Una aplicación del modelo de regresión lineal con errores ajustados bajo la distribución Skew-normal
Resumen
El presente trabajo de investigación tiene como objetivo principal mostrar que el modelo de regresión lineal múltiple skew-normal, desde el marco de la estimación por máxima verosimilitud, representa apropiadamente el fenómeno de asimetría en la distribución de los errores que podría estar presente en diferentes áreas de investigación: médico, experimental, actuarial, económico, etc. La aplicación del modelo propuesto se desarrolla en un estudio relativo al índice de masa corporal (BMI) usando dos conjuntos de datos provenientes del Instituto Australiano del Deporte. Se estimaron el modelo de regresión lineal múltiple skew-normal y el modelo de regresión lineal clásico. Estos modelos fueron comparados usando el Criterio de Información de Akaike (AIC) y el Logaritmo de la Función de Verosimilitud (Log Verosimilitud) obteniendo mejores resultados con la regresión skew-normal dado el comportamiento asimétrico de los errores. The present research has a main objetive to show taht the skew-normal multiple linear regression model, from the frameworkof estimation by máximum likelihood, represents appropriately the phenomenon of asymmetry in the distribution of errors that might be present in different research areas: medical, experimental, actuarial, economic, etc. The application of the proposed model is developed in a study on the body mass index (BMI) using two sets of data from the Australian Institute of Sport. The Skew-normal multiple linear regression model and the classic linear regression model was estimated. These models were compared using the Akaike Information Criterion (AIC) and the logarithm of the likelihood function (Log Verosimilitud), getting best results with the skew-normal regression given the asymmetric behavior in the errors.
Colecciones
- En proceso [124]