Aplicación de sensores remotos para estimar la tasa de evapotranspiración en irrigaciones de cuenca áridas, caso: Irrigación Olmos
Resumen
En regiones áridas donde los recursos hídricos son limitados y los cultivos están constantemente bajo la influencia de precipitaciones escasas y altas temperaturas, la estimación confiable de la evapotranspiración espacial y temporal de los principales cultivos agrícolas juega un papel muy importante para la toma de decisiones con respecto a la gestión y la programación del riego. En los últimos años, con el advenimiento de la tecnología satelital, surge como alternativa viable obtener la evapotranspiración con amplia cobertura espacial y temporal utilizando imágenes multiespectrales y la aplicación del algoritmo de balance de energía superficial para la tierra (SEBAL). En este contexto, el objetivo de la presente investigación es la aplicación de sensores remotos para estimar la tasa de evapotranspiración en irrigaciones de cuencas áridas, caso: Irrigación Olmos, para el cumplimiento del objetivo los algoritmos propuestos por el modelo SEBAL fueron automatizados en Python e implementado en el programa ArcGIS facilitando así el procesamiento de la evapotranspiración, se procesaron un total de diecinueve imágenes Landsat 8 suministrada de forma gratuita por el Servicio Geológico de Estados Unidos (USGS). El área de estudio geográficamente se localiza en la costa norte de Perú entre las coordenadas UTM 595,200 a 619,270 Este y 9’311,505 a 9’336,626 Norte del sistema WGS84, a una altitud promedio de 75 msnm. Los resultados de la ETr obtenidos mediante SEBAL, se encuentran en el rango de 0.0 a 7.07 mm.día-1 durante el periodo de análisis, estos resultados fueron validados utilizando información de la estación meteorológica Sutton, se calculó la ETo a través de la ecuación Penman–Monteith para el día del paso del satélite, luego, utilizando valores de Kc del cultivo de caña de azúcar se determinó la ETr. Los resultados de las estimaciones de SEBAL con valores estándar de los parámetros, muestran un buen desempeño con un coeficiente de determinación (r 2 ) de 0.871, un error medio cuadrático (RMSE) de 0.327, un coeficiente de Nash-Sutcliffe (NSE) de 0.873 y un error porcentual absoluto medio (MAPE) de 6.76%, esto demuestra que las mediciones de ET utilizando datos de sensores remotos proporcionan información adecuada y coherente para su aplicación en el área de estudio, esta información será importante para comprender y abordar el problema de los recursos hídricos y así en lo posterior se podrá mejorar la asignación de los recursos hídricos a través de un riego de tasa variable evitando así zonas de exceso o déficit de las aplicaciones de agua. In drylands where water resources are limited and crops are constantly influenced by low rainfall and high temperatures, reliable estimation of spatial and temporal evapotranspiration of the main agricultural crops plays a critical role for decision making regarding irrigation management and scheduling. In recent years, with the appearance of satellite technology, obtaining evapotranspiration with wide spatial and temporal coverage using multispectral images and the application of the surface energy balance algorithm for land (SEBAL) has emerged as a viable alternative. In this context, this research focuses in the application of remote sensing to estimate the evapotranspiration rate in irrigations of arid basins, case: For the Olmos Irrigation, the algorithms proposed by the SEBAL model were automated using Python and implemented in the ArcGIS program thus facilitating the processing of evapotranspiration in order to achieve the objective, a total of nineteen Landsat 8 images, which were provided free of charge by the United States Geological Survey (USGS), were processed. The study area is geographically located on the northern coast of Peru between UTM coordinates 595,200 to 619,270 East and 9'311,505 to 9'336,626 North of the WGS84 system, at an average altitude of 75 meter above sea level. The ETr results obtained through SEBAL, are in the range of 0.0 to 7.07 mm.day-1 during the period of analysis, these results were validated using information from the Sutton meteorological station, ETo was calculated through the Penman-Monteith equation for the day of the satellite passage, then, using Kc values of the sugarcane crop, ETr was determined. The results of the SEBAL estimations with standard values of the parameters, show a good performance with a coefficient of determination (r2 ) of 0.871, a root mean square error (RMSE) of 0.327, a NashSutcliffe coefficient (NSE) of 0.873 and a mean absolute percentage error (MAPE) of 6.76%. This shows that ET measurements using remote sensing data provide adequate and consistent information for application in the study area. This information will be important to understand and address the water resources problem and thus, in the later, improve the allocation of water resources through variable rate irrigation avoiding areas of excess or deficit of water applications.
Colecciones
- M-GCH Tesis [21]
El ítem tiene asociados los siguientes ficheros de licencia: