Mostrar el registro sencillo del ítem

dc.contributor.authorFlores Bellido, Giovanna
dc.date.accessioned2018-04-24T18:25:35Z
dc.date.available2018-04-24T18:25:35Z
dc.date.issued2017
dc.identifier.otherU10.F467-T BAN UNALM
dc.identifier.urihttps://hdl.handle.net/20.500.12996/3240
dc.descriptionUniversidad Nacional Agraria La Molina. Facultad de Economía y Planificación. Departamento Académico de Estadística e Informáticaes_PE
dc.description.abstractEn el presente trabajo se presenta la metodología del algoritmo Fuzzy C-means para el análisis de cluster, el cual fue presentado por Bezdek y Dunn en 1973, la cual combina los métodos basados en la función objetivo con los de la lógica Fuzzy término presentado por Lofty Zadeh en 1960 como medio para modelar la incertidumbre a través de las etapas de fuzzificación, reglas de evaluación y defuzzificación. El algoritmo Fuzzy C-means realiza la formación de cluster a través de una partición suave de los datos, es decir para realizar del reconocmiento de patrones a través del hallazgo de los grados de pertenencia de cada individuo a los diferentes cluster, donde un individuo no tendría pertenecía exclusiva a un solo grupo, sino que un individuo podría tener grados de pertenencia a distintos grupos, a diferencia de otros métodos que realizan la formación de los cluster basados en la lógica binaria o partición dura. Utilizando el software estadístico R se realizó la aplicación del algoritmo Fuzzy C-means sobre datos de jugadores para la formación de cluster a través de rapidez y resistenciaes_PE
dc.description.uriTrabajo de suficiencia profesionales_PE
dc.formatapplication/pdfen_US
dc.language.isospaes_PE
dc.publisherUniversidad Nacional Agraria La Molinaes_PE
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad Nacional Agraria La Molinaes_PE
dc.sourceRepositorio institucional - UNALMes_PE
dc.subjectGrupos socialeses_PE
dc.subjectAnálisis multivariantees_PE
dc.subjectEconometríaes_PE
dc.subjectAnálisis de datoses_PE
dc.subjectClasificaciónes_PE
dc.subjectMétodos estadísticoses_PE
dc.subjectPerúes_PE
dc.subjectTécnica de algoritmoes_PE
dc.subjectFuzzy C-meanses_PE
dc.subjectClusterses_PE
dc.titleDescripción de la metodología de análisis de cluster con algoritmo Fuzzy C-meanses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesisen_US
thesis.degree.disciplineEstadística e Informáticaes_PE
thesis.degree.grantorUniversidad Nacional Agraria La Molina. Facultad de Economía y Planificaciónes_PE
thesis.degree.nameIngeniero Estadístico Informáticoes_PE
thesis.degree.levelTítulo Profesionales_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.05.00es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess