y número de parcela. Por ejemplo, 101 es la primera parcela de la primera repetición, 401 es la primera parcela de la cuarta repetición. Después, en cada sobre se puso 74 semillas bien conformadas.

Las siembras se realizaron en el interior del área de siembra de maíz amarillo de los agricultores en cada uno de las localidades o ambientes tal como se muestra a modo de

ejemplo en la gráfica 5; para el cual previo a la siembra de cada agricultor se delimitó el área experimental de 1 373.57 m², divididos en 4 bloques, cada bloque separado por una calle de 1 m de ancho, 60 parcelas o unidades experimentales en donde cada unidad experimental presentó largo del surco 5.904 m, distancia entre surcos 0.80 m, distanciamiento entre golpes 0.164 m y 2 surcos por unidad experimental un área de 9.7 m². En cada surco hubo 37 golpes de 2 semillas cada uno, una vez emergida la planta en la etapa V3 se realizó el raleo a fin de dejar una planta por golpe a cada 0.164 m haciendo un total de 78 337 plantas por hectárea.

Figura 1: Fotografía aérea de un área experimental dentro de la parcela del agricultor.

3.5.2.1 CARACTERÍSTICAS DE LA PARCELA EXPERIMENTAL

- Distancia entre surcos (m): 0.80
- Distancia entre plantas (m): 0.164
- Número de golpes por surco: 37
- Número de surcos: 4
- Número de semillas por golpe: 2
- Número de plantas por golpe : 1
- Longitud (m): 5.904

- Ancho (m): 1.60
- Área (m²): 9.7
- Número de surcos evaluados: 2 / surcos centrales

3.5.2.2 CARACTERÍSTICAS DEL BLOQUE

- Número de parcelas por bloque : 15
- Longitud (m): 48
- Ancho (m): 5.904
- Área (m2): 283.39

3.5.2.3 CARACTERISTICAS DEL CAMPO EXPERIMENTAL

- Longitud de calle (m): 48
- Ancho de calle (m): 1
- Área de calle (m2): 48
- Número de calles : 5
- Área total de calles (m2): 240
- Número de bloques : 4
- Área total de bloques (m2): 1 133.57
- Área total del experimento (m2): 1 373.57
- Densidad de siembra (plantas/ha): 78 337

El croquis de campo para la siembra fue la misma para cada uno de los siete ambientes, tal como se muestra en la gráfica 6.

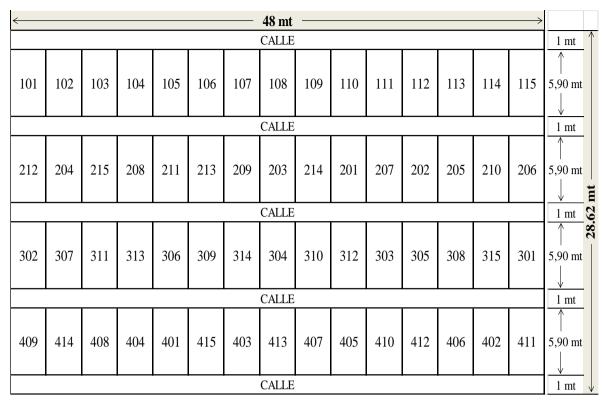


Figura 2: Croquis del área experimental

3.5.2.4 MANEJO AGRONOMICO DEL CAMPO EXPERIMENTAL

Las labores agronómicas de control de malezas, manejo fitosanitario y riego fueron las mismas que realizó el agricultor en cada una de las localidades de manera oportuna y eficaz. Las únicas labores diferenciadas del área experimental fueron la instalación de parcela o siembra y la fertilización, cuyo plan fue el mismo para cada uno de los experimentos en cada uno de la localidades, habiéndose utilizado la formula de 360-100-120 unidades por hectárea de $N-P_2O_5-K_2O$; estas unidades fueron fraccionadas en tres etapas de fertilización, primera fertilización en V2 30% de N más 100% P_2O_5 más 50% K_2O , segunda fertilización en V6 40% de N más 50% K_2O y tercera fertilización en V12 40% de N.

3.5.3 EVALUACIONES EN LA CONDUCCION DEL EXPERIMENTO

3.5.3.1 DÍAS A FLORACIÓN MASCULINA

Se cuantificó el número de días transcurridos desde la siembra hasta cuando el 50% de las plantas de los dos surcos centrales mostraron la floración masculina.

3.5.3.2 DÍAS A FLORACIÓN FEMENINA

Se cuantificó el número de días transcurridos desde la siembra hasta cuando el 50% de las plantas de los dos surcos centrales mostraron la floración femenina..

3.5.3.3 ALTURA DE PLANTA

Se tomó la medida desde el nivel del suelo hasta la hoja bandera. Se midieron 10 plantas al azar de cada surco central (02) y se obtuvo un promedio de altura. La unidad usada para esta evaluación fue centímetros.

3.5.3.4 ALTURA DE INSERCIÓN DE MAZORCA

Se tomó la medida desde el nivel del suelo hasta el nudo en donde esta insertado la mazorca principal. Se midieron 10 plantas al azar de cada surco central (02) y se obtuvo un promedio de altura de inserción de mazorca. La unidad usada para esta evaluación fue centímetros.

3.5.3.5 RENDIMIENTO DE GRANO AL 14% DE HUMEDAD.

- Se cosechó todas las mazorcas de los dos surcos centrales de cada unidad experimental.
- Índice de mazorcas: N° de mazorcas cosechadas por parcela / N° de plantas por parcela.
- Se seleccionaron diez mazorcas al azar, luego se procedió a desgranar y se pesó el grano y la tuza por separado para obtener la relación grano/tuza o índice de desgrane; para el cual se utilizó una balanza digital.
- Porcentaje de humedad del grano a la cosecha: De las mismas diez mazorcas seleccionadas y desgranadas para la obtención del índice de desgrane se determinó el porcentaje de humedad del grano, mediante el uso de un determinador de humedad.
- Peso de campo: se pesó el número total de mazorcas cosechadas de cada parcela, para lo cual se utilizó una balanza electrónica.

Par determinar el rendimiento de los tratamientos en t/ha se usó las siguientes formulas:

a. Factor de corrección por humedad (Fh): Para llevar el peso de grano a 14% de humedad se determinó el factor de corrección.

$$Fh = (100 - \%H) / 86$$

%H = Porcentaje de humedad del grano al momento de la cosecha

b. Factor de corrección por fallas (Ff): se utilizó el número de fallas de cada parcela

$$Ff = (N - 0.3 F) / (N - F)$$

N = número de golpe por parcela

F = número de fallas

c. Peso de campo corregido (Pchf): los rendimientos de la parcela fueron corregido por fallas y humedad llevada al 14%.

Pchf = Pc x Fh x Ff

Pc = peso de campo

Ff = factor de corrección por fallas

Fh =factor de corrección por humedad

d. Rendimiento de grano en t/ha: se utilizó la siguiente fórmula para expresar los rendimientos de cada híbrido o tratamiento en t/ha:

$$R = 10 \times Cc \times \%D \times Pchf/A$$

R = rendimiento de grano (t/ha)

A = área de la parcela

Cc = coeficiente de contorno, 0.971

%D = porcentaje de desgrane

Pchf = peso de campo corregido por fallas y humedad al 14%

IV. RESULTADOS Y DISCUSIÓN

4.1 ANÁLISIS DE VARIANCIA

En la tabla 19 del análisis de variancia combinado de siete localidades, podemos observar en su fuente de variación alta significación estadística para localidades, genotipo y la interacción genotipo por ambiente; indicándonos que cada genotipo tiene un comportamiento diferente en cada localidad, siendo necesario analizar por cada localidad. El coeficiente de variabilidad para rendimiento de grano fue de 6.6 %, altura de planta 2.6 %, altura de mazorca 5.0 %, días a floración masculina 0.7 % y días a floración femenina 0.7 %.

Tabla 9: Cuadrados medios del análisis de variancia combinado de localidades para rendimiento de grano (t/ha), altura de planta (cm), altura de mazorca (cm), días a floración masculina y días a floración femenina.

Fuente	GL	Rendimiento	Altura planta	Altura	Floración	Floración
variación	GL	grano	Altura planta	mazorca	masculina	femenina
Localidad(L)	6	466.602 **	24686.545 **	11452.320 **	12722.532 **	12977.048 **
Bloque/L	21	0.545	33.593	22.941	0.356	0.431 *
Genotipo(L)	14	22.816 **	3692.812 **	2760.548 **	351.494 **	323.260 **
GxL	84	5.485 **	365.189 **	271.718 **	14.088 **	18.590 **
Error conjunto	294	0.540	36.032	32.950	0.261	0.269
Total	419					
C.V.(%)		6.597	2.640	5.009	0.740	0.739
Promedio		11.135	227.379	114.603	69.088	70.255

^{*} Significación al 0.05 de probabilidad ** significación al 0.01 de probabilidad

En la tabla 20 observamos el comportamiento de cada variable en promedio de las siete localidades, rendimiento de grano varió de 8.942 a 13.340 t/ha, altura de panta de 202.6 a 244.2 cm, altura de mazorca de 93.6 a 129.8 cm, días floración masculina de 61 a 73 días y días a floración femenina de 62 a 75 días.

Tabla 10: Promedios para rendimiento de grano (t/ha), altura de planta (cm), altura de mazorca (cm), días a floración masculina y días a floración femenina en promedio de localidades.

Genotipo	Rendimiento grano	Genotipo	Altura plant	a Genotipo	Altura mazorca	Genotipo	Floración masculina	Genotipo	Floración femenina
DK 1596	12.340	P3862	244.2	P3862	129.8	DK 7088	73.5	30F35	74.5
DK 7088	12.176	30F35	241.2	DK 1596	128.4	DK 1596	73.1	Insignia 860	74.5
30F35	12.080	Exp. 003	237.2	Exp. 005	127.7	30F35	72.5	Exp. 007	73.0
Exp. 005	11.619	Exp. 005	236.0	3041	120.0	Insignia 860	72.2	P3862	72.9
Exp. 006	11.506	Exp. 002	233.9	30K73	118.3	Exp. 007	71.0	30K73	72.6
P3862	11.499	30K73	233.1	DK 7088	116.3	30K73	70.9	DK 7088	71.3
30K73	11.379	DK 1596	231.3	30F35	115.7	P3862	70.8	Exp. 005	71.2
Exp. 003	11.327	Exp. 007	227.3	Exp. 007	115.5	Exp. 005	69.6	DK 1596	70.9
Exp. 007	11.123	Exp. 008	226.0	Exp. 003	113.0	Exp. 008	69.5	3041	70.4
Exp. 008	11.047	3041	225.8	Exp. 008	112.9	3041	68.4	Exp. 008	70.2
Insignia 860	10.977	Exp. 006	225.3	Exp. 002	112.5	Exp. 006	67.4	Exp. 006	69.4
Exp. 004	10.866	Exp. 001	219.4	Exp. 004	108.5	Exp. 004	66.0	Exp. 004	67.8
3041	10.374	DK 7088	219.2	Exp. 006	104.6	Exp. 003	65.8	Exp. 003	67.1
Exp. 002	9.762	Exp. 004	208.5	Insignia 860	102.3	Exp. 002	65.1	Exp. 002	66.3
Exp. 001	8.942	Insignia 860	202.6	Exp. 001	93.6	Exp. 001	60.7	Exp. 001	61.8
DLS 0.05	1.245		10.2		8.8		2.0		2.3
DLS 0.01	1.650		13.5		11.6		2.6		3.0

En la tabla 21 observamos como varían en las localidades la variable rendimiento de grano de 7.720 a 15.020 t/ha, la altura de planta varia de 193.3 a 249.2 cm, altura de mazorca de 96.0 a 130.7 cm, días a floración masculina de 55 a 87 días y floración femenina de 56 a 88 días.

Tabla 11:Promedios para rendimiento de grano (t/ha), altura de planta (cm), altura de mazorca (cm), días a floración masculina y días a floración femenina en promedio de genotipos.

Localidad	Rendimiento grano	Localidad	Altura planta	Localidad	Altura mazorca	Localidad	Floración masculina	Localidad	Floración femenina
Alto Perú	15.020	Cascajal	249.2	San Antonio	130.7	Alto Perú	87.0	Alto Perú	88.2
Lunar bajo	13.327	San Antonio	247.4	Cascajal	126.5	Lunar bajo	84.5	Lunar bajo	85.7
El Socorra	13.231	Alto Perú	237.4	El Socorra	124.1	El Socorra	81.0	El Socorra	82.4
Cascajal	10.412	El Socorra	230.2	El Mulato	114.8	Paredones	64.8	Paredones	66.1
San Antonio	10.126	El Mulato	224.4	Alto Perú	113.0	Cascajal	55.8	San Antonio	56.8
El Mulato	8.107	Paredones	209.7	Paredones	97.2	San Antonio	55.8	Cascajal	56.8
Paredones	7.720	Lunar bajo	193.3	Lunar bajo	96.0	El Mulato	54.8	El Mulato	55.8
DLS 0.05	0.280		2.2		1.8		0.2		0.2
DLS 0.01	0.382		3.0		2.5		0.3		0.3

4.1.1 Rendimiento de grano

En el anexo 1 observamos en su fuente de variación alta significación estadística para genotipos, en las diferentes localidades, los coeficientes de variación variaron de 5.7 % a 7.9 %. En la tabla 22 observamos que en la localidad de Alto Perú el genotipo P3862 obtuvo el mayor rendimiento de grano con 17.772 t/ha ocupando el primer lugar, seguido de los genotipos DK 1596 y DK 7088 con 17.719 y 16.643 t/ha respectivamente y son similares estadísticamente; en la localidad de Lunar bajo el genotipo 30F35 ocupó el primer lugar con 17.545 t/ha y es diferente estadísticamente de los demás genotipos; en la localidad de El Socorra el genotipo DK 7088 ocupó el primer lugar con 14.781 t/ha y es similar estadísticamente a los genotipos 30F35, 30K73, P3862 y Exp. 003 con 14.568, 14.377, 14.361 y 14.308 t/ha respectivamente; En la localidad de Paredones el genotipo P3862 ocupó el primer lugar con 9.197 t/ha y es similar estadísticamente a los genotipos Exp. 008, Exp. 006, Insignia 860 y Exp. Exp. 004 con 9.040, 8.751, 8.432 y 8.336 t/ha respectivamente; en la localidad de Cascajal el genotipo DK 1596 con 12.196 t/ha ocupó el primer lugar y es similar estadísticamente a los genotipos Exp. 005, DK 7088, 30F35 y P3862 con 12.103, 11.922, 11.496 y 11.410 t/ha respectivamente; en la localidad de El Mulato el genotipo Exp. 005 ocupó el primer lugar con 10.341 t/ha y es diferente de los demás genotipos estadísticamente; en la localidad de San Antonio el genotipo Exp. 006 con 11.877 t/ha ocupó el primer lugar y es similar estadísticamente a los genotipos DK 1596, Exp. 004, Exp. 005, Exp. 008 y Exp. 003 con 11.580, 11.336, 11.216, 11.151 y 10.940 t/ha respectivamente.

4.1.2 Altura de planta

En el anexo 2 observamos en su fuente de variación para genotipos alta significación estadística, el coeficiente de variación varió de 2.2 % a 3.2 %.

En la localidad de Alto Perú tabla 23 observamos que el genotipo P3862 con 260.1 cm presentó la mayor altura de planta y es similar estadísticamente a los genotipos 30F35 y DK 1596 con 253.8 y 253.2 cm respectivamente y la menor altura de planta lo presento el genotipo Exp. 004 con 206.7 cm y es diferente estadísticamente de los demás genotipos; en la localidad de Lunar bajo el genotipo Exp. 003 Con 219.5 cm presentó la mayor altura de planta y es similar estadísticamente a los genotipos 30K73, 30F35 y P3862 con 216.5, 215.3 y 212.0 cm, el genotipo Insignia 860 con 146.4 cm presentó la menor altura de planta y es diferente estadísticamente de los demás genotipos; en la localidad El Socorra el genotipo

P3862 presentó la mayor altura de mazorca con 254.6 cm y es similar estadísticamente a los genotipos Exp. 002, 30K73 y 30F35 con 251.6, 251.5 y 244.5 cm respectivamente, el genotipo Insignia 860 presentó la menor altura de planta con 202.7 cm y es similar estadísticamente al genotipo Exp. 006 con 206.9 cm; en la localidad de Paredones la mayor altura de planta lo presentó el genotipo P3862 con 224.5 cm y es similar estadísticamente a los genotipos 30F35, Exp. 005 y Exp. 007 con 223.6, 219.5 y 217.7 cm respectivamente, la menor altura de planta lo presentó el genotipo Exp. 004 con 187.7 cm y es diferente estadísticamente de los demás genotipos; en la localidad de Cascajal el genotipo Exp. 005 presentó la mayor altura de planta y es similar estadísticamente a los genotipos 30F35, P3862 y Exp. 002 con 261.9, 259.9 y 258.8 cm respectivamente, la menor altura de planta lo presento el genotipo Exp. 004 con 228.1 cm y es diferente estadísticamente de los demás genotipos; en la localidad El Mulato el genotipo Exp. 005 con 237.7 presentó la mayor altura de planta y es estadísticamente similar a los genotipos Exp. 003, P3862 y 3041 con 237.0, 235.6 y 234.1 cm respectivamente, el genotipo Insignia 860 presentó la menor altura de planta con 206.3 cm y es similar estadísticamente al genotipo Exp. 004 con 210.4 cm y es diferente de los demás genotipos; en la localidad de San Antonio el genotipo P3862 con 262.8 cm presentó la mayor altura de planta y es similar estadísticamente a los genotipos 30F35 y DK 1596 con 261.2 y 256.4 cm respectivamente, el genotipo Insignia 860 con 221.3 cm presentó la menor altura de planta y es diferente estadísticamente de los demás genotipos.

Tabla 12: Promedios para rendimiento de grano (t/ha) en las diferentes localidades.

Genotipo	Alto Perú	Genotipo	Lunar bajo	Genotipo	El Socorra	Genotipo	Paredones	Genotipo	Cascajal	Genotipo	El Mulato	Genotipo	San Antonio
P3862	17.772	30F35	17.545	DK 7088	14.781	P3862	9.197	DK 1596	12.196	Exp. 005	10.341	Exp. 006	11.877
DK 1596	17.719	30K73	16.030	30F35	14.568	Exp. 008	9.040	Exp. 005	12.103	DK 1596	8.895	DK 1596	11.580
DK 7088	16.643	DK 1596	15.056	30K73	14.377	Exp. 006	8.751	DK 7088	11.922	Exp. 006	8.838	Exp. 004	11.336
30F35	16.225	DK 7088	14.577	P3862	14.361	Insignia 860	8.432	30F35	11.496	DK 7088	8.749	Exp. 005	11.216
Exp. 005	16.211	Exp. 004	14.291	Exp. 003	14.308	Exp. 004	8.336	P3862	11.410	P3862	8.741	Exp. 008	11.151
Exp. 003	15.321	Exp. 006	13.591	DK 1596	13.412	30F35	8.168	Insignia 860	10.712	30K73	8.559	Exp. 003	10.940
Exp. 007	15.275	Exp. 003	13.543	Insignia 860	13.331	Exp. 007	7.981	Exp. 007	10.687	Exp. 004	8.393	DK 7088	10.688
3041	15.009	Exp. 007	13.308	Exp. 007	13.180	30K73	7.892	Exp. 006	10.564	Exp. 007	8.359	3041	10.550
Exp. 002	14.727	Insignia 860	12.942	Exp. 008	13.148	DK 7088	7.874	Exp. 008	10.465	Exp. 008	8.134	Exp. 002	9.511
Insignia 860	14.666	Exp. 002	12.350	Exp. 005	12.881	DK 1596	7.523	Exp. 003	10.075	Insignia 860	8.017	Exp. 001	9.210
Exp. 006	14.352	Exp. 008	12.330	Exp. 006	12.572	Exp. 003	7.306	30K73	10.052	Exp. 003	7.798	30F35	9.092
30K73	14.296	3041	11.729	Exp. 002	12.434	Exp. 005	7.079	Exp. 004	9.517	3041	7.613	Exp. 007	9.074
Exp. 008	13.063	Exp. 005	11.506	3041	11.966	3041	6.817	3041	8.935	30F35	7.469	Insignia 860	8.741
Exp. 004	12.571	Exp. 001	10.585	Exp. 004	11.615	Exp. 001	5.938	Exp. 001	8.129	Exp. 002	5.938	P3862	8.485
Exp. 001	11.448	P3862	10.524	Exp. 001	11.525	Exp. 002	5.465	Exp. 002	7.911	Exp. 001	5.760	30K73	8.447
DLS 0.05	1.220		1.182		1.051		0.873		0.904		0.925		1.125
DLS 0.01	1.632		1.580		1.405		1.167		1.209		1.237		1.504

Tabla 13: Promedios para altura de planta (cm) en las diferentes localidades.

Genotipo	Alto Perú	Genotipo	Lunar bajo	Genotipo	El Socorra	Genotipo	Paredones	s Genotipo	Cascajal	Genotipo	El Mulato	Genotipo	San Antonio
P3862	260.1	Exp. 003	219.5	P3862	254.6	P3862	224.5	Exp. 005	267.1	Exp. 005	237.7	P3862	268.8
30F35	253.8	30K73	216.5	Exp. 002	251.6	30F35	223.6	30F35	261.9	Exp. 003	237.0	30F35	261.2
DK 1596	253.2	30F35	215.3	30K73	251.5	Exp. 005	219.5	P3862	259.9	P3862	235.6	DK 1596	256.4
Exp. 005	249.4	P3862	212.0	30F35	244.5	Exp. 007	217.7	Exp. 002	258.8	3041	234.1	Exp. 005	254.7
3041	247.0	Exp. 008	208.6	Exp. 005	236.6	Exp. 003	217.3	3041	254.2	30F35	227.9	Exp. 003	253.1
30K73	245.4	Exp. 002	206.5	Exp. 003	235.3	Exp. 006	216.2	DK 1596	253.9	DK 1596	227.2	Exp. 002	252.3
Exp. 003	244.4	Exp. 006	205.4	DK 1596	231.3	DK 1596	215.1	Exp. 003	253.8	Exp. 002	226.9	Exp. 006	250.7
DK 7088	243.1	Exp. 001	200.7	Exp. 007	227.6	3041	212.4	Exp. 006	249.7	Exp. 006	226.5	Exp. 007	248.5
Exp. 002	239.0	Exp. 007	197.2	Exp. 001	226.9	30K73	211.6	30K73	247.1	Exp. 008	223.1	Exp. 008	246.3
Exp. 007	235.9	Exp. 005	186.9	3041	223	Exp. 008	209.5	Exp. 008	247.0	DK 7088	221.0	3041	245.3
Exp. 008	228.9	DK 1596	181.7	DK 7088	222	Exp. 002	202.1	Exp. 007	245.9	30K73	219.2	Exp. 001	243.6
Exp. 006	221.4	Exp. 004	173.6	Exp. 004	220.4	DK 7088	198.6	DK 7088	243.2	Exp. 007	218.1	DK 7088	242.0
Exp. 001	216.7	3041	164.5	Exp. 008	218.8	Exp. 001	195.1	Exp. 001	237.5	Exp. 001	215.3	30K73	240.5
Insignia 860	216.1	DK 7088	164.4	Exp. 006	206.9	Insignia 860	195.0	Insignia 860	230.3	Exp. 004	210.4	Exp. 004	232.4
Exp. 004	206.7	Insignia 860	146.4	Insignia 860	202.7	Exp. 004	187.7	Exp. 004	228.1	Insignia 860	206.3	Insignia 860	221.3
DLS 0.05	8.0		8.0		10.5		6.9		10.1		8.1		7.7
DLS 0.01	10.7		10.7		14.1		9.2		13.6		10.8		10.3

4.1.3 Altura de inserción de la mazorca

En el anexo 3 se observa que genotipo presentó alta significación estadística para las diferentes localidades, el coeficiente de variación varió de 4.1% a 6.3 %.

Al realizar las comparaciones de medias tabla 24 observamos que en la localidad de Alto Perú el genotipo DK 1596 con 138.1 cm presentó la mayor altura de mazorca y es similar estadísticamente al genotipo P3862 con 133.2 cm y la menor altura de mazorca lo presento el genotipo Exp. 001 con 83.9 cm y es similar estadísticamente al genotipo Exp. 006 con 89.6 cm y diferente de los demás genotipos estadísticamente; en la localidad de Lunar bajo el genotipo P3862 con 113.1 cm obtuvo la mayor altura de mazorca y similar a los genotipos 30K73, 30F35, Exp. 003 y Exp. 008 con 110.5, 108.3, 108 y 105.5 cm estadísticamente y diferente de los demás genotipos, el genotipo Insignia 860 con 65.7 cm presentó la menor altura de mazorca y es diferente estadísticamente de los demás genotipos; en la localidad El Socorra el genotipo P3862 presentó la mayor altura de mazorca con 146.1 cm y es diferente estadísticamente de los demás genotipos, el genotipo Exp. 006 presentó la menor altura mazorca con 100.6 cm y es similar estadísticamente al genotipo Exp. 001 con 102.5 cm; en la localidad de Paredones la mayor altura de mazorca lo presentó el genotipo Exp. 005 con 114.9 cm y es similar estadísticamente al genotipo DK 1596 con 114.4 cm, la menor altura de mazorca lo presentó el genotipo Exp. 001 con 69.9 cm y es diferente estadísticamente de los demás genotipos; en la localidad de Cascajal el genotipo Exp. 005 presentó la mayor altura de mazorca y es diferente estadísticamente de los demás genotipos la menor altura de mazorca lo presento el genotipo Exp. 001 con 107.5 cm y es diferente estadísticamente de los demás genotipos; en la localidad El Mulato el genotipo Exp. 005 con 134.2 presentó la mayor altura de mazorca y es estadísticamente similar a los genotipos 3041 y DK 1596 con 129.5 y 127.0 cm respectivamente, el genotipo Exp. 001 presentó la menor altura de mazorca con 97.2 cm y es similar estadísticamente al genotipo Exp. 002 con 101.0 cm y es diferente de los demás genotipos; en la localidad de San Antonio el genotipo DK 1596 con 150.4 cm presentó la mayor altura de mazorca y es similar estadísticamente a los genotipos P3862 y Exp. 005 con 149.1 y 148.2 cm respectivamente, el genotipo Exp. 001 con 106.7 cm presentó la menor altura de mazorca y es diferente estadísticamente de los demás genotipos.

Tabla 14: Promedios para altura de mazorca (cm) en las diferentes localidades.

Genotipo	Alto Perú	Genotipo	Lunar bajo	Genotipo	El Socorra	Genotipo	Paredones	Genotipo	Cascajal	Genotipo	El Mulato	Genotipo	San Antonio
DK 1596	138.1	P3862	113.1	P3862	146.1	Exp. 005	114.9	Exp. 005	151.8	Exp. 005	134.2	DK 1596	150.4
P3862	133.2	30K73	110.5	Exp. 002	135.8	DK 1596	114.4	DK 1596	139.1	3041	129.5	P3862	149.1
3041	129.2	30F35	108.3	DK 1596	132.7	P3862	107.5	P3862	138.7	DK 1596	127.0	Exp. 005	148.2
DK 7088	129.2	Exp. 003	108.0	30K73	132.7	Exp. 007	104.7	3041	134.5	P3862	121.1	3041	137.8
Exp. 005	125.3	Exp. 008	105.5	Exp. 004	130.8	3041	100.5	DK 7088	130.5	DK 7088	118.6	30K73	136.4
30K73	118.8	Exp. 002	102.6	Exp. 005	129.4	Exp. 003	99.4	Exp. 008	127.4	Exp. 007	116.3	30F35	134.9
30F35	118.2	Exp. 007	100.2	DK 7088	127.5	DK 7088	97.0	Exp. 003	124.2	Exp. 008	113.4	DK 7088	131.5
Exp. 007	114.5	Exp. 006	99.9	3041	127.0	30K73	94.8	30F35	123.8	30K73	112.6	Exp. 008	130.5
Exp. 002	112.8	DK 1596	96.8	30F35	122.9	30F35	93.9	30K73	122.2	Exp. 003	111.9	Exp. 007	130.0
Exp. 003	105.8	Exp. 005	90.6	Exp. 007	122.0	Insignia 860	93.8	Insignia 860	121.0	Exp. 006	111.3	Exp. 006	123.5
Exp. 008	100.3	Exp. 004	88.9	Exp. 003	121.0	Exp. 008	93.5	Exp. 007	120.8	Exp. 004	111.3	Exp. 002	123.3
Exp. 004	98.5	Exp. 001	87.6	Exp. 008	119.7	Exp. 002	93.4	Exp. 004	119.5	Insignia 860	108.2	Exp. 003	120.5
Insignia 860	98.1	3041	81.8	Insignia 860	111.3	Exp. 004	91.2	Exp. 002	118.5	30F35	108.1	Exp. 004	119.6
Exp. 006	89.6	DK 7088	80.0	Exp. 001	102.5	Exp. 006	88.7	Exp. 006	118.4	Exp. 002	101.0	Insignia 860	118.3
Exp. 001	83.9	Insignia 860	65.7	Exp. 006	100.6	P1630	69.9	P1630	107.5	P1630	97.2	P1630	106.7
DLS 0.05	7.5		8.7		9.4		7.3		9.0		7.6		7.6
DLS 0.01	10.0		11.6		12.6		9.7		12.1		10.1		10.1

4.1.4 Días a floración masculina

En el anexo 4 observamos en su fuente de variación alta significación estadística para genotipo en las diferentes localidades. El coeficiente de variabilidad varió de 0.55 % a 1.01 %.

Al realizar la comparación de medias en las diferentes localidades observamos en la tabla 25 que en la localidad de Alto Perú el genotipo DK 7088 fue el más tardío con 93 días y es diferente estadísticamente de los demás genotipos, el genotipo Exp. 001 fue el más precoz con 74 días y es diferente estadísticamente de los demás genotipos; en la localidad de Lunar bajo el genotipo Insignia 860 fue el más tardío con 89 días y es similar estadísticamente a los genotipos DK 1596, DK 7088 y 30K73 con 89, 89 y 89 días respectivamente, el genotipo Exp. 001 fue el más precoz con 71 días y es diferente estadísticamente de los demás genotipos; en la localidad El Socorra el genotipo DK 7088 fue el más tardío con 85 días y es similar estadísticamente al genotipo Insignia 860 con 86 días, el más precoz fue el genotipo Exp. 001 con 69 días y es diferente estadísticamente de los demás genotipos; en la localidad Paredones el genotipo Insignia 860 fue el más tardío con 69 días y es similar estadísticamente al genotipo 30F35 con 68 días, el genotipo más precoz fue Exp. 001 con 5 días y es diferente estadísticamente de los demás genotipos con 55 días; en la localidad Cascajal el genotipo DK 1596 fue el más tardío con 60 días y es similar estadísticamente a los genotipos DK 7088, 30F35, y P3862 con 60, 59 y 58 días respectivamente, el genotipo más precoz fue Exp. 001 con 52 días y es similar estadísticamente a los genotipos Exp. 004, Exp. 006 y Exp. 003 con 53, 53 y 53 días respectivamente y es diferente estadísticamente de los demás genotipos; en la localidad El Mulato el genotipo DK 1596 fue el más tardío con 59 días y es similar estadísticamente a los genotipos DK 7088 y 30F35 con 59 y 58 días respectivamente, el genotipo Exp. 004 con 52 días fue el más precoz y es similar estadísticamente a los genotipos Exp. 001, Exp. 006 y Exp. 003 con 52, 52 y 52 días respectivamente; en la localidad de San Antonio el genotipo DK 7088 con 60 días fue el más tardío y es similar estadísticamente al genotipo DK 1596 con 60 días, el genotipo más precoz fue Exp. 004 con 53 días y es similar estadísticamente a los genotipos Exp. 001, Exp. 003 y Exp. 006 con 53, 53 y 53 días respetivamente

Tabla 15: Promedios para días a floración masculina en las diferentes localidades.

Genotipo	Alto Perú	Genotipo	Lunar bajo	Genotipo	El Socorra	Genotipo	Paredones	Genotipo	Cascajal	Genotipo	El Mulato	Genotipo	San Antonio
DK 7088	92.5	Insignia 860	89.3	DK 7088	85.8	Insignia 860	68.5	DK 1596	60.0	DK 1596	59.0	DK 7088	60.0
DK 1596	91.5	DK 1596	88.8	Insignia 860	85.5	30F35	68.3	DK 7088	60.0	DK 7088	59.0	DK 1596	59.8
30F35	90.5	DK 7088	88.8	DK 1596	84.8	DK 1596	67.8	30F35	59.3	30F35	58.3	30F35	58.8
30K73	90.5	30K73	88.5	30K73	84.3	DK 7088	67.8	P3862	58.3	P3862	57.3	P3862	58.3
Insignia 860	90.5	30F35	88.3	30F35	84.0	30K73	67.0	Exp. 007	57.8	Exp. 007	56.8	Exp. 007	57.8
Exp. 007	90.3	Exp. 005	86.8	3041	82.0	Exp. 005	66.0	Insignia 860	57.5	Insignia 860	56.5	Insignia 860	57.5
Exp. 008	89.5	Exp. 008	86.8	P3862	82.0	Exp. 007	66.0	30K73	55.8	30K73	54.8	30K73	55.8
Exp. 005	88.5	Exp. 007	86.5	Exp. 005	81.8	Exp. 008	66.0	Exp. 005	55.0	Exp. 005	54.0	Exp. 005	55.0
P3862	88.5	P3862	86.5	Exp. 007	81.8	P3862	65.0	Exp. 008	54.5	Exp. 008	53.5	Exp. 008	54.5
3041	87.5	Exp. 006	84.8	Exp. 008	81.8	Exp. 003	64.0	Exp. 002	54.3	Exp. 002	53.3	Exp. 002	54.3
Exp. 006	86.5	3041	84.5	Exp. 004	79.3	3041	64.0	3041	54.0	3041	53.0	3041	54.0
Exp. 004	82.5	Exp. 004	80.5	Exp. 006	79.3	Exp. 004	63.3	Exp. 003	53.0	Exp. 003	52.0	Exp. 006	53.3
Exp. 003	81.5	Exp. 003	79.5	Exp. 003	77.8	Exp. 006	63.0	Exp. 006	53.0	Exp. 006	52.0	Exp. 003	53.0
Exp. 002	80.5	Exp. 002	77.3	Exp. 002	75.8	Exp. 002	60.5	Exp. 004	52.5	Exp. 001	51.5	Exp. 001	52.8
Exp. 001	73.5	Exp. 001	70.5	Exp. 001	69.3	Exp. 001	55.0	Exp. 001	52.3	Exp. 004	51.5	Exp. 004	52.5
DLS 0.05	0.8		0.8		0.7		0.5		0.8		0.8		0.8
DLS 0.01	1.0		1.0		1.0		0.7		1.1		1.1		1.0

4.1.5 Días a floración femenina

En el anexo 5 observamos en su fuente de variación alta significación estadística para genotipo en las diferentes localidades. El coeficiente de variabilidad varió de 0.54 % a 0.99 %.

Al realizar la comparación de medias en las diferentes localidades observamos en la tabla 26 que en la localidad de Alto Perú el genotipo 30F35 fue el más tardío con 93 días y es similar estadísticamente a los genotipos 30K73, Insignia 860 y Exp. 007 con 93, 83 y 92 días respectivamente, el genotipo Exp. 001 fue el más precoz con 74 días y es diferente estadísticamente de los demás genotipos; en la localidad de Lunar bajo el genotipo Insignia 860 fue el más tardío con 91 días y es similar estadísticamente al genotipo 30K73 con 91 días, el genotipo Exp. 001 fue el más precoz con 69 días y es diferente estadísticamente de los demás genotipos; en la localidad El Socorra el genotipo Insignia 860 fue el más tardío con 88 días y es diferente estadísticamente a los demás genotipos, el más precoz fue el genotipo Exp. 001 con 71 días y es diferente estadísticamente de los demás genotipos; en la localidad Paredones el genotipo Insignia 860 fue el más tardío con 70 días y es diferente estadísticamente a los demás genotipos, el genotipo más precoz fue Exp. 001 con 57 días y es diferente estadísticamente de los demás genotipos; en la localidad Cascajal el genotipo 30F35 fue el más tardío con 62 días y es diferente estadísticamente a los demás genotipos, el genotipo más precoz fue Exp. 008 con 54 días y es similar estadísticamente a los genotipos Exp. 001, Exp. 004, Exp. 003 y Exp. 002 con 54, 54, 54 y 54 días respectivamente y es diferente estadísticamente de los demás genotipos; en la localidad El Mulato el genotipo 30F35 fue el más tardío con 61 días y es diferente estadísticamente a los demás genotipos, el genotipo Exp. 008 con 53 días fue el más precoz y es similar estadísticamente a los genotipos Exp. 001, Exp. 004, Exp. 003 y Exp. 002 con 53, 53, 53 y 53 días respectivamente; en la localidad de San Antonio el genotipo 30F35 con 62 días fue el más tardío y es diferente estadísticamente a los demás genotipos, el genotipo más precoz fue Exp. 008 con 54 días y es similar estadísticamente a los genotipos Exp. 001, Exp. 004 y, Exp. 003 con 54, 54 y 54 días respetivamente.

Tabla 16: Promedios para días a floración femenina en las diferentes localidades.

Genotipo	Alto Perú	Genotipo	Lunar bajo	Genotipo	El Socorra	Genotipo	Paredones	Genotipo	Cascajal	Genotipo	El Mulato	Genotipo	San Antonio
30F35	92.5	Insignia 860	91.3	Insignia 860	87.5	Insignia 860	70.3	30F35	61.5	30F35	60.5	30F35	61.5
30K73	92.5	30K73	90.5	30F35	85.8	30F35	69.3	P3862	60.5	P3862	59.5	P3862	60.5
Insignia 860	92.5	30F35	90.3	30K73	85.5	30K73	69.0	Insignia 860	60.3	Insignia 860	59.3	Insignia 860	60.3
Exp. 007	92.3	Exp. 005	88.8	3041	84.0	Exp. 007	68.0	Exp. 007	59.8	Exp. 007	58.8	Exp. 007	59.8
Exp. 008	91.5	Exp. 008	88.8	P3862	84.0	Exp. 008	68.0	DK 1596	57.8	DK 1596	56.8	DK 1596	57.8
Exp. 005	90.5	Exp. 007	88.5	Exp. 005	83.8	Exp. 005	67.0	DK 7088	57.8	DK 7088	56.8	DK 7088	57.8
P3862	90.5	P3862	88.5	Exp. 007	83.8	P3862	67.0	30K73	57.3	30K73	56.3	30K73	57.3
DK 7088	90.5	Exp.006	86.8	Exp. 008	83.8	Exp. 003	66.0	Exp. 005	56.5	Exp. 005	55.5	Exp. 005	56.5
Exp.006	89.5	DK 1596	86.8	DK 7088	83.8	3041	66.0	3041	56.0	3041	55.0	3041	56.0
3041	89.5	DK 7088	86.8	DK 1596	82.8	DK 7088	65.8	Exp.006	54.8	Exp.006	53.8	Exp.006	55.3
DK 1596	89.5	3041	86.5	Exp.004	81.3	Exp.004	65.3	Exp. 002	54.3	Exp. 002	53.3	Exp. 002	54.5
Exp.004	84.5	Exp.004	82.5	Exp.006	81.0	Exp.006	65.0	Exp. 003	54.3	Exp. 003	53.3	Exp. 003	54.3
Exp. 002	82.5	Exp. 003	81.5	Exp. 003	80.8	DK 1596	64.8	Exp.004	54.0	Exp.004	53.0	Exp.004	54.0
Exp. 003	79.5	Exp. 002	79.3	Exp. 002	77.8	Exp. 002	62.5	Exp.001	53.8	Exp.001	52.8	Exp.001	53.8
Exp.001	75.5	Exp.001	68.8	Exp.001	71.3	Exp.001	57.0	Exp. 008	53.5	Exp. 008	52.5	Exp. 008	53.5
DLS 0.05	0.8		0.8		0.7		0.5		0.8		0.8		0.8
DLS 0.01	1.0		1.0		1.0		0.7		1.0		1.0		1.1

4.2 ANÁLISIS DE ESTABILIDAD EBERHART Y RUSSELL

En la tabla 27 observamos en su fuente de variación alta significación estadística para genotipos, localidad (lineal), desviaciones conjuntas y genotipo x localidad (lineal) en todas las variables, a excepción de las variables rendimiento de grano y altura de mazorca para genotipo x localidad (lineal); indicándonos que los genotipos en sus promedios son diferentes para cada variable y la interacción genotipos por localidad (lineal) nos indica que el coeficiente de regresión son iguales para rendimiento de grano y altura de mazorca, pero diferentes para altura de planta y días a floración masculina y femenina.

Al analizar los parámetros de estabilidad para las variables rendimiento de grano, altura de planta, altura de mazorca y floración masculina y floración femenina tabla 28, encontramos que en la variable rendimiento de grano el genotipo DK 1596 obtuvo el mayor rendimiento de grano 12.340 t/ha y es una variedad estable pero inconsistente y tiene el mismo comportamiento junto a los genotipos 30F35, Exp. 005, Exp. 006, P3862, 30K73, Insignia 860, Exp. 004 y Exp. 001; el genotipo DK 7088 ocupó el segundo lugar con 12.176 t/ha y es un genotipo para buenos ambientes pero consistente; los genotipos Exp. 003, Exp. 007 y 3041 se consideran genotipos estables con 11.327, 11.123 y 10.374 t/ha respectivamente, el genotipo Exp. 008 con 11.047 t/ha es considerada como un genotipo para ambientes desfavorables pero inconsistente y el genotipo Exp. 002 es un genotipo para buenos ambientes pero inconsistente Anexo 6. En lo referente a la variable altura de planta se observa en la tabla 28 que el genotipo Exp. 007 es considerada como estable, el genotipo Exp. 003 se le considera como un genotipo para ambientes desfavorables e inconsistentes y el genotipo DK 7088 como un genotipo para buenos ambientes e inconsistente los demás genotipos son estables pero inconsistentes Anexo 7. En la variable altura de mazorca, todos los genotipos son estables e inconsistente a excepción de los genotipos Exp. 007 que es para ambientes desfavorables y consistentes en cambio el genotipo Exp. 003 es un genotipo para ambientes desfavorables pero inconsistentes Anexo 8. En la variable días a floración masculina tabla 28 el genotipo 30F35 es considerada como estable y los genotipos DK 7088, DK 1596, Exp. 007, P3862, Exp. 004 y Exp. 003 como estables pero inconsistentes, los genotipos Insignia 8060, 30K73, Exp. 005, Exp. 008, 3041y Exp. 006 son para buenos ambientes pero inconsistentes; los genotipos Exp. 002 y Exp. 001 son genotipos para ambientes desfavorables e inconsistentes Anexo 9. Para la variable días a floración femenina en la tabla 28 se observa que no hay ningún genotipo estable, los genotipos 30F35, Exp. 007, P3862, DK 7088, DK 1596, Exp. 004, Exp. 003 son genotipos estables y inconsistentes; los genotipos Insignia 860, 30K73, Exp. 005, Exp. 008, Exp. 006, Exp. 002 y Exp. 001 son genotipos para ambientes desfavorable pero inconsistentes y el genotipo 3041 es para buenos ambientes pero consistente Anexo 10.

Tabla 17: Análisis de varianza de Eberhart y Russell (1966) de 15 genotipos de maíz amarillo duro en siete localidades para rendimiento de grano (t/ha), altura de planta (cm), altura de mazorca (cm), días a floración masculina y días a floración femenina

Evanta da vanisaión	CI	Rendimiento	Altura	Altura	Floración	Floración
Fuente de variación	GL	de grano	de planta	de mazorca	masculina	femenina
Total	419					
Genotipos	14	22.816 **	3692.812 *	2760.548 *	352.494 **	323.269 **
Localidad+(Genotipo x Localidad)	90	36.226	1986.613	1017.092	861.317	882.487
Localidad (lineal)	1	2799.612 **	148119.270 **	68713.918 *	76335.190 **	7862.290 **
Genotipo x Localidad (lineal)	14	8.347	724.666 *	280.853	70.213 **	83.586 **
Desviaciones conjuntas	75	4.585 **	273.740 *	251.899 *	2.672 **	5.218 **
Exp. 001	5	2.401 **	312.183 *	219.047 *	8.410 **	16.989 **
Exp. 002	5	1.565 *	412.258 *	358.520 *	1.906 **	0.868 **
Exp. 003	5	1.113	95.270 *	91.339 *	5.931 **	24.520 **
Exp. 004	5	5.882 **	219.683 *	211.308 *	5.339 **	5.392 **
Exp. 005	5	9.288 **	131.998 *	388.883 *	1.715 **	1.027 **
Exp. 006	5	1.657 *	628.196 *	417.899 *	1.309 **	2.815 **
Exp. 007	5	1.106	76.729	21.252	2.866 **	3.563 **
Exp. 008	5	1.873 **	185.789 *	202.931 *	2.165 **	7.987 **
30F35	5	8.912 **	125.978 *	185.009 *	0.370	1.889 **
3041	5	2.802	512.535 *	362.672 *	0.729 *	0.409
30K73	5	9.004 **	492.601 *	217.168 *	1.016 **	1.917 **
P3862	5	17.632 **	133.157 *	146.922 *	3.052 **	4.260 **
DK 1596	5	3.093 **	161.321 *	273.218 *	1.211 **	3.739 **
DK 7088	5	0.487	217.782 *	336.854 *	2.014 **	1.980 **
Insignia 860	5	1.955 **	400.623 *	345.460 *	2.048 **	0.915 **
Error conjunto	294	0.540	36.032	32.950	0.261	0.269

^{*} Significación al 0.05 de probabilidad ** significación al 0.01 de probabilidad

Tabla 18: Promedios para rendimiento de grano (t/ha), altura de planta (cm), altura de mazorca (cm), días a floración masculina y días a floración femenina y sus parámetros de estabilidad coeficiente de regresión (bi) y desviación de la regresión (Sdi)

Camatina	Rendimiento de grano			Altu	Altura de planta			Altura de mzorca			masculina	Floración fen	Floración femenina		
Genotipo	Promedio	bi	S^2di	Promedio	bi	S^2di	Promedio	bi	S^2di	Promedio b	i $S^2 di$	Promedio bi	S^2di		
Exp. 001	8.942	0.84	0.47 **	219.374	0.79	69.04 **	93.612	0.88	46.52 **	60.679 0.67	** 2.04 **	61.821 0.64 **	4.18 **		
Exp. 002	9.762	1.25 *	* 0.26 *	233.884	1.02	94.06 **	112.488	0.86	81.39 **	65.107 0.84	** 0.41 **	66.286 0.89 **	0.15 **		
Exp. 003	11.327	1.12	0.14	237.198	0.69 *	14.81 *	112.954	0.59 *	14.60 *	65.821 0.93	1.42 **	67.071 0.90	6.06 **		
Exp. 004	10.866	0.69	1.34 **	208.481	1.00	45.91 **	108.533	1.05	44.59 **	66.000 0.98	1.27 **	67.786 0.99	1.28 **		
Exp. 005	11.619	0.85	2.19 **	235.964	1.27	23.99 **	127.745	1.35	88.98 **	69.571 1.08	** 0.36 **	71.214 1.09 **	0.19 **		
Exp. 006	11.506	0.76	0.28 *	225.253	0.72	148.04 **	104.567	0.72	96.24 **	67.393 1.07	** 0.26 **	69.429 1.08 *	0.64 **		
Exp. 007	11.123	1.00	0.14	227.256	0.87	10.17	115.481	0.73 *	-2.92	70.964 1.01	0.65 **	72.964 1.00	0.82 **		
Exp. 008	11.047	0.67	* 0.33 **	226.024	0.72	37.44 **	112874	0.89	42.50 **	69.500 1.11	** 0.48 **	70.214 1.19 **	1.93 **		
30F35	12.080	1.37	2.09 **	241.162	0.90	22.49 **	115.712	0.86	38.01 **	72.464 1.01	0.03	74.464 0.98	0.40 **		
3041	10.374	0.98	0.57	225.779	1.42	119.13 **	120.025	1.37	82.43 **	68.429 1.08	** 0.12 *	70.429 1.07 **	0.04		
30K73	11.379	1.12	2.12 **	233.107	0.65	114.14**	118.265	0.90	46.05 **	70.929 1.12	** 0.19 **	72.607 1.12 **	0.41 **		
P3862	11.499	1.02	4.27 **	244.213	0.96	24.28 **	129.819	1.10	28.49 **	70.821 0.98	0.70 **	72.929 0.96	1.00 **		
DK 1596	12.340	1.22	0.64	231.250	1.30	31.32 **	128.351	1.17	60.07 **	73.071 1.01	0.24 **	70.857 1.01	0.87 **		
DK 7088	12.176	1.18 ;	* -0.01	219.178	1.40 *	45.44 **	116.307	1.32	75.98 **	73.393 1.03	0.44 **	71.286 1.03	0.43 **		
Insignia 860	10.977	0.94	0.35 **	202.571	1.28	91.15 **	102.317	1.23	78.13 **	72.179 1.08	** 0.45 **	74.464 1.05 *	0.16 **		

^{*} Significación al 0.05 de probabilidad ** significación al 0.01 de probabilidad

4.3 ANÁLISIS DE ESTABILIDAD AMMI.

4.3.1 Rendimiento de grano

En la tabla 29 observamos en su fuente de variación alta significación estadística para localidades, genotipo, interacción genotipo por localidades. CP-1, CP-2, CP-3, CP-4, CP-5 y solo significativo para el componente CP-6; localidades explica el 74.7%; genotipo 8.5 % y la interacción genotipo por localidad 12.3 %. Los dos primeros componentes explican el 72.1 % la interacción.

Tabla 19: Modelos de efectos aditivos principales e interacción multiplicativa para rendimiento de grano (t/ha).

Fuente	de	Grados	 Suma	Cuadrados		Porcentaje
variación		libertad	cuadrados	medios		explicado
Modelo		125	3591.1989	28.729592		
Localidades (L))	6	2799.612	466.602	**	74.7
Bloque/L		21	11.452	0.545		
Genotipo (G)		14	319.428	22.816	**	8.5
GxL		84	460.706	5.485	**	12.3
CP-1		19	180.658	9.508	**	39.2
CP-2		17	151.486	8.911	**	32.9
CP-3		15	69.368	4.625	**	15.1
CP-4		13	33.398	2.569	**	7.2
CP-5		11	15.013	1.365	**	3.3
CP-6		9	10.783	1.198	*	2.3
Error conjunto		294	158.638	0.540		
Total		419	3749.837			
C.V.(%)				6.597		
Promedio				11.135		

^{*} Significación al 0.05 de probabilidad

En el biplot del gráfica 7 se observa que el CP1 contribuye con el 39.21 % a la interacción genotipo medio ambiente; los genotipos DK 7088 y DK 1596 son estables con mayor rendimiento también están los genotipos Insignia 860, Exp. 003, Exp. 007, Exp. 006 son estables pero de menor rendimiento, los genotipos DK 1596, Exp. 003, DK 7088, Exp. 002, Exp. 004, 30K73 y 30F35 presentan una interacción positiva y los genotipos P3862, Exp. 005, 3041, Exp. 008, Exp. 001, Exp. 006, Insignia 860 y Exp. 007 presentan interacción negativa, los genotipos 30F35, P3862 y Exp. 005 son los que más interaccionan el ambiente

^{**} Significación al 0.01 de probabilidad

Lunar bajo es el que mejor discrimina, seguido del ambiente Alto Perú, Paredones, El Mulato y El Socorro; el ambiente que menos discrimina son el ambiente San Antonio y Cascajal ambos ambientes son similares; Yan *et al.* (2000) indican que los ambientes cuyos ángulos son menores a 90° los genotipos son similares; el ambiente Paredones es muy semejante al ambiente El Mulato y junto con los ambientes San Antonio y Cascajal forman un grupo de bajos rendimientos y los ambientes Lunar Bajo, El Socorro y Alto Perú forman otro grupo de altos rendimientos; los ambientes San Antonio Cascajal y El Socorro son los que tienen mejor comportamiento y mostraron menor variación.



Figura 3: Biplot de las coordenadas del primer eje del componente principal (CP-1) en función del contenido promedio de rendimiento de grano (t/ha) de los 14 genotipos y 7 localidades.

En la gráfica 8 se observa que los genotipos Exp. 003, Exp. 005 son más estables por estar cerca a cero; los genotipos que más interaccionan son Exp. 004, 30F35 y P3862; las localidades que mejor discriminan son Lunar bajo, Alto Perú y San Antonio, el genotipo 30F35 y 30K73 responden mejor en los ambientes Lunar bajo, y el Socorro y el genotipo Exp. 004 en el ambiente San Antonio y Paredones tiene buenos rendimientos.

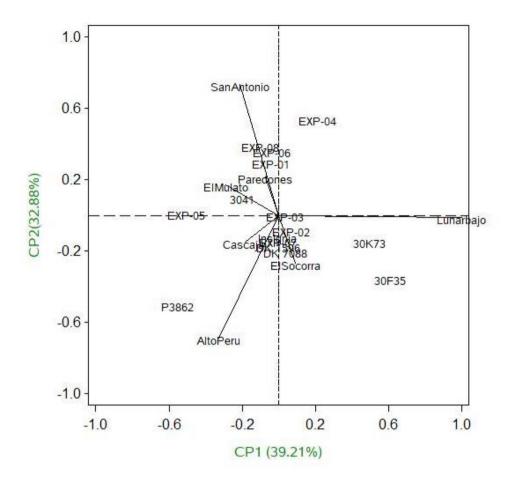


Figura 4: Biplot del primer eje del análisis de componentes principales de la interacción (CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7 localidades para rendimiento de grano (t/ha).

4.3.2 Altura de planta

En la tabla 30 se observa en su fuente de variación alta significación para localidades, genotipo, interacción genotipo por localidad, CP1, CP2 y CP3 y solo significativo para CP4; localidades explica el 61.3 %; genotipo 21.4 % y la interacción genotipo por localidad 12.7 %. Los dos primeros componentes explican el 84.3 % la interacción.

Tabla 20: Modelos de efectos aditivos principales e interacción multiplicativa para altura de planta (cm).

Fuente	de	Grados	Suma	Cuadrados		Porcentaje
variación		libertad	cuadrados	medios		explicado
Modelo		125	231199.961	1849.600		
Localidades (L))	6	148119.271	24686.545	**	61.3
Bloque/L		21	705.462	33.593		
Genotipo (G)		14	51699.372	3692.812	**	21.4
GxL		84	30675.856	365.189	**	12.7
CP-1		19	18580.250	977.908	**	60.6
CP-2		17	7254.630	426.743	**	23.7
CP-3		15	2612.300	174.153	**	8.5
CP-4		13	885.680	68.129	*	2.9
CP-5		11	819.820	74.529	*	2.7
CP-6		9	523.180	58.131		1.7
Error conjunto		294	10593.480	36.032		
Total		419	241793.441			
C.V.(%)				2.640		
Promedio				227.379		

^{*} Significación al 0.05 de probabilidad

En el grafico 9 del biplot se observa que el ambiente contrastante es Lunar Bajo, como un primer ambiente, un segundo ambiente estaría formado por a localidades Paredones y El Mulato y un tercer grupo serían los ambientes El Socorro, Alto Perú, Cascajal y San Antonio. Los genotipos más estables son: Exp. 007 de porte medio, P3862 es el genotipo más alto y el genotipo Exp. 004 es el más bajo, el genotipo que más interacciona es el Insignia.

En el biplot de los dos componentes que explican el 84.22 % se observa que los genotipos estables son Exp. 004, 30F35, DK-1596, Exp. 005 y Exp. 001, los genotipos que más interactúan son Exp. 006 y 30K73.

^{**} significación al 0.01 de probabilidad

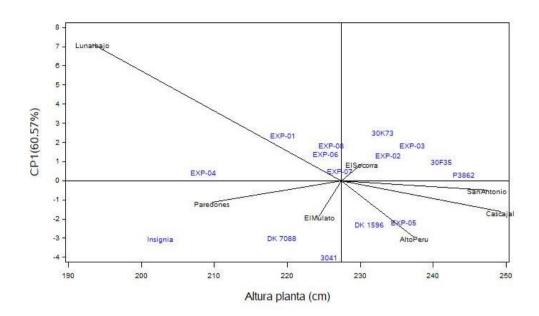


Figura 5: Biplot de las coordenadas del primer eje del componente principal (CP-1) en función del contenido promedio de altura de planta (cm) de los 14 genotipos y 7 localidades.

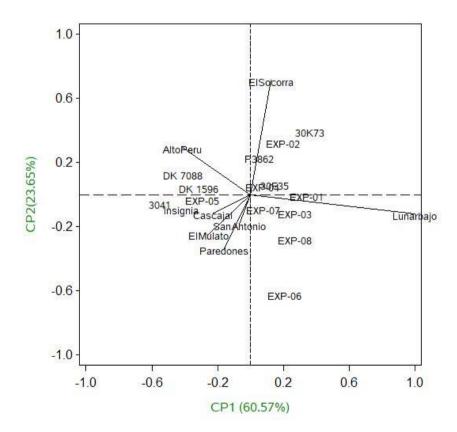


Figura 6: Biplot del primer eje del análisis de componentes principales de la interacción (CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7 localidades para altura de planta (cm).

4.3.3 Altura de mazorca

En la tabla 31 en su fuente de variación se encuentra alta significación estadística para Localidades, genotipo, interacción genotipo por localidad y CP1, CP-2, CP3 y CP-; localidades explica el 49 %, Genotipo 27.5 % y la interacción genotipo por localidad 16.3 %. Los dos primeros componentes explican el 81.3 % la interacción.

*T*abla 21: Modelos de efectos aditivos principales e interacción multiplicativa para altura de mazorca (cm).

Fuente de	Grados	Suma	Cuadrados		Porcentaje
variación	libertad	cuadrados	medios		explicado
Modelo	125	130667.711	1045.342		
Localidades (L)	6	68713.918	11452.320	**	49.0
Bloque/L	21	481.767	22.941		
Genotipo (G)	14	38647.674	2760.548	**	27.5
GxL	84	22824.352	271.718	**	16.3
CP-1	19	13011.380	684.810	**	57.0
CP-2	17	5550.810	326.518	**	24.3
CP-3	15	2317.670	154.511	**	10.2
CP-4	13	963.390	74.107	**	4.2
CP-5	11	634.540	57.685		2.8
CP-6	9	346.560	38.507		1.5
Error conjunto	294	9687.246	32.950		
Total	419	140354.957			
C.V.(%)			5.009		
Promedio			114.603		

^{*} Significación al 0.05 de probabilidad

En el gráfico 11 del biplot el ambiente más contratante es Lunar Bajo, los genotipos más estables son Exp. 007, Exp. 004 y P3862; los genotipos que más interaccionan son Exp. 001, Insignia, Exp. 005, Dk-1596, 3041 y DK-7088.

En el biplot de dos primeros componentes grafico 12 se observa que la localidad más contrastante es Lunar Bajo, el genotipo más estable es Exp. 004, Exp. 007 y los genotipos que más interaccionan son Exp. 006, Exp. 002, DK-7088.

^{**} significación al 0.01 de probabilidad

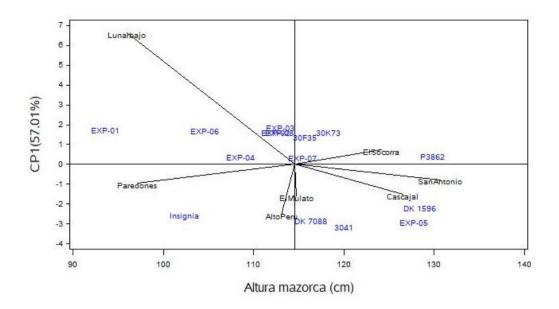


Figura 7: Biplot de las coordenadas del primer eje del componente principal (CP-1) en función del contenido promedio de altura de mazorca (cm) de los 14 genotipos y 7 localidades.

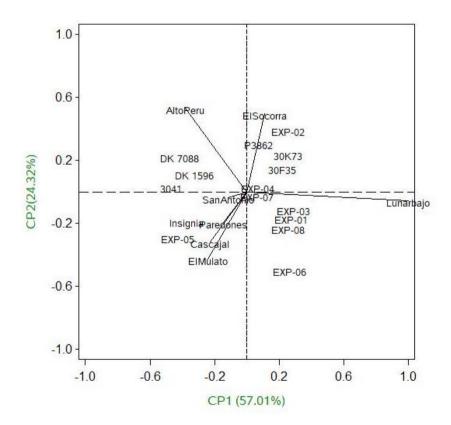


Figura 8: Biplot del primer eje del análisis de componentes principales de la interacción (CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7 localidades para altura de mazorca (cm).

4.3.4 Días a floración masculina

En la tabla 32 observamos en su fuente de variación alta significación estadística para Localidades, Genotipo, y la interacción genotipo por localidad, CP-1, CP-2, CP-3 y CP-4; localidades explica el 92.5 %, Genotipo 6 % y la interacción Genotipo por localidad 1.4 %. Los dos primeros componentes explican el 97.1 % la interacción.

Tabla 22: Modelos de efectos aditivos principales e interacción multiplicativa para días a floración masculina.

Fuente de	Grados	Suma	Cuadrados		Porcentaje
variación	libertad	cuadrados	medios		explicado
Modelo	125	82446.974	659.576		
Localidades (L)	6	76335.190	12722.532	**	92.5
Bloque/L	21	7.483	0.356		
Genotipo (G)	14	4920.919	351.494	**	6.0
GxL	84	1183.381	14.088	**	1.4
CP-1	19	1042.560	54.872	**	88.1
CP-2	17	106.590	6.270	**	9.0
CP-3	15	22.390	1.492	**	1.9
CP-4	13	10.610	0.816	**	0.9
CP-5	11	1.200	0.109		0.1
CP-6	9	0.030	0.004		0.0
Error conjunto	294	76.767	0.261		
Total	419	82523.740			
C.V.(%)			0.740		
Promedio			69.088		

^{*} Significación al 0.05 de probabilidad

En el gráfica 13 se observa que la localidad más contrastante es Lunar Bajo, junto a las localidades Alto Perú y El Socorra, San Antonio, El Mulato y Cascajal, la localidad de Paredones no es contrastante; los genotipos Exp. 004, Exp. 007, 30F35, P3862, DK-1596, DK-7088 son los más estables y el que más interacciona es el genotipo Exp. 001.

En el biplot de los dos primeros componentes grafica 14 los genotipos estables son 30F35, Exp. 008, 30K73, 3041, Exp. 005 y Exp. 002. Y el que más interacciona son los genotipos Exp. 001 y Exp. 003.

^{**} significación al 0.01 de probabilidad

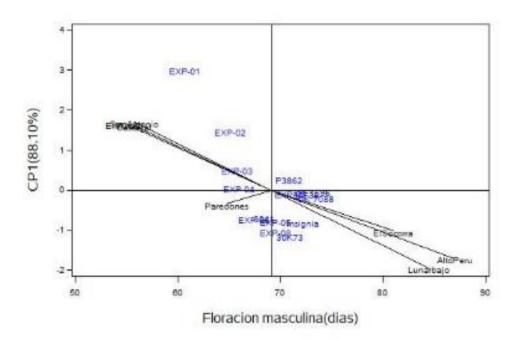


Figura 9: Biplot de las coordenadas del primer eje del componente principal (CP-1) en función del contenido promedio de días a floración masculina de los 14 genotipos y 7 localidades.

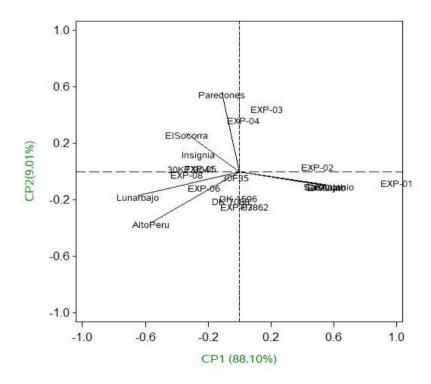


Figura 10: Biplot del primer eje del análisis de componentes principales de la interacción (CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7 localidades para floración masculina.

4.3.5 Días a floración femenina

En la fuente de variación de la tabla 33 se observa alta significación estadística para localidades, Genotipo, interacción genotipo por localidad y los componentes CP-1, CP-2, CP-3 y CP-4; Localidades explica el 92.7 %, Genotipo 5.4% y la interacción genotipo por localidad 1.9 %. Los dos primeros componentes explican el 96.0 % la interacción.

Tabla 23: Modelos de efectos aditivos principales e interacción multiplicativa para días a floración femenina.

Fuente de	Grados	Suma	Cuadrados		Porcentaje
variación	libertad	cuadrados	medios		explicado
Modelo	125	83958.540	671.668		
Localidades (L)	6	77862.290	12977.048	**	92.7
Bloque/L	21	9.050	0.431		
Genotipo (G)	14	4525.633	323.260	**	5.4
GxL	84	1561.567	18.590	**	1.9
CP-1	19	1267.540	66.713	**	81.2
CP-2	17	230.880	13.581	**	14.8
CP-3	15	43.910	2.928	**	2.8
CP-4	13	18.640	1.434	**	1.2
CP-5	11	0.590	0.054		0.0
Error conjunto	294	79.200	0.269		
Total	419	84037.740			
C.V.(%)			0.739		
Promedio			70.255	•	

^{*} Significación al 0.05 de probabilidad

En el gráfica 15 se observa que los genotipos mas estables son 3240, DK-7088, DK-1596, Exp. 007, P3862, y 30F35, el genotipo Exp. 001 es el que más interacciona; se tiene dos grupos de localidades que se forman primero Luna Bajo, Alto Perú y El Socorra, segundo grupo El Mulato, Cascajal y San Antonio y un tercer grupo la localidad Paredones, la localidad Lunar Bajo es la contrastante.

En el biplot de los dos componentes grafica 16 se observa a los genotipos insignia, Exp. 002, Exp. 005, 3041, 30K73 como los más estables y el que más interacciona es el genotipo Exp. 003 y Exp. 001.

^{**} significación al 0.01 de probabilidad

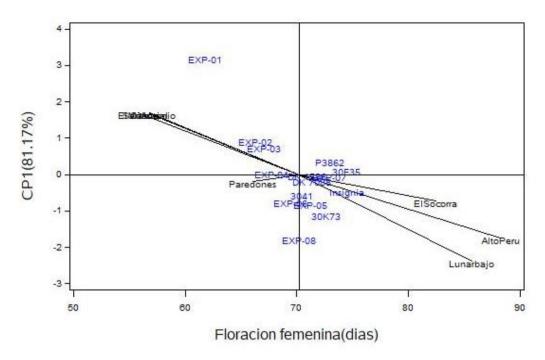


Figura 11: Biplot de las coordenadas del primer eje del componente principal (CP-1) en función del contenido promedio de días a floración femenina de los 14 genotipos y 7 localidades.

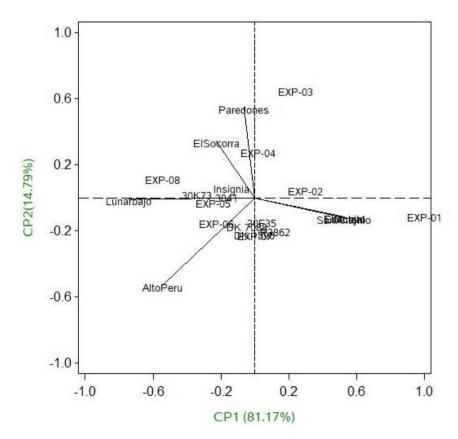


Figura 12: Biplot del primer eje del análisis de componentes principales de la interacción (CP-1) vs el segundo eje (CP-2) del estudio de estabilidad de 14 genotipos de maíz en 7 localidades para floración femenina.

De acuerdo al modelo de Eberhart y Rusell se puede considerar en rendimiento de grano como estables a los híbridos Exp. 003, Exp. 007 y el híbrido 3041 tiene bajo rendimiento a pesar de ser estable, y híbridos estables inconsistente a DK-1596 y 30F35 por su buen rendimiento de grano; de acuerdo a AMMI se puede considerar como estables a los híbridos Exp. 003, Exp. 007 de mayor rendimiento de grano y el híbrido, Insignia estable pero de bajo rendimiento de grano, los híbridos DK-7088 y DK-1596 se comportan bien en la localidad de El Socorra.

En relación a altura de planta se puede considerar al híbrido Exp. 007 como estable y con AMMI también se le considera como estable, en relación a la variable altura de mazorca de acuerdo a Eberhart y Russell se las considera como estables inconsistentes y con AMMI se considera como estable al híbrido Exp. 007 y Exp. 004.

Para días a floración masculina y femenina con Eberhart y Russell al híbrido 30F35 como estable en floración masculina y en días a floración femenina son estables y inconsistentes o para buenos ambientes y inconsistente o ambientes desfavorables inconsistentes; con el modelo AMMI en días a floración masculina se considera como estable al híbrido 30F35 que coincide con el modelo de Eberhart y Russell y en floración femenina se puede considerar como estable al híbrido 3041, 30K73.

En la localidad de Alto Perú destacaron en rendimiento de grano los híbridos P3862, DK-1596 y DK-7088 con 17.772, 17.719 y 16.643 t/ha y es diferente de los demás híbridos, en la localidad Lunar bajo destacó el híbrido 30F35 con 17.545 t/ha y es diferente de los demás híbridos, en la localidad de El Socorra destacaron los híbridos DK7088, 30F35, 30K73, P3862 y Exp. 003 con 14.781, 14.568, 14.377, 14.361 y 14.308 t/ha respectivamente y son diferentes de los demás híbridos, en la localidad Paredones destacaron los híbridos P3862, Exp. 008, Exp. 006, Insignia 860 y Exp. 004 con 9.197, 9.040, 8.751, 8.432 y 8.336 t/ha respectivamente y son diferentes de los demás híbridos, en la localidad de Cascajal destacaron los híbridos DK-1596, Exp. 005, DK-7088, 30F35 y P3862 con 12.196, 12.103, 11.922, 11.496 y 11.410 t/ha respectivamente y son diferentes de los demás híbridos, en la localidad El Mulato destacó el híbrido Exp. 005 con 10.341 t/ha y es diferente de los demás híbridos, en la localidad de San Antonio destacaron los híbridos Exp. 006, DK-1596, Exp. 004, Exp. 005, Exp. 008, y Exp. 003 con 11.877, 11.580, 11.336, 11.216, 11.151 y 10.940 t/ha respectivamente y son diferentes de los demás híbridos.

V. CONCLUSIONES

Los genotipos con las localidades interaccionan en todas las variables estudiadas; mediante el análisis de estabilidad de Eberhart y Russell se ha determinado tres híbridos estables y consistente para rendimiento de grano Exp. 003, Exp. 007 y 3041; en altura de planta solo el híbrido Exp. 007; en floración masculina el híbrido 30F35; no se encontró ningún híbrido estable y consistente en altura de mazorca y días a floración femenina. Con el modelo AMMI los híbridos estables en rendimiento de grano fueron Exp. 003, Exp. 002, Insignia y Exp. 007; altura de planta Exp. 004 y 30F35; altura de mazorca Exp. 004 y Exp. 007; días a floración masculina 30F35; días a floración femenina 3041.

Los híbridos de mayor rendimiento de grano y estables de acuerdo al análisis de estabilidad de Eberhart y Russell y AMMI son los híbridos Exp. 003, Exp. 007. Los mayores rendimientos se obtuvieron en la localidad de Alto Perú y Lunar bajo, destacando los híbridos P3862, DK 1596 y DK 7088 en la localidad de Alto Perú y en la localidad de Lunar bajo el híbrido DK 7088.

VI. RECOMENDACIONES

Se recomienda establecer como política del sector agrícola del país, que toda semilla híbrida de maíz amarillo duro, antes de ser puesta al mercado para su comercialización deba ser sometida al estudio de la interacción genotipo por ambiente, a fin identificar el híbrido de mayor estabilidad de rendimiento y que el agricultor tenga la posibilidad de elegir la semilla más estable y de mayor rendimiento para su localidad y garantizar su rentabilidad.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Acevedo, M., Álvarez, R., Silva, R., Torres, T. y Reyes, E. (2019). Interacción genotipo ambiente en arroz para identificar mega-ambientes y ambientes ideales mediante el modelo de regresión por sitios y biplot. Bioagro 31(1): 35-44
- Allen, R. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Recuperado de https://www.fao.org/3/x0490s/x0490s.pdf
- Allison J. C. S.; Daynard, T. B. 1979. Effect of change in time of flowering, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci. 19(1): 1-4.
- Andrade, F., Otegui, M., Cirilo, A. y Uhart, S. (2023). Ecofisiología y manejo del cultivo de maíz.

 Recuperado de http://www.maizar.org.ar/documentos/cultivo%20de%20maiz_version%20digital.pdf
- Andrade, F., Sadras, V., Vega, C. y Echarte, L. (2008). Determinantes fisiológicos del crecimiento y rendimiento de cultivos de maíz, girasol y soja. Recuperado de https://doi.org/10.1300/J411v14n01_05
- Aschalew A., S. Pathak, S. Singh, A. Bhatia, R. Harit, y V. Kumar. (2016). Crecimiento, rendimiento y calidad del maíz con niveles elevados de dióxido de carbono atmosférico y temperatura en el noroeste de la India. Recuperado de https://doi.org/10.1016/j.agee.2015.11.014
- Barandiarán, A. (2020). Manual Técnico del Cultivo de Maíz Amarillo Duro. Recuperado de https://repositorio.inia.gob.pe/handle/20.500.12955/1643
- Birch, C., Hammer, G y Rickert, K. (1998). Temperature and photoperiod sensitivity of development in five cultivars of maize (Zea mays L.) from emergence to tassel

- initiation. Field Crops Research. Recuperado de https://doi.org/10.1016/S0378-4290(97)00062-2
- Birch, C., Hammer, G. y Rickert, K. (1999). Dry matter accumulation and distribution in five cultivars of maize (*Zea mays*): relationships and procedures for use in crop modeling. Aus. J. Agric. Res. 50:513-27 Recuperado de https://doi.org/10.1071/A98113
- Bonavia, D. (2008). El maíz. Fondo editorial Universidad de San Martin de Porres. Grafica Santa Fe. Lima Perú. 428 p.
- Botanical Review. New York, Estados Unidos. 46: 225-226, 316-318
- Briceño, H., Valverde, A y Álvarez, L. (2022). Maíz. Una planta de todos los tiempos-Cultivo e Investigaciones en Manejo Integrado. Recuperado de https://www.unheval.edu.pe/portal/wp-content/uploads/2022/09/MAIZ-Una-plantade-todos-los-tiempos.-Cultivo-e-Investigaciones-en-manejo-integrado-1%C2%B0edicion-digital.pdf
- Brickell, C., Alexander, C., Cubey, J., David, J., Hoffman, M., Leslie, A.;... Jin, X. (2016). International Code Of Nomenclature For Cultivated Plants. 210 págs. Recuperado de https://www.ishs.org/sites/default/files/static/ScriptaHorticulturae_18.pdf
- Caballero-García, M., Córdova-Téllez, L. y López-Herrera, A. (2019). Validación Empírica De La Teoría Multicéntrica Del Origen Y Diversidad Del Maíz En México. *Revista fitotecnia mexicana*. Recuperado de https://www.scielo.org.mx/pdf/rfm/v42n4/0187-7380-rfm-42-04-00357.pdf
- Caicedo, M. B., Ledesma, I. B., Villavicencio, J. P., Saltos, E. A. y Alarcón, F. D. (2017). Estabilidad ambiental en híbridos de maíz usando el modelo AMMI en el litoral Ecuatoriano. ESPAMCIENCIA 8(1): 23-32
- Cairns, J., Sonder, K., Zaidi, P., Verhulst, N., Mahuku, G.; Babú, R.; ... Prasanna, B. (2012). Capítulo uno-La producción de maíz en un clima cambiante: impactos, adaptación y estrategias de mitigación. Avances en Agronomía. Volumen 114, Páginas 1-58. Recuperado de https://doi.org/10.1016/B978-0-12-394275-3.00006-7

- Carrera, C., Savin, R y Slafer, G. (2023). Critical period for yield determination across grain crops. Trends in Plant Science, Month 2023, Vol. xx, No. Xx. Of pages 14. Recuperado de https://doi.org/10.1016/j.tplants.2023.08.012
- Carrillo, C. (2009). El origen del maíz naturaleza y cultura en Mesoamérica Ciencias, Núm.
 92 93, pp. 4-13 Universidad Nacional Autónoma de México. Recuperado de https://www.redalyc.org/pdf/644/64412119003.pdf
- Castro, A., Dávila., Laura, W., Cubas, F., Avalos, G., López, C.; ... Marín, D. (2021). Climas del Perú. Mapa de clasificación climática Nacional. Servicio Nacional de Meteorología e Hidrología (SENAMHI). Recuperado de https://www.senamhi.gob.pe/load/file/01404SENA-4.pdf
- Centro Internacional de Mejoramiento de Maíz y Trigo CIMMYT. (22 de noviembre de 2021). La domesticación del maíz y su contribución a la Teoría de la Evolución. Recuperado de https://idp.cimmyt.org/la-domesticacion-del-maiz-y-su-contribucion-a-la-teoria-de-la-evolucion/
- Cicchino, S., Rattalino, J., Uribelarrea, M y Otegui, M. (2010). Estrés por calor en maíz cultivado en el campo: respuesta de los determinantes fisiológicos del rendimiento del grano. Recuperado de https://doi.org/10.2135/cropsci2009.10.0574
- Contreras, A., Martínez, C y Estrada, G. (2012). Eficiencia en el uso de la radiación por híbridos de maíz de Valles Altos de México. *Revista fitotecnia mexicana*, *35*(2), 161-169. Recuperado de https://www.scielo.org.mx/pdf/rfm/v35n2/v35n2a8.pdf
- Cordova, H.; Castellanos, S.; Barreto, H.; Bolaños, J. 2002. Veinticinco años de mejoramiento en los sistemas de maíz en Centroamérica: Logros y estrategias hacia el 2000. Agronomía Mesoamericana 13.
- Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy 44: 55-85.
- Díaz, L., Morales, R., Franco, M y Domínguez, L. (2011). Atenuación de luz, radiación interceptada y rendimiento del maíz en función del fósforo. Terra Latinoamericana 29. Recuperado de https://www.scielo.org.mx/pdf/tl/v29n1/2395-8030-tl-29-01-00065.pdf

- Díaz-Chuquizuta, Percy, Hidalgo-Melendez, Edison, Mendoza-Paredes, Melbin, Cieza-Ruiz, Isaac, Jara-Calvo, Teófilo Wladimir, & Valdés-Rodríguez, Ofelia Andrea. (2023). Nuevo híbrido trilineal de maíz amarillo duro para el trópico peruano. *Agronomía Mesoamericana*, 34 (1), 51177. https://dx.doi.org/10.15517/am.v34i1.51177.
- Dickerson, George. 2003. "Specialty Corns". College of Agriculture and Home Economics.

 Las Cruces: New Mexico State University.
- Eberhart, S.A. y Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science. 6:36-40
- Fleury, A. 1990. Méthodologie de l'analyse de l'élaboration du rendement. In: Colloque Physiologie et production de mais. Pau, France, 1990. Paris, INRA. pp. 279-290.
- Gauch H.G. (1992): Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam.
- Gauch H.G. (2006): Statistical analysis of yield trials by AMMI and GGE. Crop Science 46: 1488-1500.
- Golik, S., Larran, S., Gerard, G. y Constanza, M. (2018). Cereales de verano. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. https://doi.org/10.35537/10915/68613
- Gollob, H.F. 1968. A statistical model which combines features of factor analysis and analysis of variance techniques. Psychometrika 33:73-115
- Gonzáles, M. 2001. Interaccion de genotipo x ambiente en guisante proteaginoso (Pisum sativum L.). Tesis de Doctorado. Universidad de Valladolid. Departamento de produccion Vegetal.
- González, U. 2009. El maíz y los productos de su industrialización. México D.F.: Trillas.
- Gordón, R, (2021). El maíz en Panamá: Características, rendimientos y recomendaciones para su producción en ambientes con alta variabilidad climática. Instituto de innovación agropecuaria de Panamá. 108 p. Recuperado de

- https://proyectos.idiap.gob.pa/uploads/adjuntos/manual_tecnico_el_maiz_en_panama .pdf
- Gordon, R.; Camargo, I.; Franco, J.; Gonzales, A. 2006. Evaluación de la Adaptabilidad y Estabilidad de 14 hibridos de maiz, Azureo, Panama. Agronomia Mesoamerica.
- Grant, R. F.; Jackson, B. S.; Kiniry, J. R. and Arkin, G. F. 1989. Water deficit timing effects on yield components of maize. Agron. J. 81: 61-65.
- Grobman A. 2004. El origen del maíz. En: Cincuenta años del Programa Cooperativo de Investigaciones en Maíz (PCIM) Universidad Nacional Agraria La Molina p 426-470.
- Grobman, A. 1982. Maíz (Zea mays), en: D. Bonavia, Los Gavilanes. Mar, desierto y oasis en la historia del hombre, 157-179, Corporación Financiera de Desarrollo S.A. Cofide, Instituto Arqueológico Alemán, Lima.
- Grobman, A., Bonavia, D., Dillehay, T., Piperno, D., Iriarte, J. y Holst, I. (2012). Preceramic maize from Paredones and Huaca Prieta, Perú. Proceedings of the National Academy of Sciences, U.S.A. Recuperado de file:///C:/Users/Sony/Downloads/pnas.1120270109.pdf
- Guadalupe, O. (2009). Hibridación en la naturaleza. Recuperado de file:///C:/Users/Sony/Downloads/Dialnet-HibridacionEnLaNaturaleza-3059688.pdf
- Hogares, J. C. 2004. "Producción agrícola". En: Manual agropecuario: tecnologías orgánicas de la granja. Vol. 1. Colombia: Hogares Juveniles Campesinos.
- Instituto de Innovación Agraria. 2012. Boletín del Reglamento de la Ley general de semillas. 68 págs.
- Kato, T., Mapes, C., Mera, L., Serratos, J. y Bye, R. (2009). Origen y diversificación del Maíz.
 Recuperado de https://bioteca.biodiversidad.gob.mx/janium/Documentos/6385.pdf
- Lafitte, H. (2001). Estreses abióticos que afectan al maíz. En: El maíz en los trópicos: Mejoramiento y producción. R. Paliwal, G. Granados, H.R. Lafitte y A. Violic. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Recuperado de http://www.fao.org/3/x7650s/x7650s00.htm

- Lafitte, H.R.; Edmeades, G.O. 1994. Improvement for tolerance to low soil nitrogen in tropical maize. I. Selection criteria. Field Crops Res. 39: 1-14
- Lee, E. A.; M. Tollenaar. 2007. Physiological basis of successful breeding strategies for maize grain yield. Crop Sci. 47 (Suppl. 3): S202-S215.
- Leon. 1987. "Botánica de los Cultivos Tropicales". Editorial. IICA San José de Costa Rica 12p.
- Lizaso, J., Ruiz, M., Rodríguez, L., Gabaldon, C., Oliveira, J., Lorite, I y Rodríguez, A. (2018). Impact of high temperatures in maize: Phenology and yield components. Field Crops Research. 216: 129-140. Recuperado de https://doi.org/10.1016/j.fcr.2017.11.013
- López Morales, F., Chura-Chuquija, J., & García-Pando, G. (2019). Interacción genotipo por ambiente del rendimiento de maíz amarillo en híbridos trilineales, Perú. Revista Mexicana De Ciencias Agrícolas, 10(4), 859–872. https://doi.org/10.29312/remexca.v10i4.1696.
- MacRobert, J., Setimela, P., Gethi, J. y Worku, M. (2015). Manual de producción de semilla de maíz híbrido. Recuperado de https://repository.cimmyt.org/bitstream/handle/10883/16849/57179.pdf?sequence=1 &isAllowed=y
- Mandel, J. 1971. A new analysis of variance model for non-additive data. Technometrics 13:118
- Márquez S. F. 1992. Genotecnia Vegetal. Métodos-Teorías-Resultados. Tomo I. AGT Editor. México, DF. 357 p.
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2020). Plan Nacional de Cultivos.

 Campaña Agrícola 2019 2020. Recuperado de https://cdn.www.gob.pe/uploads/document/file/471867/Plan_Nacional_de_Cultivos_2019_2020b.pdf
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2022). Marco orientador de cultivos, campaña agrícola 2022/2023. Recuperado de

- $\underline{https://cdn.www.gob.pe/uploads/document/file/3863155/Marco\%20Orientador\%20d}\\e\%20Cultivos\%202022/2023.pdf$
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). (2023). Observatorio de Commodities Maíz Amarillo Duro: ene-mar 2023. Boletín Trimestral N.O 01. Recuperado de https://cdn.www.gob.pe/uploads/document/file/4702544/Commodities%20Ma%C3%ADz%20Amarillo%20Duro%3A%20ene-mar%202023.pdf?v=1687195029
- Monteith, J. (1977). El clima y la eficiencia de la producción agrícola en Gran Bretaña. Recuperado de https://doi.org/10.1098/rstb.1977.0140
- Monteith, J. L. 1977. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. London, Serie B 281:277-294.
- Núñez, G. L. D. y Ayala, O. 2009. Impacto de la producción de bioetanol en el mercado del maíz. Un análisis desde la dinámica de sistemas. Econ. y Soc. 14: 105-124.
- Núñez, L. y Ayala, D. (2009). Impacto de la producción de bioetanol en el mercado del maíz. Un análisis desde la dinámica de sistemas. *Economía y Sociedad, XIV* (23) ,105-124. Recuperado de https://www.redalyc.org/articulo.oa?id=51011904006
- Ordóñez, R., Savin, R., Cossani, C y Slafer G. (2015). Respuesta del rendimiento al estrés por calor afectada por la disponibilidad de nitrógeno en el maíz. Investigación de cultivos extensivos. Volumen 183. páginas 184-203. Recuperado de https://doi.org/10.1016/j.fcr.2015.07.010
- Otegui, M. E. and Bonhomme, R. (998). Grain yield components in maize. I. Ear growth and kernel set. Field Crops Res. 56: 247-256. https://doi.org/10.1016/S0378-4290(97)00093-2
- Otegui, M., Cirilo, A., Uhart, S. y Andrade, F. (2021). Maize. In: Sadras, V.O. and Calderini, D.F., Editors, Crop Physiology Case Histories for Major Crops. 1st ed. Academic Press. 716 pp.
- Paliwal, R.L. 2001. Tipos de maíz. El maíz en los trópicos: mejoramiento y producción. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma.

- Philippe Vielle Jean (12 de octubre de 2018). Ciclo de conferencias. El Origen del maíz. Laboratorio Nacional de Genómica para la biodiversidad Irapauto. Recuperado de https://www.codexvirtual.com/maiz/index.php/archivos?id=30
- Ponce-Encinas, M. C., López-Morales, F., Chura-Chuquija, J., Hernández-Leal, E., Hernández-Salinas, G., & Aragón-García, A. (2022). Interacción genotipo-ambiente del rendimiento en híbridos de maíz amarillo mediante AMMI y SREG. Revista Mexicana De Ciencias Agrícolas, 13(7), 1247–1258. https://doi.org/10.29312/remexca.v13i7.3070.
- Portal Agraria.pe (27 de enero del 2012). Maíz Peruano, tan antiguo pero diferente al Mejicano. Recuperado de https://agraria.pe/noticias/maiz-peruano-tan-antiguo-pero-diferente-al-mejicano-2530
- Ranum, P., Peña-Rosas, J. y García-Casal, M. (2014). Global maize production, utilization, and consumption. Recuperado de https://nyaspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nyas.12396
- Reyes C., P. 1990. El maíz y su cultivo. AGT-EDITOR S.A. México, D.F.
- Rodríguez, G., Paredes, P., Goncalves, J., Alves, I y Pereira, L. (2013) Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: ranking for water saving vs. farm economic returns. *Agricultural Water Management* 126:85-96. Recuperado de https://doi.org/10.1016/j.agwat.2013.05.005
- Salisbury, F. B.; y C. W. Ross. 1994. Fisiología Vegetal. Grupo Editorial Iberoamérica. pp: 180-204.
- Salisbury, F. y Ross, C. (1994). Fisiología Vegetal. Grupo Editorial Iberoamérica.
- Sánchez, I. (2014). Aspectos Botánicos y Taxonómicos del Maíz. Recuperado de http://revistareduca.es/index.php/biologia/article/view/1739/1776
- Serratos, J. (2009). El Origen y la Diversidad del Maíz en el Continente Americano. Greenpeace México. Recuperado de http://www.funsepa.net/guatemala/docs/el-origen-y-la-diversidad-del.pdf

- Servicio Nacional de Meteorología e Hidrología (SENAMHI) (2017). Maíz Amarillo Duro FICHA TÉCNICA AGROCLIMÁTICA. Recuperado de https://repositorio.senamhi.gob.pe/bitstream/handle/20.500.12542/1423/Ma%C3%A
 <a href="https://repositorio.senamhi.gob.pe/bitst
- Setimela, P., Magorokosho, C., Lunduka, R., Gasura, E., Makumbi, D., Tarekegne, A.;... Mwangi, W. (2017). Los cultivos agrícolas producen cereales con maíz tolerante al estrés en África oriental y meridional. *Revista de Agronomía*, 109 (2), 406-417. Recuperado de https://doi.org/10.2134/agronj2015.0540
- Shaw, R. (1988). Climatic requirement. In Corn and corn improvement. Recuperado de https://doi.org/10.2134/agronmonogr18.3ed.c10
- Shaw, R. H. 1988. Climatic requirement. In Corn and corn improvement. Ed. by G.F. Sprague and J.W. Dudley. 3. ed. Madison, ASA. Agronomy no. 18. p. 609-638
- Shukla, R. y Cheryan, M. (2000). Zein: the industrial protein from corn. Industrial Crops and Products 13 (2001) 171–192. Recuperado de https://maizetrust.co.za/wp-content/uploads/2022/01/CSIR-52-Zein-Industrial-Protein-from-Corn-2000.pdf
- Shukla, Rishi; & Cheryan, Munir. 2001. "Zein: the industrial protein from corn". Industrial crops and products. Vol. 13. No 3. pp. 171-192.
- Sierra, M. M.; Rodríguez, M. F. A.; Espinosa, C. A. y Andrés, M. P. (2018). Adaptabilidad de híbridos trilineales de maíz en el área tropical de los estados de Veracruz y Tabasco, México. Rev. Cienc. Amb. Rec. Nat. 4(11):15-19
- Sierra-Macías, M., Rodríguez-Montalvo, F. A., Espinosa-Calderón, A., Tadeo-Robledo, M., Andrés-Meza, P., & Gómez-Montiel, N. (2023). Adaptabilidad de cruzas varietales de maíz en Veracruz y Tabasco. Revista Mexicana De Ciencias Agrícolas, 14(3), 327–337. https://doi.org/10.29312/remexca.v14i3.2829
- Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., et al. (2021). Genotype× environment interaction and selection of maize (*Zea mays* L.) hybrids across moisture regimes. *Field Crops Research*, 270, 108224

- Steduto, P., Hsiao, T., Fereres, E y Raes, D. (2012). Respuesta del rendimiento de los cultivos al agua. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Recuperado de https://www.fao.org/documents/card/en/c/e1976ecb-fb63-4ba1-b533-261bab1fde40/
- Taiz, L y Zeiger, E. (2002). Plant Physiology. Recuperado de https://exa.unne.edu.ar/biologia/fisiologia.vegetal/PlantPhysiologyTaiz2002.pdf
- Taiz, L., and E. Zeiger. 2002. Plant Physiology. Sinauer. U.S.A. pp. 145-150.
- Takhtajan, A. (1980). Outline of classification of flowering plants (Magnoliophyta). The
- Tovar, G., David, C., Colonia, O y Sthepani, B. (2013). Producción y procesamiento del maíz en Colombia. Revista Científica Guillermo de Ockham, vol. 11, núm. 1. Recuperado de https://www.redalyc.org/pdf/1053/105327548008.pdf
- Trout, T. y Bausch, W. (2017) USDA-ARS Colorado maize water productivity data set. *Irrigation Science* 35:241-249. Recuperado de https://doi.org/10.1007/s00271-017-0537-9
- Troyer, A.; Forrest.; & Mascia, Petter. 1999. "Key technologies impacting corn genetic improvement past, present, and future. Maydica. Vol. 44. No 1. pp. 55-68.
- Udom, B y Kamalu, O. (2019). Crop requirements during growth period of maize (*Zea mays* L) in a moderate a permeability soil on Coastal Plain Sands International. J. Plant Research. 9(1):1-7. http://article.sapub.org/10.5923.j.plant.20190901.01.html
- USDA. (Departamento de Agricultura de los Estados Unidos). 2006. Thinking bio renewables: think corn. Washington D.C.: Iowa Corn Promotion Board.
- USDA. (Departamento de agricultura de los Estados Unidos). 2020. Servicio Agrícola Exterior. Disponible en https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads
- Vargas, E. A., Vargas, J.E. y Baena, D. (2016). Análisis de estabilidad y adaptabilidad de híbridos de maíz de alta calidad proteica en diferentes zonas Agroecológicas de Colombia. Acta Agron. 65 (1) p 72-79

- Vásconez, G., Caicedo, L., Véliz, D y Sánchez, F. (2021). Producción de biomasa en cultivos de maíz: Zona central de la costa de Ecuador. Revista de Ciencias Sociales (Ve), vol. 27, núm. Esp.3, págs. 417-431. Recuperado de https://www.redalyc.org/journal/280/28068276032/html/
- VERITRADE. (2023). Perú Importaciones. Maíz para siembra. Partida arancelaria 1005100000. Enero 2018 a diciembre 2023. Disponible en https://www.veritradecorp.com/es/paises/per
- Whaid, A., Gelani, S., Ashraf, M y Foolad, M. (2007). Tolerancia al calor en las plantas: una descripción general. Volumen 61, Número 3. Recuperado de https://doi.org/10.1016/j.envexpbot.2007.05.011
- Yan, W., Hunt, L., Sheng, Q., and Szlavnics, Z. 2000. Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Science. 40: 597-605
- Yue, H., Wei, J., Xie, J., Chen, S., Peng, H., et al. (2022). A Study on Genotype-by-Environment Interaction Analysis for Agronomic Traits of Maize Genotypes Across Huang-Huai-Hai Region in China. *Phyton*, *91*(1), 57.
- Zambrano, E. E., Limongi, J. R. F., Alarcón, F. D., Villavicencio, J. P., Caicedo, M. B., Eguez, J. F., Zambrano, J. L. (2017). Interacción genotipo ambiente de híbridos de maíz bajo temporal en Manabí y los ríos, Ecuador. ESPAMCIENCIA 8(1): 7-14
- Zarazúa-Villaseñor, P., Ruiz-Corral, J., Gonzales-Eguiarte, D., Flores-López, H. y Ron-
- Zobel, R.; Wright, M.; Gauch, H. 1988. Statistical analysis of a yield trial. Agron. J. 80:388-393
- Zystro, J., Peters, T. E., Miller, K. M., & Tracy, W. F. (2021). Inbred and hybrid sweet corn genotype performance in diverse organic environments. *Crop Science*, 61(4), 2280-2293

VIII. ANEXOS

Anexo 1: Análisis de variancia para rendimiento de grano (t/ha) en las diferentes localidades.

Fuente	GL	Alto Perú	Lunar bajo	El Socorra	Paredones	Cascajal	El Mulato	San Antonio
Modelo	17	10.510619	12.782	3.981	3.865	6.018	4.476	4.931
Bloque	3	0.507	0.388	0.816	0.712	0.264	0.999	0.132
Genotipo	14	12.654 **	15.438 **	4.659 **	4.541 **	7.251 **	5.221 **	5.960 **
Error	42	0.731	0.686	0.542	0.374	0.402	0.421	0.621
Total	59							
C.V.(%)		5.694	6.215	5.564	7.922	6.088	7.999	7.785
Promedio		15.020	13.327	13.231	7.720	10.411	8.107	10.126

^{*} Significación al 0.05 de probabilidad ** Significación al 0.01 de probabilidad

Anexo 2: Análisis de variancia para altura de planta (cm) en las diferentes localidades.

Fuente	DF	Alto Perú	Lunar bajo	El Socorra	Paredones	Cascajal	El Mulato	San Antonio
Modelo	17	847.66601	1676.913	817.327	427.356	426.860	301.448	389.530
Bloque	3	44.297	13.232	36.778	15.722	88.663	9.833	26.629
Genotipo	14	1019.816 **	2033.416 **	984.588 **	515.563 **	499.330 **	363.937 **	467.294 **
Error	42	31.410	31.192	54.453	23.368	50.479	31.929	29.395
Total	59							
C.V.(%)		2.361	2.889	3.205	2.305	2.851	2.518	2.192
Promedio		237.393	193.294	230.239	209.709	249.213	224.411	247.396

^{*} Significación al 0.05 de probabilidad ** Significación al 0.01 de probabilidad

Anexo 3: Análisis de variancia para altura de mazorca (cm) en las diferentes localidades.

Fuente	DF	Alto Perú	Lunar bajo	El Socorra	Paredones	Cascajal	El Mulato	San Antonio
Modelo	17	906.55288	590.089	490.901	401.058	394.990	336.352	524.399
Bloque	3	41.683	18.191	12.188	7.528	26.413	5.994	48.593
Genotipo	14	1091.882 **	712.638 **	593.482 **	485.386 **	473.971 **	407.143 **	626.357 **
Error	42	27.722	36.999	43.335	26.113	40.076	28.243	28.161
Total	59							
C.V.(%)		4.659	6.338	5.304	5.259	5.004	4.631	4.060
Promedio		113.022	95.964	124.122	97.163	126.498	114.757	130.698

Anexo 4: Análisis de variancia para días a floración masculina en las diferentes localidades.

Fuente	DF	Alto Perú	Lunar bajo	El Socorra	Paredones	Cascajal	El Mulato	San Antonio
Modelo	17	90.487255	93.345	61.768	40.961	25.214	24.828	22.914
Bloque	3	0.728	0.311	0.106	0.578	0.178	0.283	0.311
Genotipo	14	109.721 **	113.281 **	74.981 **	49.614 **	30.579 **	30.088 **	27.757 **
Error	42	0.299	0.287	0.213	0.125	0.309	0.307	0.287
Total	59							
C.V.(%)		0.629	0.635	0.569	0.546	0.996	1.011	0.961
Promedio		86.950	84.467	80.983	64.800	55.800	54.817	55.800

^{*} Significación al 0.05 de probabilidad ** Significación al 0.01 de probabilidad

Anexo 5: Análisis de variancia para días a floración femenina en las diferentes localidades.

Fuente	DF	Alto Perú	Lunar bajo	El Socorra	Paredones	Cascajal	El Mulato	San Antonio
Modelo	17	91.153922	110.605	49.739	33.970	24.589	24.605	23.941
Bloque	3	0.728	0.683	0.111	0.461 *	0.194	0.283	0.556
Genotipo	14	110.531 **	134.160 **	60.374 **	41.150 **	29.817 **	29.817 **	28.952 **
Error	42	0.299	0.302	0.266	0.128	0.290	0.283	0.317
Total	59							
C.V.(%)		0.620	0.642	0.626	0.541	0.948	0.954	0.991
Promedio		88.217	85.683	82.433	66.050	56.783	55.783	56.833

^{*} Significación al 0.05 de probabilidad ** Significación al 0.01 de probabilidad

Anexo 6: Descripción de los genotipos estudiados para rendimiento de grano (t/ha) de acuerdo a Carballo y Márquez 1970.

Genotipo	Promedio	bi	S ² di	Descripción
DK 1596	12.340	= 1	> 0	Estable, inconsistente
DK 7088	12.176	> 1	=0	Buenos ambientes, consistente
30F35	12.080	= 1	> 0	Estable, inconsistente
Exp. 005	11.619	= 1	> 0	Estable, inconsistente
Exp. 006	11.506	= 1	> 0	Estable, inconsistente
P3862	11.499	= 1	> 0	Estable, inconsistente
30K73	11.379	= 1	> 0	Estable, inconsistente
Exp. 003	11.327	= 1	=0	Estable
Exp. 007	11.123	= 1	=0	Estable
Exp. 008	11.047	< 1	> 0	Ambientes desfavorables, inconsistente
Insignia 860	10.977	= 1	> 0	Estable, inconsistente
Exp. 004	10.866	= 1	> 0	Estable, inconsistente
3041	10.374	= 1	=0	Estable
Exp. 002	9.762	> 1	> 0	Buenos ambientes, inconsistente
Exp. 001	8.942	= 1	> 0	Estable, inconsistente

Anexo 7: Descripción de los genotipos estudiados para altura de planta (cm) de acuerdo a Carballo y Márquez 1970.

Genotipo	Promedio	bi	S^2 di	Descripción
P3862	244.213	= 1	> 0	Estable, inconsistente
30F35	241.162	= 1	> 0	Estable, inconsistente
Exp. 003	237.198	< 1	> 0	Ambientes desfavorables, inconsistente
Exp. 005	235.964	= 1	> 0	Estable, inconsistente
Exp. 002	233.884	= 1	> 0	Estable, inconsistente
30K73	233.107	= 1	> 0	Estable, inconsistente
DK 1596	231.250	= 1	> 0	Estable, inconsistente
Exp. 007	227.256	= 1	=0	Estable
Exp. 008	226.024	= 1	> 0	Estable, inconsistente
3041	225.779	= 1	> 0	Estable, inconsistente
Exp. 006	225.253	= 1	> 0	Estable, inconsistente
Exp. 001	219.374	= 1	> 0	Estable, inconsistente
DK 7088	219.178	> 1	> 0	Buenos ambientes, inconsistente
Exp. 004	208.481	= 1	> 0	Estable, inconsistente
Insignia 860	202.571	= 1	> 0	Estable, inconsistente

Anexo 8: Descripción de los genotipos estudiados para altura de mazorca (cm) de acuerdo a Carballo y Márquez 1970.

Genotipo	Promedio	bi	S ² di	Descripción
P3862	129.819	= 1	> 0	Estable, inconsistente
DK 1596	128.351	= 1	> 0	Estable, inconsistente
Exp. 005	127.745	= 1	> 0	Estable, inconsistente
3041	120.025	= 1	> 0	Estable, inconsistente
30K73	118.265	= 1	> 0	Estable, inconsistente
DK 7088	116.307	= 1	> 0	Estable, inconsistente
30F35	115.712	= 1	> 0	Estable, inconsistente
Exp. 007	115.481	< 1	=0	Ambientes desfavorables, consistente
Exp. 003	112.954	< 1	> 0	Ambientes desfavorables, inconsistente
Exp. 008	112.874	= 1	> 0	Estable, inconsistente
Exp. 002	112.488	= 1	> 0	Estable, inconsistente
Exp. 004	108.533	= 1	> 0	Estable, inconsistente
Exp. 006	104.567	= 1	> 0	Estable, inconsistente
Insignia 860	102.317	= 1	> 0	Estable, inconsistente
Exp. 001	93.612	= 1	> 0	Estable, inconsistente

Anexo 9: Descripción de los genotipos estudiados para días a floración masculina de acuerdo a Carballo y Márquez 1970.

	Floración masculina							
Genotipo	Promedio	bi	$S^2 di$	Descripción				
DK 7088	73.393	= 1	> 0	Estable, inconsistente				
DK 1596	73.071	= 1	> 0	Estable, inconsistente				
30F35	72.464	= 1	=0	Estable				
Insignia 860	72.179	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 007	70.964	= 1	> 0	Estable, inconsistente				
30K73	70.929	> 1	> 0	Buenos ambientes, inconsistente				
P3862	70.821	= 1	> 0	Estable, inconsistente				
Exp. 005	69.571	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 008	69.500	> 1	> 0	Buenos ambientes, inconsistente				
3041	68.429	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 006	67.393	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 004	66.000	= 1	> 0	Estable, inconsistente				
Exp. 003	65.821	= 1	> 0	Estable, inconsistente				
Exp. 002	65.107	< 1	> 0	Ambientes desfavorables, inconsistente				
Exp. 001	60.679	< 1	> 0	Ambientes desfavorables, inconsistente				

Anexo 10: Descripción de los genotipos estudiados para días a floración femenina de acuerdo a Carballo y Márquez 1970.

	Floración femenina							
Genotipo	Promedio	bi	$S^2 di$	Descripción				
30F35	74.464	= 1	> 0	Estable, inconsistente				
Insignia 860	74.464	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 007	72.964	= 1	> 0	Estable, inconsistente				
P3862	72.929	= 1	> 0	Estable, inconsistente				
30K73	72.607	> 1	> 0	Buenos ambientes, inconsistente				
DK 7088	71.286	= 1	> 0	Estable, inconsistente				
Exp. 005	71.214	> 1	> 0	Buenos ambientes, inconsistente				
DK 1596	70.857	= 1	> 0	Estable, inconsistente				
3041	70.429	> 1	= 0	Buenos ambientes, consistente				
Exp. 008	70.214	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 006	69.429	> 1	> 0	Buenos ambientes, inconsistente				
Exp. 004	67.786	= 1	> 0	Estable, inconsistente				
Exp. 003	67.071	= 1	> 0	Estable, inconsistente				
Exp. 002	66.286	< 1	> 0	Ambientes desfavorables, inconsistente				
Exp. 001	61.821	< 1	> 0	Ambientes desfavorables, inconsistente				